Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Obesity is a pressing global public health challenge, recognized as a major risk factor for chronic diseases, such as diabetes, cardiovascular conditions, and cancer. The rising obesity rates necessitate effective and safe therapeutic interventions. Despite the availability of FDA-approved drugs for long-term weight management, these pharmacological treatments often entail significant side effects and high costs, leading to low patient adherence. Consequently, there is an increasing focus on natural anti-obesity agents. β-caryophyllene (BCP) has emerged as a promising candidate, owing to its broad pharmacological properties. This review critically examines recent advancements in understanding BCP's anti-obesity effects, encompassing , animal, and clinical studies. Key mechanisms by which BCP exerts its effects include modulation of gut microbiota, enhancement of energy expenditure, regulation of metabolic enzymes, and inhibition of lipid synthesis and absorption. These insights lay the groundwork for the potential development of BCP-based dietary supplements or pharmaceuticals aimed at combating obesity.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855312851240823073921
2024-09-12
2025-06-15
Loading full text...

Full text loading...

References

  1. RenT. XuM. ZhouS. RenJ. LiB. JiangP. LiH. WuW. ChenC. FanM. JiaoL. Structural characteristics of mixed pectin from ginseng berry and its anti-obesity effects by regulating the intestinal flora.Int. J. Biol. Macromol.2023242Pt 112468710.1016/j.ijbiomac.2023.12468737146855
    [Google Scholar]
  2. MaggioC.A. Pi-SunyerF.X. Obesity and type 2 diabetes.Endocrinol. Metab. Clin. North Am.2003324805822, viii10.1016/S0889‑8529(03)00071‑914711063
    [Google Scholar]
  3. PolyzosS.A. KountourasJ. MantzorosC.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics.Metabolism201992829710.1016/j.metabol.2018.11.01430502373
    [Google Scholar]
  4. KunešJ. HojnáS. MrázikováL. MontezanoA. TouyzR.M. MaletínskáL. Obesity, Cardiovascular and Neurodegenerative Diseases: Potential Common Mechanisms.Physiol. Res.202372Suppl. 2S73S9010.33549/physiolres.93510937565414
    [Google Scholar]
  5. KurnoolS. McCowenK.C. BernsteinN.A. MalhotraA. Sleep apnea, obesity, and diabetes — an intertwined trio.Curr. Diab. Rep.202323716517110.1007/s11892‑023‑01510‑637148488
    [Google Scholar]
  6. AvgerinosK.I. SpyrouN. MantzorosC.S. DalamagaM. Obesity and cancer risk: Emerging biological mechanisms and perspectives.Metabolism20199212113510.1016/j.metabol.2018.11.00130445141
    [Google Scholar]
  7. LiZ. ZhangB. WangN. ZuoZ. WeiH. ZhaoF. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota.Gut202372468669810.1136/gutjnl‑2022‑32803535803703
    [Google Scholar]
  8. PerdomoC.M. CohenR.V. SumithranP. ClémentK. FrühbeckG. Contemporary medical, device, and surgical therapies for obesity in adults.Lancet2023401103821116113010.1016/S0140‑6736(22)02403‑536774932
    [Google Scholar]
  9. PadwalR.S. MajumdarS.R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant.Lancet20073699555717710.1016/S0140‑6736(07)60033‑617208644
    [Google Scholar]
  10. MartinsT. ColaçoB. VenâncioC. PiresM.J. OliveiraP.A. RosaE. AntunesL.M. Potential effects of sulforaphane to fight obesity.J. Sci. Food Agric.20189882837284410.1002/jsfa.889829363750
    [Google Scholar]
  11. KapoorK. MadaanR. KumarS. BalaR. WaliaR.P. Role of natural products in the treatment of obesity: nanotechnological perspectives.Curr. Drug Metab.202122645148010.2174/138920022266621032415073833761852
    [Google Scholar]
  12. FengS. ReussL. WangY. Potential of natural products in the inhibition of adipogenesis through regulation of pparγ expression and/or its transcriptional activity.Molecules20162110127810.3390/molecules2110127827669202
    [Google Scholar]
  13. WangY.C. LiW.L. SunJ.L. Advances in research on anti-obesity activity of natural products.Pharmacology and Clinics of Chinese Materia Medica20213703235240[J].
    [Google Scholar]
  14. MorissetteA. KroppC. SongpadithJ.P. Junges MoreiraR. CostaJ. Mariné-CasadóR. PilonG. VarinT.V. DudonnéS. BoutekrabtL. St-PierreP. LevyE. RoyD. DesjardinsY. RaymondF. HoudeV.P. MaretteA. Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice.Am. J. Physiol. Endocrinol. Metab.20203186E965E98010.1152/ajpendo.00560.201932228321
    [Google Scholar]
  15. NishimuraM. MuroT. KoboriM. NishihiraJ. Effect of daily ingestion of quercetin-rich onion powder for 12 weeks on visceral fat: a randomised, double-blind, placebo-controlled, parallel-group study.Nutrients20191219110.3390/nu1201009131905615
    [Google Scholar]
  16. ZhangJ. FengM. XuH. Salidroside inhibits high-fat diet-induced obesity in rats by modulating Nrf2/HO-1 and PPARγ/CEBPα signaling pathways.Chin. Tradit. Herbal Drugs2020512141219[J].
    [Google Scholar]
  17. RubinoF. BatterhamR.L. KochM. MingroneG. le RouxC.W. FarooqiI.S. Farpour-LambertN. GreggE.W. CummingsD.E. Lancet diabetes & endocrinology commission on the definition and diagnosis of clinical obesity.Lancet Diabetes Endocrinol.202311422622810.1016/S2213‑8587(23)00058‑X36878238
    [Google Scholar]
  18. LeisegangK. SenguptaP. AgarwalA. HenkelR. Obesity and male infertility: Mechanisms and management.Andrologia2021531e1361710.1111/and.1361732399992
    [Google Scholar]
  19. RuzeR. LiuT. ZouX. SongJ. ChenY. XuR. YinX. XuQ. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments.Front. Endocrinol. (Lausanne)202314116152110.3389/fendo.2023.116152137152942
    [Google Scholar]
  20. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. Obesity and cardiovascular disease: A scientific statement from the american heart association.Circulation202114321e984e101010.1161/CIR.000000000000097333882682
    [Google Scholar]
  21. RongL. ZouJ. RanW. QiX. ChenY. CuiH. GuoJ. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD).Front. Endocrinol. (Lausanne)202313108726010.3389/fendo.2022.108726036726464
    [Google Scholar]
  22. KimD.S. SchererP.E. Obesity, diabetes, and increased cancer progression.Diabetes Metab. J.202145679981210.4093/dmj.2021.007734847640
    [Google Scholar]
  23. AfshinA. ForouzanfarM.H. ReitsmaM.B. SurP. EstepK. LeeA. MarczakL. MokdadA.H. Moradi-LakehM. NaghaviM. SalamaJ.S. VosT. AbateK.H. AbbafatiC. AhmedM.B. Al-AlyZ. AlkerwiA. Al-RaddadiR. AmareA.T. AmberbirA. AmegahA.K. AminiE. AmrockS.M. AnjanaR.M. ÄrnlövJ. AsayeshH. BanerjeeA. BaracA. BayeE. BennettD.A. BeyeneA.S. BiadgilignS. BiryukovS. BjertnessE. BoneyaD.J. Campos-NonatoI. CarreroJ.J. CecilioP. CercyK. CiobanuL.G. CornabyL. DamtewS.A. DandonaL. DandonaR. DharmaratneS.D. DuncanB.B. EshratiB. EsteghamatiA. FeiginV.L. FernandesJ.C. FürstT. GebrehiwotT.T. GoldA. GonaP.N. GotoA. HabtewoldT.D. HadushK.T. Hafezi-NejadN. HayS.I. HorinoM. IslamiF. KamalR. KasaeianA. KatikireddiS.V. KengneA.P. KesavachandranC.N. KhaderY.S. KhangY.H. KhubchandaniJ. KimD. KimY.J. KinfuY. KosenS. KuT. DefoB.K. KumarG.A. LarsonH.J. LeinsaluM. LiangX. LimS.S. LiuP. LopezA.D. LozanoR. MajeedA. MalekzadehR. MaltaD.C. MazidiM. McAlindenC. McGarveyS.T. MengistuD.T. MensahG.A. MensinkG.B.M. MezgebeH.B. MirrakhimovE.M. MuellerU.O. NoubiapJ.J. ObermeyerC.M. OgboF.A. OwolabiM.O. PattonG.C. PourmalekF. QorbaniM. RafayA. RaiR.K. RanabhatC.L. ReinigN. SafiriS. SalomonJ.A. SanabriaJ.R. SantosI.S. SartoriusB. SawhneyM. SchmidhuberJ. SchutteA.E. SchmidtM.I. SepanlouS.G. ShamsizadehM. SheikhbahaeiS. ShinM.J. ShiriR. ShiueI. RobaH.S. SilvaD.A.S. SilverbergJ.I. SinghJ.A. StrangesS. SwaminathanS. Tabarés-SeisdedosR. TadeseF. TedlaB.A. TegegneB.S. TerkawiA.S. ThakurJ.S. TonelliM. Topor-MadryR. TyrovolasS. UkwajaK.N. UthmanO.A. VaezghasemiM. VasankariT. VlassovV.V. VollsetS.E. WeiderpassE. WerdeckerA. WesanaJ. WestermanR. YanoY. YonemotoN. YongaG. ZaidiZ. ZenebeZ.M. ZipkinB. MurrayC.J.L. GBD 2015 Obesity Collaborators Health effects of overweight and obesity in 195 countries over 25 years.N. Engl. J. Med.20173771132710.1056/NEJMoa161436228604169
    [Google Scholar]
  24. Di AngelantonioE. BhupathirajuS.N. WormserD. GaoP. KaptogeS. de GonzalezA.B. CairnsB.J. HuxleyR. JacksonC.L. JoshyG. LewingtonS. MansonJ.E. MurphyN. PatelA.V. SametJ.M. WoodwardM. ZhengW. ZhouM. BansalN. BarricarteA. CarterB. CerhanJ.R. CollinsR. SmithG.D. FangX. FrancoO.H. GreenJ. HalseyJ. HildebrandJ.S. JungK.J. KordaR.J. McLerranD.F. MooreS.C. O’KeeffeL.M. PaigeE. RamondA. ReevesG.K. RollandB. SacerdoteC. SattarN. SofianopoulouE. StevensJ. ThunM. UeshimaH. YangL. YunY.D. WilleitP. BanksE. BeralV. ChenZ. GapsturS.M. GunterM.J. HartgeP. JeeS.H. LamT-H. PetoR. PotterJ.D. WillettW.C. ThompsonS.G. DaneshJ. HuF.B. Global BMI Mortality Collaboration Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents.Lancet20163881004677678610.1016/S0140‑6736(16)30175‑127423262
    [Google Scholar]
  25. GoodarziM.O. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications.Lancet Diabetes Endocrinol.20186322323610.1016/S2213‑8587(17)30200‑028919064
    [Google Scholar]
  26. VirtueAT McCrightSJ WrightJM The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs.Sci Transl Med201911496eaav1892
    [Google Scholar]
  27. DurhamA.E. Insulin dysregulation and obesity: You are what you eat.Vet. J.20162139010.1016/j.tvjl.2016.03.01027240923
    [Google Scholar]
  28. NicolaidisS. Environment and obesity.Metabolism201910015394210.1016/j.metabol.2019.07.00631610854
    [Google Scholar]
  29. KoyamaS. PurkA. KaurM. SoiniH.A. NovotnyM.V. DavisK. KaoC.C. MatsunamiH. MescherA. Beta-caryophyllene enhances wound healing through multiple routes.PLoS One20191412e021610410.1371/journal.pone.021610431841509
    [Google Scholar]
  30. DahhamS.S. TabanaY. AsifM. AhmedM. BabuD. HassanL.E. AhamedM.B.K. SandaiD. BarakatK. SirakiA. MajidA.M.S.A. β-caryophyllene induces apoptosis and inhibits angiogenesis in colorectal cancer models.Int. J. Mol. Sci.202122191055010.3390/ijms22191055034638895
    [Google Scholar]
  31. BilbreyJ.A. OrtizY.T. FelixJ.S. McMahonL.R. WilkersonJ.L. Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement.Psychopharmacology (Berl.)202223951475148610.1007/s00213‑021‑06031‑234846548
    [Google Scholar]
  32. RefaatB. El-BoshyM. Protective antioxidative and anti-inflammatory actions of β-caryophyllene against sulfasalazine-induced nephrotoxicity in rat.Exp. Biol. Med. (Maywood)2022247869169910.1177/1535370221107380435068213
    [Google Scholar]
  33. FidytK. FiedorowiczA. StrządałaL. SzumnyA. β -caryophyllene and β -caryophyllene oxide—natural compounds of anticancer and analgesic properties.Cancer Med.20165103007301710.1002/cam4.81627696789
    [Google Scholar]
  34. Da SilveiraA.R. RosaÉ.V.F. SariM.H.M. SampaioT.B. Dos SantosJ.T. JardimN.S. MüllerS.G. OliveiraM.S. NogueiraC.W. FurianA.F. Therapeutic potential of beta-caryophyllene against aflatoxin B1-Induced liver toxicity: biochemical and molecular insights in rats.Chem. Biol. Interact.202134810963510.1016/j.cbi.2021.10963534506763
    [Google Scholar]
  35. IorioR. CelenzaG. PetriccaS. Multi-Target effects of ß-caryophyllene and carnosic acid at the crossroads of mitochondrial dysfunction and neurodegeneration: from oxidative stress to microglia-mediated neuroinflammation.Antioxidants2022116119910.3390/antiox1106119935740096
    [Google Scholar]
  36. ZhangY. HuangQ. WangS. LiaoZ. JinH. HuangS. HongX. LiuY. PangJ. ShenQ. WangQ. LiC. JiL. The food additive β-caryophyllene exerts its neuroprotective effects through the JAK2-STAT3-BACE1 pathway.Front. Aging Neurosci.20221481443210.3389/fnagi.2022.81443235296033
    [Google Scholar]
  37. AlbertiT.B. CoelhoD.S. MaraschinM. β-Caryophyllene nanoparticles design and development: Controlled drug delivery of cannabinoid CB2 agonist as a strategic tool towards neurodegeneration.Mater. Sci. Eng. C202112111182410.1016/j.msec.2020.11182433579467
    [Google Scholar]
  38. JiayaoC. JiaolingW. ChengyuH. GuixiangW. LinquanZ. Mechanisms of weight-loss effect in obese mice by the endogenous cannabinoid receptor 2 agonist beta-caryophyllene.Obes. Res. Clin. Pract.202317649951010.1016/j.orcp.2023.10.00437919194
    [Google Scholar]
  39. GushikenL.F.S. BeserraF.P. HussniM.F. GonzagaM.T. RibeiroV.P. de SouzaP.F. CamposJ.C.L. MassaroT.N.C. HussniC.A. TakahiraR.K. MarcatoP.D. BastosJ.K. PellizzonC.H. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model.Oxid. Med. Cell. Longev.2022202212110.1155/2022/900401435154574
    [Google Scholar]
  40. SousaL.F.B. OliveiraH.B.M. das Neves SelisN. MorbeckL.L.B. SantosT.C. da SilvaL.S.C. VianaJ.C.S. ReisM.M. SampaioB.A. CamposG.B. TimenetskyJ. YatsudaR. MarquesL.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo.Sci. Rep.20221211919910.1038/s41598‑022‑23842‑136357780
    [Google Scholar]
  41. BritoL.F. OliveiraH.B.M. das Neves SelisN. e SouzaC.L.S. JúniorM.N.S. de SouzaE.P. SilvaL.S.C. de Souza NascimentoF. AmorimA.T. CamposG.B. de OliveiraM.V. YatsudaR. TimenetskyJ. MarquesL.M. Anti-inflammatory activity of β -caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice.J. Sci. Food Agric.201999135870588010.1002/jsfa.986131206687
    [Google Scholar]
  42. CastroN.F.C. JubilatoF.C. GuerraL.H.A. SantosF.C.A. TabogaS.R. VilamaiorP.S.L. Therapeutic effects of β-caryophyllene on proliferative disorders and inflammation of the gerbil prostate.Prostate2021811281282410.1002/pros.2417734125438
    [Google Scholar]
  43. WeimerP. KirstenC.N. de Araújo LockG. NunesK.A.A. RossiR.C. KoesterL.S. Co-delivery of beta-caryophyllene and indomethacin in the oily core of nanoemulsions potentiates the anti-inflammatory effect in LPS-stimulated macrophage model.Eur. J. Pharm. Biopharm.202319111412310.1016/j.ejpb.2023.08.02037652137
    [Google Scholar]
  44. SainS. NaoghareP. DeviS. DaiwileA. KrishnamurthiK. ArrigoP. ChakrabartiT. Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells.Antiinflamm. Antiallergy Agents Med. Chem.2014131455510.2174/1871523011312999001624484210
    [Google Scholar]
  45. PiccioloG. PallioG. AltavillaD. VaccaroM. OteriG. IrreraN. SquadritoF. β-caryophyllene reduces the inflammatory phenotype of periodontal cells by targeting CB2 receptors.Biomedicines20208616410.3390/biomedicines806016432560286
    [Google Scholar]
  46. van der PolA. van GilstW.H. VoorsA.A. van der MeerP. Treating oxidative stress in heart failure: past, present and future.Eur. J. Heart Fail.201921442543510.1002/ejhf.132030338885
    [Google Scholar]
  47. CaoG. β-Caryophyllene reduces focal cerebral ischemia-reperfusion injury in rats through antioxidant effects.Chongqing Medical University2016
    [Google Scholar]
  48. AgnesJ.P. dos SantosB. das NevesR.N. LucianoV.M.M. BenvenuttiL. GoldoniF.C. SchranR.G. SantinJ.R. QuintãoN.L.M. Zanotto-FilhoA. β-caryophyllene inhibits oxaliplatin-induced peripheral neuropathy in mice: role of cannabinoid type 2 receptors, oxidative stress and neuroinflammation.Antioxidants20231210189310.3390/antiox1210189337891972
    [Google Scholar]
  49. HeW. SunC. ShijunL. Separation and purification of β-caryophyllene by macroporous resin-C18 column and its antioxidant activity.Chemical Industry and Engineering
    [Google Scholar]
  50. DahhamS. TabanaY. IqbalM. AhamedM. EzzatM. MajidA. MajidA. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of aquilaria crassna.Molecules2015207118081182910.3390/molecules20071180826132906
    [Google Scholar]
  51. YuX. LiaoB. ZhuP. ChengS. DuZ. JiangG. β-Caryophyllene induces apoptosis and inhibits cell proliferation by deregulation of STAT-3/mTOR/AKT signaling in human bladder cancer cells: An in vitro study.J. Biochem. Mol. Toxicol.20213510e2286310.1002/jbt.2286334318533
    [Google Scholar]
  52. GalvãoA.F.C. AraújoM.S. SilvaV.R. SantosL.S. DiasR.B. RochaC.A.G. SoaresM.B.P. SilvaF.M.A. KoolenH.H.F. ZenginG. CostaE.V. BezerraD.P. Antitumor effect of Guatteria olivacea R. E. Fr. (Annonaceae) leaf essential oil in liver cancer.Molecules20222714440710.3390/molecules2714440735889279
    [Google Scholar]
  53. AnZ. FengX. SunM. WangY. WangH. GongY. Chamomile essential oil: chemical constituents and antitumor activity in MDA-MB-231 cells through PI3K/Akt/mTOR signaling pathway.Chem. Biodivers.2023204e20220052310.1002/cbdv.20220052336941224
    [Google Scholar]
  54. AhmedE.A. Abu ZahraH. AmmarR.B. MohamedM.E. IbrahimH.I.M. Beta-caryophyllene enhances the anti-tumor activity of cisplatin in lung cancer cell lines through regulating cell cycle and apoptosis signaling molecules.Molecules20222723835410.3390/molecules2723835436500446
    [Google Scholar]
  55. PenaS.A. IyengarR. EshraghiR.S. BencieN. MittalJ. AljohaniA. MittalR. EshraghiA.A. Gene therapy for neurological disorders: challenges and recent advancements.J. Drug Target.202028211112810.1080/1061186X.2019.163041531195838
    [Google Scholar]
  56. Chávez-HurtadoP. González-CastañedaR.E. Beas-ZarateC. Flores-SotoM.E. Viveros-ParedesJ.M. β-caryophyllene reduces DNA oxidation and the overexpression of glial fibrillary acidic protein in the prefrontal cortex and hippocampus of d -Galactose-induced aged BALB/c mice.J. Med. Food202023551552210.1089/jmf.2019.011131663807
    [Google Scholar]
  57. ChengY. DongZ. LiuS. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway.Pharmacology2014941-211210.1159/00036268925171128
    [Google Scholar]
  58. YamaguchiM. LevyR.M. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp. Ther. Med.20161263602360610.3892/etm.2016.381828105093
    [Google Scholar]
  59. JungJ.I. KimE.J. KwonG.T. JungY.J. ParkT. KimY. YuR. ChoiM.S. ChunH.S. KwonS.H. HerS. LeeK.W. ParkJ.H.Y. β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet–induced obese C57BL/6N mice.Carcinogenesis20153691028103910.1093/carcin/bgv07626025912
    [Google Scholar]
  60. Franco-ArroyoN.N. Viveros-ParedesJ.M. Zepeda-MoralesA.S.M. RoldánE. Márquez-AguirreA.L. Zepeda-NuñoJ.S. Velázquez-JuárezG. Fafutis-MorrisM. López-RoaR.I. β-caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model.J. Med. Food202225109931002[J].35792574
    [Google Scholar]
  61. AlizadehS. DjafarianK. Mofidi NejadM. YekaninejadM.S. JavanbakhtM.H. The effect of β-caryophyllene on food addiction and its related behaviors: A randomized, double-blind, placebo-controlled trial.Appetite202217810616010.1016/j.appet.2022.10616035809704
    [Google Scholar]
  62. ChenR. ZhouX. Research progress on the mechanism of intestinal microbiota in functional constipation in children.Zhongguo Fuyou Baojian20243904773776
    [Google Scholar]
  63. Lloyd-PriceJ. MahurkarA. RahnavardG. CrabtreeJ. OrvisJ. HallA.B. BradyA. CreasyH.H. McCrackenC. GiglioM.G. McDonaldD. FranzosaE.A. KnightR. WhiteO. HuttenhowerC. Strains, functions and dynamics in the expanded human microbiome project.Nature20175507674616610.1038/nature2388928953883
    [Google Scholar]
  64. LeeP. YacyshynB.R. YacyshynM.B. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT).Diabetes Obes. Metab.201921347949010.1111/dom.1356130328245
    [Google Scholar]
  65. AmabebeE. RobertF.O. AgbalalahT. OrubuE.S.F. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism.Br. J. Nutr.2020123101127113710.1017/S000711452000038032008579
    [Google Scholar]
  66. MaL. ZhengA. NiL. WuL. HuL. ZhaoY. FuZ. NiY. Bifidobacterium animalis subsp. lactis lkm512 attenuates obesity-associated inflammation and insulin resistance through the modification of gut microbiota in high-fat diet-induced obese mice.Mol. Nutr. Food Res.2022663210063910.1002/mnfr.20210063934847296
    [Google Scholar]
  67. YeomJ.E. KimS.K. ParkS.Y. Regulation of the gut microbiota and inflammation by β-caryophyllene extracted from cloves in a dextran sulfate sodium-induced colitis mouse model.Molecules20222722778210.3390/molecules2722778236431883
    [Google Scholar]
  68. ZhangC. XueP. ZhangH. TanC. ZhaoS. LiX. SunL. ZhengH. WangJ. ZhangB. LangW. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies.Front. Cell. Infect. Microbiol.202212107234110.3389/fcimb.2022.107234136569198
    [Google Scholar]
  69. GiannenasI. BonosE. SkoufosI. TzoraA. StylianakiI. LazariD. TsinasA. ChristakiE. Florou-PaneriP. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens.Br. Poult. Sci.201859554555310.1080/00071668.2018.148357729873243
    [Google Scholar]
  70. ByrneC.S. ChambersE.S. AlhabeebH. ChhinaN. MorrisonD.J. PrestonT. TedfordC. FitzpatrickJ. IraniC. BuszaA. Garcia-PerezI. FountanaS. HolmesE. GoldstoneA.P. FrostG.S. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods.Am. J. Clin. Nutr.2016104151410.3945/ajcn.115.12670627169834
    [Google Scholar]
  71. LouisP. FlintH.J. Formation of propionate and butyrate by the human colonic microbiota.Environ. Microbiol.2017191294110.1111/1462‑2920.1358927928878
    [Google Scholar]
  72. RosserE.C. PiperC.J.M. MateiD.E. BlairP.A. RendeiroA.F. OrfordM. AlberD.G. KrausgruberT. CatalanD. KleinN. MansonJ.J. DrozdovI. BockC. WedderburnL.R. EatonS. MauriC. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells.Cell Metab.2020314837851.e1010.1016/j.cmet.2020.03.00332213346
    [Google Scholar]
  73. CanforaE.E. JockenJ.W. BlaakE.E. Short-chain fatty acids in control of body weight and insulin sensitivity.Nat. Rev. Endocrinol.2015111057759110.1038/nrendo.2015.12826260141
    [Google Scholar]
  74. XuY. JiaX. ZhangW. XieQ. ZhuM. ZhaoZ. HaoJ. LiH. DuJ. LiuY. FengH. HeJ. LiH. The effects of Ascophyllum nodosum, Camellia sinensis-leaf extract, and their joint interventions on glycolipid and energy metabolism in obese mice.Front. Nutr.202310124215710.3389/fnut.2023.124215737693249
    [Google Scholar]
  75. PathakM.P. PatowaryP. GoyaryD. DasA. ChattopadhyayP. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets.Phytomedicine20218915361010.1016/j.phymed.2021.15361034175589
    [Google Scholar]
  76. JakubowiczD. WainsteinJ. TsameretS. LandauZ. Role of high energy breakfast “big breakfast diet” in clock gene regulation of postprandial hyperglycemia and weight loss in type 2 diabetes.Nutrients2021135155810.3390/nu1305155834063109
    [Google Scholar]
  77. SharmaV. CowanD.C. Obesity, inflammation, and severe asthma: an update.Curr. Allergy Asthma Rep.202121124610.1007/s11882‑021‑01024‑934921631
    [Google Scholar]
  78. KawaiT. AutieriM.V. ScaliaR. Adipose tissue inflammation and metabolic dysfunction in obesity.Am. J. Physiol. Cell Physiol.20213203C375C39110.1152/ajpcell.00379.202033356944
    [Google Scholar]
  79. ScandiffioR. GeddoF. CottoneE. QuerioG. AntoniottiS. GalloM.P. MaffeiM.E. BovolinP. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation.Nutrients20201211327310.3390/nu1211327333114564
    [Google Scholar]
  80. JhaNK SharmaC HashieshHM A natural dietary CB2 receptor selective cannabinoid can be a candidate to target the trinity of infection, immunity, and inflammation in COVID-19.Front Pharmacol202112590201
    [Google Scholar]
  81. YangB. WangM. YingL. β-Caryophyllene inhibits expression of inflammatory factors by downregulating the nuclear factor-κB (NF-κB) pathway to alleviate systemic inflammation in mice.Journal of Cellular and Molecular Immunology
    [Google Scholar]
  82. BahiA. Al MansouriS. Al MemariE. Al AmeriM. NurulainS.M. OjhaS. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice.Physiol. Behav.201413511912410.1016/j.physbeh.2014.06.00324930711
    [Google Scholar]
  83. HallK.D. GuoJ. Obesity energetics: body weight regulation and the effects of diet composition.Gastroenterology2017152717181727.e310.1053/j.gastro.2017.01.05228193517
    [Google Scholar]
  84. ZhangL. LiuX. FuS. Effects of Dai-Zong Formula on glycogen metabolism in white adipose tissue of obese mice.Chinese Journal of Traditional Chinese Medicine Information202431029096
    [Google Scholar]
  85. ChenS. LiT. WangT. Research progress on probiotics promoting browning of white adipose tissue to alleviate obesity.Food Research and Development20244501170177
    [Google Scholar]
  86. HashieshH.M. SharmaC. GoyalS.N. SadekB. JhaN.K. KaabiJ.A. OjhaS. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid.Biomed. Pharmacother.202114011163910.1016/j.biopha.2021.11163934091179
    [Google Scholar]
  87. GawriehS. NoureddinM. LooN. MohseniR. AwastyV. CusiK. KowdleyK.V. LaiM. SchiffE. ParmarD. PatelP. ChalasaniN. Saroglitazar, a PPAR-α/γ Agonist, for treatment of NAFLD: A randomized controlled double-blind phase 2 trial.Hepatology20217441809182410.1002/hep.3184333811367
    [Google Scholar]
  88. WangX. WangJ. YingC. XingY. SuX. MenK. Fenofibrate alleviates NAFLD by enhancing the PPARα/PGC-1α signaling pathway coupling mitochondrial function.BMC Pharmacol. Toxicol.2024251710.1186/s40360‑023‑00730‑638173037
    [Google Scholar]
  89. XuR. LuoX. YeX. LiH. LiuH. DuQ. ZhaiQ. SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced chemoresistance in non-small cell lung cancer.Front. Oncol.20211168276210.3389/fonc.2021.68276234381712
    [Google Scholar]
  90. de Melo ReisR.A. IsaacA.R. FreitasH.R. de AlmeidaM.M. SchuckP.F. FerreiraG.C. Andrade-da-CostaB.L.S. TrevenzoliI.H. Quality of life and a surveillant endocannabinoid system.Front. Neurosci.20211574722910.3389/fnins.2021.74722934776851
    [Google Scholar]
  91. XinC. HeG. ChenA. Effects of monoglyceride lipase inhibitors on the biological activity of gastric cancer cells via the phosphatidylinositol 3-kinase/serine-threonine protein kinase signaling pathway.Chinese Journal of Clinical Pharmacology20233904488492
    [Google Scholar]
  92. ZanfirescuA. UngurianuA. MihaiD.P. RadulescuD. NitulescuG.M. Targeting monoacylglycerol lipase in pursuit of therapies for neurological and neurodegenerative diseases.Molecules20212618566810.3390/molecules2618566834577139
    [Google Scholar]
  93. KlawitterJ. WeissenbornW. GvonI. WalzM. KlawitterJ. JacksonM. SempioC. JoksimovicS.L. ShokatiT. JustI. ChristiansU. TodorovicS.M. β -caryophyllene inhibits monoacylglycerol lipase activity and increases 2-arachidonoyl glycerol levels in vivo: A new mechanism of endocannabinoid-mediated analgesia?Mol. Pharmacol.20241052758310.1124/molpharm.123.00066838195158
    [Google Scholar]
  94. LiuY. ZhuJ. YuJ. ChenX. ZhangS. CaiY. LiL. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism.Food Chem.202135312944810.1016/j.foodchem.2021.12944833711702
    [Google Scholar]
  95. MosbahH. ChahdouraH. KammounJ. HlilaM.B. LouatiH. HammamiS. FlaminiG. AchourL. SelmiB. Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties.BMC Complement. Altern. Med.20181817910.1186/s12906‑018‑2145‑529506517
    [Google Scholar]
  96. KoS.H. KimH.S. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women.Nutrients202012120210.3390/nu1201020231941004
    [Google Scholar]
  97. DingY. GuZ. WangY. WangS. ChenH. ZhangH. ChenW. ChenY.Q. Clove extract functions as a natural fatty acid synthesis inhibitor and prevents obesity in a mouse model.Food Funct.2017882847285610.1039/C7FO00096K28726934
    [Google Scholar]
  98. Mamdouh HashieshH. SheikhA. MeeranM.F.N. SaraswathiammaD. JhaN.K. SadekB. AdeghateE. TariqS. Al MarzooqiS. OjhaS. β-Caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors.ACS Pharmacol. Transl. Sci.2023681129114210.1021/acsptsci.3c0002737588762
    [Google Scholar]
  99. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  100. LeesonP.D. SpringthorpeB. The influence of drug-like concepts on decision-making in medicinal chemistry.Nat. Rev. Drug Discov.200761188189010.1038/nrd244517971784
    [Google Scholar]
  101. Black pepper composition for treating pain.U.S. Patent #202400912952024
  102. Cannabinoid compositions for improving sleep.U.S. Patent #202300873592023
  103. BCP-containing agents for promoting relaxation and sleep.U.S. Patent #202302004352023
  104. Geocann. VESIsorb® delivery system for enhanced bioavailability.Available from: https://www.geocann.com/ 2023
  105. ThoppilR.J. BishayeeA. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.World J. Hepatol.20113922824910.4254/wjh.v3.i9.22821969877
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855312851240823073921
Loading
/content/journals/cdth/10.2174/0115748855312851240823073921
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-obesity agent; food; natural products; obesity; research progress; β-caryophyllene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test