Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Epilepsy is a neurological disorder characterized by a decreased level of vitamins and endogenous antioxidants and an enhanced level of oxidative stress.

Objectives

We designed this study to define the effects of combining melatonin, vitamin D3 (Vit D3), and agmatine on seizures caused by pentylenetetrazole (PTZ) in male NMRI mice.

Methods

The experimental groups were as follows: the first group was administered normal saline (0.5 ml, i.p.) on the last day of the trial, and the second group was administered intraperitoneal PTZ (60 mg/kg) on that day. Pre-treatment with diazepam (4 mg/kg), vitamin D3 (6000 IU/kg, p.o.), agmatine (40 mg/kg, p.o.), and melatonin (20 mg/kg, p.o) was given to the next four groups before injecting PTZ (60 mg/kg, i.p.). The last group received a compound therapy of vitamin D3, melatonin, and agmatine before PTZ injection. Afterward, the latency, duration, and oxidative stress indications were evaluated in the brains of mice.

Results

Treatments enhanced the latency of seizure and reduced seizure duration in comparison with the PTZ group; the compound group increased seizure latency more than Vit D3, agmatine, and melatonin groups and decreased the duration more than pre-treatment with Vit D3. We observed enhancement in superoxide dismutase (SOD) and catalase (CAT) activity in the treatment groups, while in the combination group, elevating CAT activity was comparable with Vit D3 and agmatine groups. The malondialdehyde level decreased in diazepam, agmatine, melatonin, and combination groups.

Conclusion

The compound treatment was more efficient than each one alone in improving PTZ-induced seizure, which may result from suppressing oxidative stress.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855311635240723054816
2024-07-30
2025-06-26
Loading full text...

Full text loading...

References

  1. Falco-WalterJ. Epilepsy—definition, classification, pathophysiology, and epidemiology.Semin. Neurol.202040661762310.1055/s‑0040‑171871933155183
    [Google Scholar]
  2. HomayounM. ShafieianR. SeghatoleslamM. HosseiniM. Ebrahimzadeh-BideskanA. Protective impact of Rosa damascena against neural damage in a rat model of pentylenetetrazole (PTZ)-induced seizure.Avicenna J. Phytomed.202010657458333299814
    [Google Scholar]
  3. MenonB. RamalingamK. KumarR. Low plasma antioxidant status in patients with epilepsy and the role of antiepileptic drugs on oxidative stress.Ann. Indian Acad. Neurol.201417439840410.4103/0972‑2327.14400825506160
    [Google Scholar]
  4. RoganovicM. PantovicS. DizdarevicS. Role of the oxidative stress in the pathogenesis of epilepsy.Neurolog. Sci. Neurophysiol.2019361810.5152/NSN.2019.11632
    [Google Scholar]
  5. JuybariK.B. HosseinzadehA. GhaznaviH. KamaliM. SedaghatA. MehrzadiS. NaseripourM. Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells.Curr. Pharm. Des.201925283057307310.2174/138161282566619082915131431465274
    [Google Scholar]
  6. ShahriariM. MehrzadiS. NaseripourM. FatemiI. HosseinzadehA. KanaviM.R. GhaznaviH. Beneficial effects of melatonin and atorvastatin on retinopathy in streptozocin-induced diabetic rats.Curr. Drug Ther.202015439640310.2174/1574885514666191204104925
    [Google Scholar]
  7. MoeziL. ShafaroodiH. HojatiA. DehpourAR. The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice.Epilepsy Behav.201122220020610.1016/j.yebeh.2011.07.002
    [Google Scholar]
  8. DehdashtianE. HosseinzadehA. HematiK. KarimiM.Y. FatemiI. MehrzadiS. Anti-convulsive effect of thiamine and melatonin combination in mice: Involvement of oxidative stress.Cent. Nerv. Syst. Agents Med. Chem.202121212512910.2174/187152492166621062316121234165417
    [Google Scholar]
  9. MehrzadiS. KarimiM.Y. FatemiA. ReiterR.J. HosseinzadehA. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin.Pharmacol. Ther.202122410782510.1016/j.pharmthera.2021.10782533662449
    [Google Scholar]
  10. HosseinzadehA. KamravaS.K. MooreB.C.J. ReiterR.J. GhaznaviH. KamaliM. MehrzadiS. Molecular aspects of melatonin treatment in tinnitus: A Review.Curr. Drug Targets201920111112112810.2174/138945012066619031916214730892162
    [Google Scholar]
  11. Acufla-CastroviejoD. EscamesG. MacksM. HoyosA.M. CarballoA.M. ArauzoM. MontesR. VivesF. Minireview: Cell protective role of melatonin in the brain.J. Pineal Res.1995192576310.1111/j.1600‑079X.1995.tb00171.x8609597
    [Google Scholar]
  12. WanQ. ManH.Y. LiuF. BrauntonJ. NiznikH.B. PangS.F. BrownG.M. WangY.T. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors.Nat. Neurosci.19992540140310.1038/806210321240
    [Google Scholar]
  13. ChampneyT.H. HannemanW.H. LegareM.E. AppelK. Acute and chronic effects of melatonin as an anticonvulsant in male gerbils.J. Pineal Res.1996202798310.1111/j.1600‑079X.1996.tb00243.x8815191
    [Google Scholar]
  14. BikjdaoueneL. EscamesG. LeónJ. FerrerJ.M.R. KhaldyH. VivesF. Acuña-CastroviejoD. Changes in brain amino acids and nitric oxide after melatonin administration in rats with pentylenetetrazole-induced seizures.J. Pineal Res.2003351546010.1034/j.1600‑079X.2003.00055.x12823614
    [Google Scholar]
  15. RaaschW. RegunathanS. LiG. ReisD.J. Agmatine is widely and unequally distributed in rat organs.Ann. N. Y. Acad. Sci.1995763133033410.1111/j.1749‑6632.1995.tb32419.x7677343
    [Google Scholar]
  16. AriciogluF. KanB. YillarO. KorcegezE. BerkmanK. Effect of agmatine on electrically and chemically induced seizures in mice.Ann. N. Y. Acad. Sci.20031009114114610.1196/annals.1304.01515028579
    [Google Scholar]
  17. ReisD.J. RegunathanS. Agmatine: a novel neurotransmitter?Adv. Pharmacol.19974264564910.1016/S1054‑3589(08)60834‑09327985
    [Google Scholar]
  18. DemehriS. HomayounH. HonarH. RiaziK. VafaieK. RoushanzamirF. DehpourA.R. Agmatine exerts anticonvulsant effect in mice: modulation by α2-adrenoceptors and nitric oxide.Neuropharmacology200345453454210.1016/S0028‑3908(03)00199‑012907314
    [Google Scholar]
  19. MehrzadiS. HosseinzadehA. DehdashtianE. Jafari-SabetM. The effects of vitamin D3 and melatonin combination on pentylenetetrazole- induced seizures in mice.Cent. Nerv. Syst. Agents Med. Chem.202222211812410.2174/187152492266622042912125335507790
    [Google Scholar]
  20. LittlejohnsT.J. KosK. HenleyW.E. KuźmaE. LlewellynD.J. Vitamin D and dementia.J. Prev. Alzheimers Dis.201631435229214280
    [Google Scholar]
  21. HollóA. ClemensZ. LakatosP. Epilepsy and vitamin D.Int. J. Neurosci.2014124638739310.3109/00207454.2013.84783624063762
    [Google Scholar]
  22. KhalifahR.A. HudairiA. HomyaniD.A. HamadM.H. BashiriF.A. Vitamin D supplementation to prevent vitamin D deficiency for children with epilepsy.Medicine20189740e1273410.1097/MD.000000000001273430290685
    [Google Scholar]
  23. ŞahinS. GürgenS.G. YazarU. İnceİ. KamaşakT. Acar ArslanE. Diler DurgutB. DilberB. CansuA. Vitamin D protects against hippocampal apoptosis related with seizures induced by kainic acid and pentylenetetrazol in rats.Epilepsy Res.201914910711610.1016/j.eplepsyres.2018.12.00530584976
    [Google Scholar]
  24. HosseinzadehA. MehrzadiS. DehdashtianE. KarimiM.Y. The anticonvulsant activity of thiamine, vitamin d3, and melatonin combination on pentylenetetrazole-induced seizures in mice.Curr. Drug Ther.202217428128810.2174/1574885517666220531104009
    [Google Scholar]
  25. AlbertsonT.E. PetersonS.L. StarkL.G. LakinM.L. WintersW.D. The anticonvulsant properties of melatonin on kindled seizures in rats.Neuropharmacology1981201616610.1016/0028‑3908(81)90043‑57219682
    [Google Scholar]
  26. MevissenM. EbertU. Anticonvulsant effects of melatonin in amygdala-kindled rats.Neurosci. Lett.19982571131610.1016/S0304‑3940(98)00790‑39857954
    [Google Scholar]
  27. BorowiczKK. KamińskiR. GasiorM. KleinrokZ. CzuczwarSJ. Influence of melatonin upon the protective action of conventional anti-epileptic drugs against maximal electroshock in mice.Euro. Neuropsychopharmacol.19999318519010.1016/S0924‑977X(98)00022‑4
    [Google Scholar]
  28. HansenS.L. SperlingB.B. SánchezC. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice.Prog. Neuropsychopharmacol. Biol. Psychiatry200428110511310.1016/j.pnpbp.2003.09.02614687864
    [Google Scholar]
  29. Yahyavi-Firouz-AbadiN. Tahsili-FahadanP. RiaziK. GhahremaniM.H. DehpourA.R. Involvement of nitric oxide pathway in the acute anticonvulsant effect of melatonin in mice.Epilepsy Res.200668210311310.1016/j.eplepsyres.2005.09.05716406488
    [Google Scholar]
  30. RosensteinR.E. ChuluyanH.E. DíazM.C. CardinaliD.P. GABA as a presumptive paracrine signal in the pineal gland. Evidence on an intrapineal GABAergic system.Brain Res. Bull.199025233934410.1016/0361‑9230(90)90080‑J2171722
    [Google Scholar]
  31. MohammadiF. ShakibaS. MehrzadiS. AfshariK. RahimniaA.H. DehpourA.R. Anticonvulsant effect of melatonin through ATP-sensitive channels in mice.Fundam. Clin. Pharmacol.202034114815510.1111/fcp.1249031197879
    [Google Scholar]
  32. BhattaraiP. BhattaraiJ.P. KimM.S. HanS.K. Non-genomic action of vitamin D3 on N-methyl-D-aspartate and kainate receptor-mediated actions in juvenile gonadotrophin-releasing hormone neurons.Reprod. Fertil. Dev.20172961231123810.1071/RD1535727225229
    [Google Scholar]
  33. PendoK. DeGiorgioC.M. Vitamin D3 for the treatment of epilepsy: Basic mechanisms, animal models, and clinical trials.Front. Neurol.2016721810.3389/fneur.2016.0021828008324
    [Google Scholar]
  34. KalueffA.V. MinasyanA. KeisalaT. KuuslahtiM. MiettinenS. TuohimaaP. Increased severity of chemically induced seizures in mice with partially deleted Vitamin D receptor gene.Neurosci. Lett.20063941697310.1016/j.neulet.2005.10.00716256271
    [Google Scholar]
  35. KeeneyJ.T. ButterfieldD.A. Vitamin D deficiency and Alzheimer disease: Common links.Neurobiol. Dis.201584849810.1016/j.nbd.2015.06.02026160191
    [Google Scholar]
  36. PetersonA.L. A review of vitamin D and Parkinson’s disease.Maturitas2014781404410.1016/j.maturitas.2014.02.01224685289
    [Google Scholar]
  37. Al-TemaimiR.A. Al-EneziA. Al-SerriA. Al-RoughaniR. Al-MullaF. The association of vitamin D receptor polymorphisms with multiple sclerosis in a case-control study from Kuwait.PLoS One20151011e014226510.1371/journal.pone.014226526540116
    [Google Scholar]
  38. HollóA. ClemensZ. KamondiA. LakatosP. SzűcsA. Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study.Epilepsy Behav.201224113113310.1016/j.yebeh.2012.03.011
    [Google Scholar]
  39. DongN. GuoH.L. HuY.H. YangJ. XuM. DingL. QiuJ.C. JiangZ.Z. ChenF. LuX.P. LiX.N. Association between serum vitamin D status and the anti-seizure treatment in Chinese children with epilepsy.Front. Nutr.2022996886810.3389/fnut.2022.96886836105574
    [Google Scholar]
  40. Abdel-WahabA.F. AfifyM.A. MahfouzA.M. ShahzadN. BamagousG.A. Al GhamdiS.S. Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats.Brain Res.20171673788510.1016/j.brainres.2017.08.01128818511
    [Google Scholar]
  41. VälimäkiMJ. TiihonenM. LaitinenK. TähteläR. KärkkäinenM. Lamberg-AllardtC. Bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs.J Bone Miner Res.199495631637
    [Google Scholar]
  42. SumbulO. AygunH. The effect of vitamin D3 and paricalcitol on penicillin-induced epileptiform activity in rats.Epilepsy Res.202015910626210.1016/j.eplepsyres.2019.10626231887643
    [Google Scholar]
  43. KalueffA.V. MinasyanA. TuohimaaP. Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice.Brain Res. Bull.2005671-215616010.1016/j.brainresbull.2005.06.02216140175
    [Google Scholar]
  44. RaucaC. WiswedelI. ZerbeR. KeilhoffG. KrugM. The role of superoxide dismutase and α-tocopherol in the development of seizures and kindling induced by pentylenetetrazol - influence of the radical scavenger α-phenyl-N-tert-butyl nitrone.Brain Res.200410091-220321210.1016/j.brainres.2004.01.08215120598
    [Google Scholar]
  45. NeveuI. NaveilhanP. MenaaC. WionD. BrachetP. GarabédianM. Synthesis of 1,25-dihydroxyvitamin D 3 by rat brain macrophages in vitro.J. Neurosci. Res.199438221422010.1002/jnr.4903802128078106
    [Google Scholar]
  46. XuW. GaoL. LiT. ShaoA. ZhangJ. Neuroprotective role of agmatine in neurological diseases.Curr. Neuropharmacol.20181691296130510.2174/1570159X1566617080812063328786346
    [Google Scholar]
  47. LiX. LinJ. HuaY. GongJ. DingS. DuY. WangX. ZhengR. XuH. Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin d-mediated pyroptosis.Front. Pharmacol.20211262755710.3389/fphar.2021.62755734421582
    [Google Scholar]
  48. BahremandT. PayandemehrP. RiaziK. NoorianAR. PayandemehrB. SharifzadehM. Modulation of the anticonvulsant effect of swim stress by agmatine.Epilepsy Behav.20187814214810.1016/j.yebeh.2017.11.005
    [Google Scholar]
  49. FengY. LeBlancM.H. RegunathanS. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: A potential mechanism for the anticonvulsive effects.Neurosci. Lett.2005390312913310.1016/j.neulet.2005.08.00816125317
    [Google Scholar]
  50. Kaputluİ. UzbayT. l-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice.Brain Res.199775319810110.1016/S0006‑8993(96)01496‑59125436
    [Google Scholar]
  51. AygunH. AkinA.T. KızılaslanN. SumbulO. KarabulutD. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats.Eur. J. Neurol.202330113540355010.1111/ene.1535935429204
    [Google Scholar]
  52. KilincE. AnkaraliS. AyhanD. AnkaraliH. TorunI.E. CetinkayaA. Protective effects of long-term probiotic mixture supplementation against pentylenetetrazole-induced seizures, inflammation and oxidative stress in rats.J. Nutr. Biochem.20219810883010.1016/j.jnutbio.2021.10883034333116
    [Google Scholar]
  53. ThaiK.E. TaylorM.W. FernandesT. AkinadeE.A. CampbellS.L. Topiramate alters the gut microbiome to aid in its anti-seizure effect.Front. Microbiol.202314124285610.3389/fmicb.2023.124285637942078
    [Google Scholar]
  54. WuY. HeF. ZhangC. ZhangQ. SuX. ZhuX. LiuA. ShiW. LinW. JinZ. YangH. LinJ. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway.J. Nanobiotechnol.202119117010.1186/s12951‑021‑00915‑334092246
    [Google Scholar]
  55. ThomasR.L. JiangL. AdamsJ.S. XuZ.Z. ShenJ. JanssenS. AckermannG. VanderschuerenD. PauwelsS. KnightR. OrwollE.S. KadoD.M. Vitamin D metabolites and the gut microbiome in older men.Nat. Commun.2020111599710.1038/s41467‑020‑19793‑833244003
    [Google Scholar]
  56. SahaP. PandaS. HolkarA. VashishthR. RanaS.S. ArumugamM. AshrafG.M. HaqueS. AhmadF. Neuroprotection by agmatine: Possible involvement of the gut microbiome?Ageing Res. Rev.20239110205610.1016/j.arr.2023.10205637673131
    [Google Scholar]
  57. AndersonG. MaesM. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications.Curr. Top. Med. Chem.202020752453910.2174/156802662066620013109444532003689
    [Google Scholar]
  58. JinC.J. EngstlerA.J. SellmannC. ZiegenhardtD. LandmannM. KanuriG. LounisH. SchröderM. VetterW. BergheimI. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: Role of melatonin and lipid peroxidation.Br. J. Nutr.2016116101682169310.1017/S000711451600402527876107
    [Google Scholar]
  59. BattistiniC. BallanR. HerkenhoffM.E. SaadS.M.I. SunJ. VitaminD. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases.Int. J. Mol. Sci.202022136210.3390/ijms2201036233396382
    [Google Scholar]
  60. AndersonG. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses.Explor Target Antitumor Ther.45962993
    [Google Scholar]
  61. KrausK.L. NawreenN. GodaleC.M. ChordiaA.P. PackardB. LaSargeC.L. HermanJ.P. DanzerS.C. Hippocampal glucocorticoid receptors modulate status epilepticus severity.Neurobiol. Dis.202317810601410.1016/j.nbd.2023.10601436702319
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855311635240723054816
Loading
/content/journals/cdth/10.2174/0115748855311635240723054816
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): agmatine; melatonin; oxidative stress; Pharmacology; seizures; vitamin D3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test