Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Inulin (IN) is a prebiotic oligosaccharide reported in diverse sources of nature. The major sources encompass chicory, Jerusalem artichoke, onions, barley, garlic, rye, and wheat. The literature also reported its promising biological activities, , antidiabetic, anticancer, antioxidant, immune-regulator and prebiotic for improving intestinal function, regulation of blood lipids, and so on. IN’s molecular flexibility, stabilization, and drug-targeting potential make it a unique polymer in pharmaceutical sciences and biomedical engineering. Further, its nutritional value and diagnostic application also widen its scope in food and medical sciences. The hydroxyl groups present in its structure offer chemical modifications, which could benefit advanced drug delivery such as controlled and sustained drug delivery, enhancement of bioavailability, cellular uptake, . This work reviews the isolation and purification of IN. The study also provides glimpses of the chemistry, chemical modification, and applications in pharmaceutical sciences and drug delivery.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855274579240103042126
2024-01-11
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cdth/20/1/CDTH-20-1-03.html?itemId=/content/journals/cdth/10.2174/0115748855274579240103042126&mimeType=html&fmt=ahah

References

  1. ValicenteV.M. PengC.H. PachecoK.N. LinL. KielbE.I. DawoodaniE. AbdollahiA. MattesR.D. Ultraprocessed foods and obesity risk: A critical review of reported mechanisms.Adv. Nutr.202314471873810.1016/j.advnut.2023.04.00637080461
    [Google Scholar]
  2. AhmedW. RashidS. Functional and therapeutic potential of inulin: A comprehensive review.Crit. Rev. Food Sci. Nutr.201959111310.1080/10408398.2017.135577528799777
    [Google Scholar]
  3. KoH. SungB.H. KimM.J. SohnJ.H. BaeJ.H. Fructan biosynthesis by yeast cell factories.J. Microbiol. Biotechnol.202232111373138110.4014/jmb.2207.0706236310357
    [Google Scholar]
  4. Davani-DavariD. NegahdaripourM. KarimzadehI. SeifanM. MohkamM. MasoumiS. BerenjianA. GhasemiY. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods803009230857316
    [Google Scholar]
  5. Van den AbbeeleP. DuysburghC. GhyselinckJ. GoltzS. BerezhnayaY. BoileauT. De BlaiserA. MarzoratiM. Fructans with varying degree of polymerization enhance the selective growth of bifidobacterium animalis subsp. lactis BB-12 in the human gut microbiome in vitro.Appl. Sci.202111259810.3390/app11020598
    [Google Scholar]
  6. WangX. ZhangP. ZhangX. Probiotics regulate gut microbiota: An effective method to improve immunity.Molecules20212619607610.3390/molecules2619607634641619
    [Google Scholar]
  7. ŚliżewskaK. Markowiak-KopećP. ŚliżewskaW. The role of probiotics in cancer prevention.Cancers20201312010.3390/cancers1301002033374549
    [Google Scholar]
  8. FernandesJ. VogtJ. WoleverT.M.S. Inulin increases short-term markers for colonic fermentation similarly in healthy and hyperinsulinaemic humans.Eur. J. Clin. Nutr.201165121279128610.1038/ejcn.2011.11621712835
    [Google Scholar]
  9. AfinjuomoF. AbdellaS. YoussefS.H. SongY. GargS. Inulin and its application in drug delivery.Pharmaceuticals202114985510.3390/ph1409085534577554
    [Google Scholar]
  10. CarlsonJ.L. EricksonJ.M. LloydB.B. SlavinJ.L. Health effects and sources of prebiotic dietary fiber.Curr. Dev. Nutr.201823nzy00510.1093/cdn/nzy00530019028
    [Google Scholar]
  11. LeenenC.H.M. DielemanL.A. Inulin and oligofructose in chronic inflammatory bowel disease.J. Nutr.2007137112572S2575S10.1093/jn/137.11.2572S17951505
    [Google Scholar]
  12. FranckA. Technological functionality of inulin and oligofructose.Br. J. Nutr.200287S2S287S29110.1079/BJN/200255012088531
    [Google Scholar]
  13. SunS. HouY.N. WeiW. SharifH.M.A. HuangC. NiB.J. LiH. SongY. LuC. HanY. GuoJ. Perturbation of clopyralid on bio-denitrification and nitrite accumulation: Long-term performance and biological mechanism.Environm. Sci. Ecotechnol.2022910014410.1016/j.ese.2021.10014436157855
    [Google Scholar]
  14. GuptaN. JangidA.K. PoojaD. KulhariH. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications.Int. J. Biol. Macromol.201913285286310.1016/j.ijbiomac.2019.03.18830926495
    [Google Scholar]
  15. AdachiA. Author index.In: Handbook of Hydrocolloids.Woodhead Publishing2021
    [Google Scholar]
  16. TeferraT.F. Possible actions of inulin as prebiotic polysaccharide: A review.Food Front.20212440741610.1002/fft2.92
    [Google Scholar]
  17. HughesS.R. QureshiN. López-NúñezJ.C. JonesM.A. JarodskyJ.M. Galindo-LevaL.Á. LindquistM.R. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.World J. Microbiol. Biotechnol.20173347810.1007/s11274‑017‑2241‑628341907
    [Google Scholar]
  18. ShoaibM. ShehzadA. OmarM. RakhaA. RazaH. SharifH.R. ShakeelA. AnsariA. NiaziS. Inulin: Properties, health benefits and food applications.Carbohydr. Polym.201614744445410.1016/j.carbpol.2016.04.02027178951
    [Google Scholar]
  19. MensinkM.A. FrijlinkH.W. van der Voort MaarschalkK. HinrichsW.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics.Carbohydr. Polym.201513040541910.1016/j.carbpol.2015.05.02626076642
    [Google Scholar]
  20. AbdellaA. Al-SamanM. Abou-ElazmF.I. El-FarS.W. Rhizopus oryzae inulinase production and characterization with application in chicory root saccharification.Microbiol. Res.202314129731510.3390/microbiolres14010024
    [Google Scholar]
  21. ApolinárioA.C. de CarvalhoE.M. de Lima DamascenoB.P.G. da SilvaP.C.D. ConvertiA. PessoaA.Jr da SilvaJ.A. Extraction, isolation and characterization of inulin from Agave sisalana boles.Ind. Crops Prod.201710835536210.1016/j.indcrop.2017.06.045
    [Google Scholar]
  22. MoroT.M.A. Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. In: Food Research International.Elsevier2021
    [Google Scholar]
  23. ZeaiterZ. RegonesiM.E. CaviniS. LabraM. SelloG. Di GennaroP. Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health.BioMed Res. Int.201920191810.1155/2019/108395231662964
    [Google Scholar]
  24. MahatoN. SinhaM. SharmaK. KoteswararaoR. ChoM.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes.Foods201981152310.3390/foods811052331652773
    [Google Scholar]
  25. SherovaN.T. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions.Int. Food Res. J.201825
    [Google Scholar]
  26. MaJ.F. HouY.N. GuoJ. SharifH.M.A. HuangC. ZhaoJ. LiH. SongY. LuC. HanY. ZhangY. WangA.J. Rational design of biogenic PdxAuy nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation.Environ. Res.2022204Pt B11208610.1016/j.envres.2021.11208634562479
    [Google Scholar]
  27. AllesM.J.L. TessaroI.C. NoreñaC.P.Z. Concentration and purification of yacon (smallanthus sonchifolius) root fructooligosaccharides using membrane technology.Food Technol. Biotechnol.201553219020027904348
    [Google Scholar]
  28. Redondo-CuencaA. Herrera-VázquezS.E. Condezo-HoyosL. Gómez-OrdóñezE. RupérezP. Inulin extraction from common inulin-containing plant sources.Ind. Crops Prod.202117011372610.1016/j.indcrop.2021.113726
    [Google Scholar]
  29. StökleK. JungD. KruseA. Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts.Biomass Convers. Biorefin.202313115917010.1007/s13399‑020‑01108‑y
    [Google Scholar]
  30. MaumelaP. van RensburgE. ChimphangoA.F.A. GörgensJ.F. Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.).J. Food Sci. Technol.202057277578610.1007/s13197‑019‑04110‑z32116386
    [Google Scholar]
  31. ZhangX. ZhuX. ShiX. HouY. YiY. Extraction and purification of inulin from jerusalem artichoke with response surface method and ion exchange resins.ACS Omega2022714120481205510.1021/acsomega.2c0030235449954
    [Google Scholar]
  32. Soto-MaldonadoC. Zúñiga-HansenM.E. OlivaresA. Data of co-extraction of inulin and phenolic compounds from globe artichoke discards, using different conditioning conditions of the samples and extraction by maceration.Data Brief20203110598610.1016/j.dib.2020.10598632695856
    [Google Scholar]
  33. Escobar-LedesmaF.R. Sánchez-MorenoV.E. VeraE. CiobotăV. JentzschP.V. JaramilloL.I. Extraction of inulin from andean plants: An approach to non-traditional crops of ecuador.Molecules20202521506710.3390/molecules2521506733139590
    [Google Scholar]
  34. ChenY. SuJ.Y. YangC.Y. Ultrasound-assisted aqueous extraction of chlorogenic acid and cynarin with the impact of inulin from burdock (Arctium lappa L.) roots.Antioxidants2022117121910.3390/antiox1107121935883710
    [Google Scholar]
  35. MartinsG.N. UretaM.M. TymczyszynE.E. CastilhoP.C. Gomez-ZavagliaA. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis.Front. Nutr.201967810.3389/fnut.2019.0007831214595
    [Google Scholar]
  36. BamigbadeG.B. SubhashA.J. Kamal-EldinA. NyströmL. AyyashM. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics.Molecules20222718594710.3390/molecules2718594736144679
    [Google Scholar]
  37. YoungI.D. LatousakisD. JugeN. The immunomodulatory properties of β-2,6 fructans: A comprehensive review.Nutrients2021134130910.3390/nu1304130933921025
    [Google Scholar]
  38. KaurN. GuptaA.K. Applications of inulin and oligofructose in health and nutrition.J. Biosci.200227770371410.1007/BF0270837912571376
    [Google Scholar]
  39. SpizzirriU.G. AltimariI. PuociF. ParisiO.I. IemmaF. PicciN. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain.Carbohydr. Polym.201184151752310.1016/j.carbpol.2010.12.015
    [Google Scholar]
  40. PalumboF.S. FioricaC. Di StefanoM. PitarresiG. GulinoA. AgnelloS. GiammonaG. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration.Carbohydr. Polym.201512240841610.1016/j.carbpol.2014.11.00225817685
    [Google Scholar]
  41. AfinjuomoF BarclayTG SongY ParikhA PetrovskyN GargS Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride.React. Func. Poly.201813410411
    [Google Scholar]
  42. FerreiraL. CarvalhoR. GilM.H. DordickJ.S. Enzymatic synthesis of inulin-containing hydrogels.Biomacromolecules20023233334110.1021/bm010150h11888320
    [Google Scholar]
  43. CastelliF SarpietroMG MicieliD OttimoS PitarresiG TripodoG Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: PH and loading effect.Europ. J. Pharmaceut. Sci.200835(1-2)7685
    [Google Scholar]
  44. SafariJ.B. BapolisiA.M. KrauseR.W.M. Development of ph-sensitive chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel for controlled drug delivery of tenofovir disoproxil fumarate.Polymers20211320357110.3390/polym1320357134685332
    [Google Scholar]
  45. MandracchiaD. DenoraN. FrancoM. PitarresiG. GiammonaG. TrapaniG. New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In vitro release of glutathione and oxytocin.J. Biomater. Sci. Polym. Ed.2011221-331332810.1163/092050609X1260958208408620557715
    [Google Scholar]
  46. MalkawiR. MalkawiW.I. Al-MahmoudY. TawalbehJ. Current trends on solid dispersions: Past, present, and future.Adv. Pharmacol. Pharm. Sci.2022202211710.1155/2022/591601336317015
    [Google Scholar]
  47. SavlaR. BrowneJ. PlassatV. WasanK.M. WasanE.K. Review and analysis of FDA approved drugs using lipid-based formulations.Drug Dev. Ind. Pharm.201743111743175810.1080/03639045.2017.134265428673096
    [Google Scholar]
  48. van DroogeD.J. HinrichsW.L.J. FrijlinkH.W. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions.J. Control. Release200497344145210.1016/j.jconrel.2004.03.01815212876
    [Google Scholar]
  49. HinrichsWLJ SandersNN De SmedtSC DemeesterJ FrijlinkHW Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes.J. Control. Rel.2005103246579
    [Google Scholar]
  50. HufnagelB. MuellnerV. HlatkyK. TallianC. VielnascherR. GuebitzG.M. WirthM. GaborF. Chemically modified inulin for intestinal drug delivery - A new dual bioactivity concept for inflammatory bowel disease treatment.Carbohydr. Polym.2021252May11709110.1016/j.carbpol.2020.11709133183582
    [Google Scholar]
  51. RizwanM. YahyaR. HassanA. YarM. AzzahariA. SelvanathanV. SonsudinF. AbouloulaC. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications.Polymers201791213710.3390/polym904013730970818
    [Google Scholar]
  52. UsmanM ZhangC JagannathP MehmoodA. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information.2020Available from:https://cdn.who.int/media/docs/default-source/whhd-2021/scientific-publications/2.jhi_5may2021.pdf?sfvrsn=6526a2a5_5
  53. JainA.K. SoodV. BoraM. VasitaR. KattiD.S. Electrosprayed inulin microparticles for microbiota triggered targeting of colon.Carbohydr. Polym.2014112422523410.1016/j.carbpol.2014.05.08725129739
    [Google Scholar]
  54. XueM. WangJ. HuangM. Inulin-modified liposomes as a novel delivery system for cinnamaldehyde.Foods20221110146710.3390/foods1110146735627037
    [Google Scholar]
  55. AmjadiS. AlmasiH. HamishehkarH. Alizadeh KhaledabadM. LimL.T. Cationic inulin as a new surface decoration hydrocolloid for improving the stability of liposomal nanocarriers.Colloids Surf. B Biointerfaces202221311240110.1016/j.colsurfb.2022.11240135151992
    [Google Scholar]
  56. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers1007023830037052
    [Google Scholar]
  57. TripodoG. PasutG. TrapaniA. MeroA. LasorsaF.M. ChlapanidasT. TrapaniG. MandracchiaD. Inulin-D-α-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin.Biomacromolecules201516255055710.1021/bm501616e25543760
    [Google Scholar]
  58. DuH. ZhaoA. WangQ. YangX. RenD. Supplementation of inulin with various degree of polymerization ameliorates liver injury and gut microbiota dysbiosis in high fat-fed obese mice.J. Agric. Food Chem.202068377978710.1021/acs.jafc.9b0657131894986
    [Google Scholar]
  59. AmackerM. SmardonC. MasonL. SorrellJ. JefferyK. AdlerM. New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes.Vaccines20205111633375151
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855274579240103042126
Loading
/content/journals/cdth/10.2174/0115748855274579240103042126
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomedical engineering; drug delivery; drug targeting; food science; Inulin; prebiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test