Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Flavonoids, one of the major bioactive constituents of herbal drugs, have been scientifically reported to possess diverse therapeutic potentials such as anticancer, immunomodulatory, neuroprotective, cardioprotective, antioxidant, . This manuscript enlightens the anticancer potential of traditional herbal flavonoids in gynecological cancer ., is one of the major life-threats in women.

Objective

This manuscript is aimed at an insightful compilation of scientific substantiations of herbal flavonoids in gynecological cancer along with targeted drug delivery systems for the same.

Materials and Methods

The contents and data represented in the article have been reviewed using institutional libraries and online database resources (available in the public domain) such as PubMed, Science-Direct, Web of Science, American Association of Pharmaceutical Scientists, Google Scholar, Hinari, SciFinder, Research Gate, .

Results

Flavonoids are natural compounds and have potential against cervical, ovarian, and endometrial cancer. and experiments have demonstrated the significant potential of flavonoids in gynecological cancer, especially cervical, ovarian, and endometrial cancer. It was reported from experimentations that targeted drug delivery system improves the anticancer effect of flavonoids.

Conclusion

Phytoflavonoids have the potential to prevent gynecological cancer by induction of apoptosis cell cycle arrest and reactive oxygen species generation. Further studies on the drug delivery system of flavonoids are warranted.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947289878240126111236
2024-02-07
2025-06-21
Loading full text...

Full text loading...

References

  1. ChangK. GunterM.J. RauberF. Ultra-processed food consumption, cancer risk and cancer mortality: a large-scale prospective analysis within the UK Biobank.EClinicalMedicine20235610184010.1016/j.eclinm.2023.101840 36880051
    [Google Scholar]
  2. ChangK. MillettC. RauberF. Ultra-processed food consumption, cancer risk, and cancer mortality: A prospective cohort study of the UK Biobank.Lancet2022400S3110.1016/S0140‑6736(22)02241‑3
    [Google Scholar]
  3. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107 21296855
    [Google Scholar]
  4. HerbstR.S. SoriaJ.C. KowanetzM. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.Nature2014515752856356710.1038/nature14011 25428504
    [Google Scholar]
  5. ChinnikrishnanP. Aziz IbrahimI.A. AlzahraniA.R. ShahzadN. SivaprakasamP. PanduranganA.K. The role of selective flavonoids on triple-negative breast cancer: An update.Separations202310320710.3390/separations10030207
    [Google Scholar]
  6. MaheshwariA. KumarN. MahantshettyU. Gynecological cancers: A summary of published Indian data.South Asian J. Cancer20165311212010.4103/2278‑330X.187575 27606294
    [Google Scholar]
  7. BlockKI GyllenhaalC LoweL Designing a broad-spectrum integrative approach for cancer prevention and treatment.Semin Cancer Biol201535Suppl)(Suppl.S27630410.1016/j.semcancer.2015.09.007 26590477
    [Google Scholar]
  8. GoyalP.K. VatsS. Polymer-Drug Conjugates.Academic Press202327931310.1016/B978‑0‑323‑91663‑9.00002‑3
    [Google Scholar]
  9. JangS.H. WientjesM.G. LuD. AuJ.L.S. Drug delivery and transport to solid tumors.Pharm. Res.20032091337135010.1023/A:1025785505977 14567626
    [Google Scholar]
  10. KanarekN. PetrovaB. SabatiniD.M. Dietary modifications for enhanced cancer therapy.Nature2020579780050751710.1038/s41586‑020‑2124‑0 32214253
    [Google Scholar]
  11. NwodoJ.N. IbezimA. SimobenC.V. Ntie-KangF. Exploring cancer therapeutics with natural products from African medicinal plants, Part II: Alkaloids, terpenoids and flavonoids.Anticancer. Agents Med. Chem.201616110812710.2174/1871520615666150520143827 25991425
    [Google Scholar]
  12. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu12020457 32059369
    [Google Scholar]
  13. BondonnoN.P. DalgaardF. KyrøC. Flavonoid intake is associated with lower mortality in the danish diet cancer and health cohort.Nat. Commun.2019101365110.1038/s41467‑019‑11622‑x 31409784
    [Google Scholar]
  14. EfferthT. SaeedM.E.M. KadiogluO. Collateral sensitivity of natural products in drug-resistant cancer cells.Biotechnol. Adv.20203810734210.1016/j.biotechadv.2019.01.009 30708024
    [Google Scholar]
  15. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  16. FarrandL. OhS.W. SongY.S. TsangB.K. Phytochemicals: A multitargeted approach to gynecologic cancer therapy.BioMed Res. Int.2014201411010.1155/2014/890141 25093186
    [Google Scholar]
  17. CibulaD. RaspolliniM.R. PlanchampF. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer – Update 2023.Virchows Arch.2023482693596610.1007/s00428‑023‑03552‑3 37145263
    [Google Scholar]
  18. ZhuY. WangL. XuL. YingP. A network pharmacology study on the cervix prescription for treatment of cervical cancer.J. Immunol. Res.2022202211310.1155/2022/8945591 36277473
    [Google Scholar]
  19. GaffneyD.K. HashibeM. KepkaD. MaurerK.A. WernerT.L. Too many women are dying from cervix cancer: Problems and solutions.Gynecol. Oncol.2018151354755410.1016/j.ygyno.2018.10.004 30301561
    [Google Scholar]
  20. AkinlotanM. BolinJ.N. HelduserJ. OjinnakaC. LichoradA. McClellanD. Cervical cancer screening barriers and risk factor knowledge among uninsured women.J. Community Health201742477077810.1007/s10900‑017‑0316‑9 28155005
    [Google Scholar]
  21. DamaniM BaxiK AranhaC SawarkarSP Recent advances in herbal drug nanocarriers against cervical cancer.Crit Rev Ther Drug Carr Syst202138110.1615/CritRevTherDrugCarrierSyst.2020034170
    [Google Scholar]
  22. VeeramuthuD. RajaW.R. Al-DhabiN.A. SavarimuthuI. Flavonoids: Anticancer properties.Crit Rev Ther Drug Carr Syst201728710.5772/68095
    [Google Scholar]
  23. ShafabakhshR. AsemiZ. Quercetin: A natural compound for ovarian cancer treatment.J. Ovarian Res.20191215510.1186/s13048‑019‑0530‑4 31202269
    [Google Scholar]
  24. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.21551 30620402
    [Google Scholar]
  25. Di TucciC. GalatiG. MatteiG. ChinèA. FracassiA. MuziiL. Fertility after Cancer: Risks and successes.Cancers20221410250010.3390/cancers14102500 35626104
    [Google Scholar]
  26. RaziS. GhonchehM. Mohammadian-HafshejaniA. AziznejhadH. MohammadianM. SalehiniyaH. The incidence and mortality of ovarian cancer and their relationship.Ecancermedicalscience20161062810.3332/ecancer.2016.628 27110284
    [Google Scholar]
  27. StewartC. RalyeaC. LockwoodS. Ovarian cancer: An integrated review.Semin. Oncol. Nurs.201935215115610.1016/j.soncn.2019.02.001 30867104
    [Google Scholar]
  28. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  29. EvrardC. AlexandreJ. Predictive and prognostic value of microsatellite instability in gynecologic cancer (endometrial and ovarian).Cancers20211310243410.3390/cancers13102434 34069845
    [Google Scholar]
  30. ColomboN. PeirettiM. ParmaG. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201021v23v3010.1093/annonc/mdq244 20555088
    [Google Scholar]
  31. KorbeckiJ. BosiackiM. BarczakK. Involvement in tumorigenesis and clinical significance of CXCl1 in reproductive cancers: Breast cancer, cervical cancer, endometrial cancer, ovarian cancer and prostate cancer.Int. J. Mol. Sci.2023248726210.3390/ijms24087262 37108425
    [Google Scholar]
  32. WangQ. PengH. QiX. WuM. ZhaoX. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence.Signal Transduct. Target. Ther.20205113710.1038/s41392‑020‑0199‑6 32728057
    [Google Scholar]
  33. BurmeisterC.A. KhanS.F. SchäferG. Cervical cancer therapies: Current challenges and future perspectives.Tumour Virus Research20221320023810.1016/j.tvr.2022.200238 35460940
    [Google Scholar]
  34. GautamL. JainA. ShrivastavaP. VyasS. VyasS.P. Emergence of novel targeting systems and conventional therapies for effective cancer treatment.Nano Drug Delivery Strategies for the Treatment of Cancers20213510.1016/B978‑0‑12‑819793‑6.00002‑3
    [Google Scholar]
  35. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  36. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  37. NajafiM. TavakolS. ZarrabiA. AshrafizadehM. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: A review.Arch. Physiol. Biochem.202212861438145210.1080/13813455.2020.1773864 32521182
    [Google Scholar]
  38. MansonM.M. Cancer prevention – the potential for diet to modulate molecular signalling.Trends Mol. Med.200391111810.1016/S1471‑4914(02)00002‑3 12524205
    [Google Scholar]
  39. NabaviS.M. ŠamecD. TomczykM. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering.Biotechnol. Adv.20203810731610.1016/j.biotechadv.2018.11.005 30458225
    [Google Scholar]
  40. CahyanaY. AdiyantiT. Flavonoids as antidiabetic agents.Indo J Chem202121251252610.22146/ijc.58439
    [Google Scholar]
  41. AbotalebM. SamuelS. VargheseE. Flavonoids in cancer and apoptosis.Cancers20181112810.3390/cancers11010028 30597838
    [Google Scholar]
  42. WayT.D. KaoM.C. LinJ.K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway.J. Biol. Chem.200427964479448910.1074/jbc.M305529200 14602723
    [Google Scholar]
  43. ZhengP.W. ChiangL.C. LinC.C. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells.Life Sci.200576121367137910.1016/j.lfs.2004.08.023 15670616
    [Google Scholar]
  44. LiZ. HuX. WangY. FangJ. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1.FEBS Lett.2009583121999200310.1016/j.febslet.2009.05.013 19447105
    [Google Scholar]
  45. WuD.G. YuP. LiJ.W. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells.Toxicol. Lett.2014224115716410.1016/j.toxlet.2013.10.007 24148603
    [Google Scholar]
  46. SubhasitanontP. ChokchaichamnankitD. ChiablaemK. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells.Oncol. Lett.20171444361437110.3892/ol.2017.6705 28943950
    [Google Scholar]
  47. TongJ. ShenY. ZhangZ. HuY. ZhangX. HanL. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway.Biosci. Rep.2019395BSR2019045210.1042/BSR20190452 30967496
    [Google Scholar]
  48. LiuQ. ChenX. YangG. MinX. Maoxian DengA. Apigenin inhibits cell migration through MAPK pathways in human bladder smooth muscle cells.Biocell2011353718010.32604/biocell.2011.35.071 22423483
    [Google Scholar]
  49. GaoA.M. ZhangX.Y. HuJ.N. KeZ.P. Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis.Chem. Biol. Interact.2018280455010.1016/j.cbi.2017.11.020 29191453
    [Google Scholar]
  50. MengS. ZhuY. LiJ.F. Apigenin inhibits renal cell carcinoma cell proliferation.Oncotarget2017812198341984210.18632/oncotarget.15771 28423637
    [Google Scholar]
  51. ZhuH. JinH. PiJ. Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures.Scanning201638432232810.1002/sca.21273 26435325
    [Google Scholar]
  52. SwansonH.I. ChoiE.Y. HeltonW.B. GairolaC.G. ValentinoJ. Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2014117221422010.1016/j.oooo.2013.10.012 24439916
    [Google Scholar]
  53. ChenM. WangX. ZhaD. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner.Sci. Rep.2016613546810.1038/srep35468 27752089
    [Google Scholar]
  54. MaggioniD. GaravelloW. RigolioR. PignataroL. GainiR. NicoliniG. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis.Int. J. Oncol.20134351675168210.3892/ijo.2013.2072 23969487
    [Google Scholar]
  55. ZhaoG. HanX. ChengW. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.Oncol. Rep.20173742277228510.3892/or.2017.5450 28260058
    [Google Scholar]
  56. ShuklaS. KanwalR. ShankarE. Apigenin blocks IKKα activation and suppresses prostate cancer progression.Oncotarget2015631312163123210.18632/oncotarget.5157 26435478
    [Google Scholar]
  57. ZhangH. LiuG. ZengX. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells.Int J Nanomed201524612473
    [Google Scholar]
  58. HuangS. YuM. ShiN. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro.J. Cancer20201182123213210.7150/jca.34981 32127939
    [Google Scholar]
  59. WanY. FeiX. WangZ. Retracted - miR-423-5p knockdown enhances the sensitivity of glioma stem cells to apigenin through the mitochondrial pathway.Tumour Biol.201739410.1177/1010428317695526 28381178
    [Google Scholar]
  60. ChenJ. XuB. SunJ. JiangX. BaiW. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review.Crit. Rev. Food Sci. Nutr.202262267242725410.1080/10408398.2021.1913092 33872094
    [Google Scholar]
  61. KausarH. JeyabalanJ. AqilF. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells.Cancer Lett.20123251546210.1016/j.canlet.2012.05.029 22659736
    [Google Scholar]
  62. LageN.N. LayosaM.A.A. ArbizuS. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells.J. Funct. Foods20206410371010.1016/j.jff.2019.103710
    [Google Scholar]
  63. EskraJ.N. SchlichtM.J. BoslandM.C. Effects of black raspberries and their ellagic acid and anthocyanin constituents on taxane chemotherapy of castration-resistant prostate cancer cells.Sci. Rep.201991436710.1038/s41598‑019‑39589‑1 30867440
    [Google Scholar]
  64. LuJ.N. LeeW.S. NagappanA. Anthocyanins from the fruit of vitiscoignetiaepulliat potentiate the cisplatin activity by inhibiting PI3K/Akt signaling pathways in human gastric cancer cells.J. Cancer Prev.2015201505610.15430/JCP.2015.20.1.50 25853103
    [Google Scholar]
  65. VuoloM.M. BatistaÂ.G. BiasotoA.C.T. CorreaL.C. JúniorM.R.M. LiuR.H. Red-jambo peel extract shows antiproliferative activity against HepG2 human hepatoma cells.Food Res. Int.20191249310010.1016/j.foodres.2018.08.040 31466655
    [Google Scholar]
  66. ChenH.H. ChenS.P. ZhengQ.L. Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-κB Pathway.J. Cancer20189228829510.7150/jca.20499 29344275
    [Google Scholar]
  67. López de las HazasM.C. MoseleJ.I. MaciàA. LudwigI.A. MotilvaM.J. Exploring the colonic metabolism of grape and strawberry anthocyanins and their in vitro apoptotic effects in HT-29 colon cancer cells.J. Agric. Food Chem.201765316477648710.1021/acs.jafc.6b04096 27790915
    [Google Scholar]
  68. GuoJ. WangQ. ZhangY. Functional daidzein enhances the anticancer effect of topotecan and reverses BCRP-mediated drug resistance in breast cancer.Pharmacol. Res.201914710438710.1016/j.phrs.2019.104387 31408695
    [Google Scholar]
  69. ParkH.J. JeonY.K. YouD.H. NamM.J. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells.Food Chem. Toxicol.20136054254910.1016/j.fct.2013.08.022 23959101
    [Google Scholar]
  70. MoradzadehM. HosseiniA. ErfanianS. RezaeiH. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase.Pharmacol. Rep.201769592492810.1016/j.pharep.2017.04.008 28646740
    [Google Scholar]
  71. BaoL. LiuF. GuoH. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway.Tumour Biol.2016378113651137410.1007/s13277‑016‑5013‑2 26960693
    [Google Scholar]
  72. KwakT.W. ParkS.B. KimH.J. JeongY.I. KangD.H. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells.OncoTargets Ther.20161013714410.2147/OTT.S112364 28053547
    [Google Scholar]
  73. OliveiraM.R. NabaviS.F. DagliaM. RastrelliL. NabaviS.M. Epigallocatechin gallate and mitochondria-A story of life and death.Pharmacol. Res.2016104708510.1016/j.phrs.2015.12.027 26731017
    [Google Scholar]
  74. Abd RazakN. YeapS.K. AlitheenN.B. Eupatorin suppressed tumor progression and enhanced immunity in a 4T1 murine breast cancer model.Integr. Cancer Ther.20201910.1177/1534735420935625 32830560
    [Google Scholar]
  75. Namazi SarvestaniN. SepehriH. DelphiL. Moridi FarimaniM. Eupatorin and salvigenin potentiate doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells.Asian Pac. J. Cancer Prev.2018191131139 29373904
    [Google Scholar]
  76. SharmaE. AttriD.C. SatiP. Recent updates on anticancer mechanisms of polyphenols.Front. Cell Dev. Biol.202210100591010.3389/fcell.2022.1005910 36247004
    [Google Scholar]
  77. KaushikS. ShyamH. AgarwalS. Genistein potentiates centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis.Life Sci.201923911707310.1016/j.lfs.2019.117073 31751581
    [Google Scholar]
  78. SolomonL.A. AliS. BanerjeeS. MunkarahA.R. MorrisR.T. SarkarF.H. Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB.J. Ovarian Res.200811910.1186/1757‑2215‑1‑9 19025644
    [Google Scholar]
  79. ShafieeG. SaidijamM. TavilaniH. GhasemkhaniN. KhodadadiI. Genistein induces apoptosis and inhibits proliferation of ht29 colon cancer cells.Int. J. Mol. Cell. Med.201653178191 27942504
    [Google Scholar]
  80. QinJ. TengJ. ZhuZ. ChenJ. HuangW.J. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells.Pharm. Biol.2016541747910.3109/13880209.2015.1014921 25880142
    [Google Scholar]
  81. SundaramM.K. UnniS. SomvanshiP. Genistein modulates signaling pathways and targets several epigenetic markers in hela cells.Genes2019101295510.3390/genes10120955 31766427
    [Google Scholar]
  82. PalitS. KarS. SharmaG. DasP.K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway.J. Cell. Physiol.201523081729173910.1002/jcp.24818 25204891
    [Google Scholar]
  83. PandeyP. SayyedU. TiwariR.K. SiddiquiM.H. PathakN. BajpaiP. Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma.Nutr. Cancer201971467668710.1080/01635581.2018.1508732 30265812
    [Google Scholar]
  84. WuB. LiangY. TanY. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer.Mater. Sci. Eng. C20165979280010.1016/j.msec.2015.10.087 26652434
    [Google Scholar]
  85. ChoiJ.B. KimJ.H. LeeH. PakJ.N. ShimB.S. KimS.H. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells.J. Agric. Food Chem.201866389960996710.1021/acs.jafc.8b02656 30211553
    [Google Scholar]
  86. SeydiE. SalimiA. RasekhH.R. MohsenifarZ. PourahmadJ. Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting.Nutr. Cancer2018704594604
    [Google Scholar]
  87. YaoY. RaoC. ZhengG. WangS. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR 384/pleiotrophin axis.Oncol. Rep.201942113114110.3892/or.2021.8082 31059061
    [Google Scholar]
  88. MengG. ChaiK. LiX. ZhuY. HuangW. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway.Chem. Biol. Interact.2016257263410.1016/j.cbi.2016.07.028 27474067
    [Google Scholar]
  89. TsaiP.H. ChengC.H. LinC.Y. Dietary flavonoids luteolin and quercetin suppressed cancer stem cell properties and metastatic potential of isolated prostate cancer cells.Anticancer Res.201636126367638010.21873/anticanres.11234 27919958
    [Google Scholar]
  90. PuY. ZhangT. WangJ. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs.J. Cancer20189203669367510.7150/jca.27183 30405835
    [Google Scholar]
  91. ImE. YeoC. LeeE.O. Luteolin induces caspase-dependent apoptosis via inhibiting the AKT/osteopontin pathway in human hepatocellular carcinoma SK-Hep-1 cells.Life Sci.201820925926610.1016/j.lfs.2018.08.025 30107166
    [Google Scholar]
  92. ÇetinkayaM. BaranY. Therapeutic potential of luteolin on cancer.Vaccines202311355410.3390/vaccines11030554 36992138
    [Google Scholar]
  93. LeeH.S. ParkB.S. KangH.M. KimJ.H. ShinS.H. KimI.R. Role of luteolin-induced apoptosis and autophagy in human glioblastoma cell lines.Medicina202157987910.3390/medicina57090879 34577802
    [Google Scholar]
  94. NooriS. Rezaei TaviraniM. DeraviN. Mahboobi RabbaniM.I. ZarghiA. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the stat3 signaling pathway.Iran. J. Pharm. Res.202019312213310.22037/ijpr.2020.113103.14112 33680016
    [Google Scholar]
  95. ZhangH. ZhongX. ZhangX. ShangD. ZhouY. ZhangC. Enhanced anticancer effect of ABT-737 in combination with naringenin on gastric cancer cells.Exp. Ther. Med.201611266967310.3892/etm.2015.2912 26893664
    [Google Scholar]
  96. ParkS. LimW. BazerF.W. SongG. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways.Phytomedicine20185023824610.1016/j.phymed.2017.08.026 30466984
    [Google Scholar]
  97. AhamadM.S. SiddiquiS. JafriA. AhmadS. AfzalM. ArshadM. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.PLoS One2014910e11000310.1371/journal.pone.0110003 25330158
    [Google Scholar]
  98. LimW. ParkS. BazerF.W. SongG. Naringenin‐induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways.J. Cell. Biochem.201711851118113110.1002/jcb.25729 27606834
    [Google Scholar]
  99. JeonJ.S. KwonS. BanK. Regulation of the intracellular ROS level is critical for the antiproliferative effect of quercetin in the hepatocellular carcinoma cell line HepG2.Nutr. Cancer201971586186910.1080/01635581.2018.1559929 30661409
    [Google Scholar]
  100. ShangH.S. LuH.F. LeeC.H. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells.Environ. Toxicol.201833111168118110.1002/tox.22623 30152185
    [Google Scholar]
  101. SunS. GongF. LiuP. MiaoQ. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway.Gene2018664505710.1016/j.gene.2018.04.045 29678660
    [Google Scholar]
  102. SongY. HanM. ZhangX. Quercetin suppresses the migration and invasion in human colon cancer Caco-2 cells through regulating toll-like receptor 4/Nuclear Factor-kappa B pathway.Pharmacogn. Mag.20161246Suppl. 223710.4103/0973‑1296.182154 27279714
    [Google Scholar]
  103. ChenS.F. NiehS. JaoS.W. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.PLoS One2012711e4927510.1371/journal.pone.0049275 23152886
    [Google Scholar]
  104. ZhaoS. JiangY. ZhaoJ. Quercetin‐3‐methyl ether inhibits esophageal carcinogenesis by targeting the AKT/mTOR/p70S6K and MAPK pathways.Mol. Carcinog.201857111540155210.1002/mc.22876 30035335
    [Google Scholar]
  105. LiuH. ZhouM. Antitumor effect of quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways.BMC Complement. Altern. Med.201717153110.1186/s12906‑017‑2023‑6 29237430
    [Google Scholar]
  106. KimS.H. YooE.S. WooJ.S. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation.Eur. J. Pharmacol.201986017256810.1016/j.ejphar.2019.172568 31348906
    [Google Scholar]
  107. RyuS. ParkS. LimW. SongG. Quercetin augments apoptosis of canine osteosarcoma cells by disrupting mitochondria membrane potential and regulating PKB and MAPK signal transduction.J. Cell. Biochem.201912010174491745810.1002/jcb.29009 31131468
    [Google Scholar]
  108. YuanZ. LongC. JunmingT. QihuanL. YoushunZ. ChanZ. Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt.Mol. Biol. Rep.20123977785779310.1007/s11033‑012‑1621‑0 22555976
    [Google Scholar]
  109. LiuY. TangZ.G. LinY. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells.Biomed. Pharmacother.201792333810.1016/j.biopha.2017.05.044 28528183
    [Google Scholar]
  110. HasaniN.A. AminI.M. KamaludinR. RosdydN.M. IbahimM.J. KadirS.H. P53 and cyclin B1 mediate apoptotic effects of apigenin and rutin in ERα+-breast cancer MCF-7 cells.J. Teknol.201880133140
    [Google Scholar]
  111. ParkM.H. KimS. SongY. Rutin induces autophagy in cancer cells.Int. J. Oral Biol.2016411455110.11620/IJOB.2016.41.1.045
    [Google Scholar]
  112. Nasri NasrabadiP. ZareianS. NayeriZ. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs‐lncRNAs‐mRNAs‐TFs interactions.J. Cell. Physiol.20192349155701558010.1002/jcp.28204 30697726
    [Google Scholar]
  113. DedoussisG. KalioraA. AndrikopoulosN. Effect of phenols on natural killer (NK) cell-mediated death in the K562 human leukemic cell line.Cell Biol. Int.2005291188488910.1016/j.cellbi.2005.07.006 16198604
    [Google Scholar]
  114. IkedaN.E.A. NovakE.M. MariaD.A. VelosaA.S. PereiraR.M.S. Synthesis, characterization and biological evaluation of Rutin–zinc(II) flavonoid -metal complex.Chem. Biol. Interact.201523918419110.1016/j.cbi.2015.06.011 26091902
    [Google Scholar]
  115. LabhA.K. PriyaV.V. GayathriR. Cytotoxic action of rutin isolated from Morindacitrifolia against hepatic carcinoma cell lines.Drug Invent. Today2019129
    [Google Scholar]
  116. LiQ RenL ZhangY P38 signal transduction pathway has more cofactors on apoptosis of SGC-7901 gastric cancer cells induced by combination of rutin and oxaliplatin.Biomed Res Int20192019
    [Google Scholar]
  117. MohanaS. GanesanM. Rajendra PrasadN. AnanthakrishnanD. VelmuruganD. RETRACTED ARTICLE: Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines.BMC Cancer2018181116810.1186/s12885‑018‑5103‑1 30477461
    [Google Scholar]
  118. NouriZ. FakhriS. NouriK. WallaceC.E. FarzaeiM.H. BishayeeA. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach.Cancers2020128227610.3390/cancers12082276 32823876
    [Google Scholar]
  119. YanX. HaoY. ChenS. Rutin induces apoptosis via P53 up-regulation in human glioma CHME cells.Transl. Cancer Res.2019852005201310.21037/tcr.2019.09.07 35116949
    [Google Scholar]
  120. LiX.H. LiuZ.Y. GuY. LvZ. ChenY. GaoH.C. Expression of NF-kappaB and p38 under intervention of rutin in lung cancer therapy.Biomed. Res.201728523442347
    [Google Scholar]
  121. NambiarD. PrajapatiV. AgarwalR. SinghR.P. In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells.Cancer Lett.2013334110911710.1016/j.canlet.2012.09.004 23022268
    [Google Scholar]
  122. KomalR. SushilK. DeepanshiD. RajeshA. Silibinin and colorectal cancer chemoprevention: A comprehensive review on mechanisms and efficacy.J. Biomed. Res.201630645246510.7555/JBR.30.20150111 27476880
    [Google Scholar]
  123. KoushkiM. KhedriA. AberomandM. Akbari BaghbaniK. MohammadzadehG. Synergistic anti-cancer effects of silibinin-etoposide combination against human breast carcinoma MCF-7 and MDA-MB-231 cell lines.Iran. J. Basic Med. Sci.202124912111219 35083008
    [Google Scholar]
  124. BaiZL TayV GuoSZ RenJ ShuMG Silibinin-induced human glioblastoma cell apoptosis concomitant with autophagy through simultaneous inhibition of mTOR and YAP Biomed Res Int2018201810.1155/2018/6165192
    [Google Scholar]
  125. KoltaiT FliegelL Role of silymarin in cancer treatment: Facts, hypotheses, and questions.J Evid Based Integr Med2022272515690X211068826
    [Google Scholar]
  126. EoH.J. ParkG.H. JeongJ.B. Inhibition of Wnt signaling by silymarin in human colorectal cancer cells.Biomol. Ther.201624438038610.4062/biomolther.2015.154 27068260
    [Google Scholar]
  127. ShariatzadehS.M. HamtaA. SoleimaniM. Fallah HuseiniH. SamavatS. The cytotoxic effects of silymarin on the 4T1 cell line derived from BALB/c mice mammary tumors.Faslnamah-i Giyahan-i Daruyi201413525565
    [Google Scholar]
  128. YousefiM. ShadnoushM. SohrabvandS. KhorshidianN. MortazavianA.M. Encapsulation systems for delivery of flavonoids: A.Biointerface Res. Appl. Chem.202161393413951
    [Google Scholar]
  129. GomesD. SilvestreS. DuarteA.P. In silico approaches: A way to unveil novel therapeutic drugs for cervical cancer management.Pharmaceuticals202114874110.3390/ph14080741 34451838
    [Google Scholar]
  130. LiangY. ZhongQ. MaR. Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma Ishikawa cells in vitro and in vivo.Food Sci. Hum. Wellness20231262242225110.1016/j.fshw.2023.03.044
    [Google Scholar]
  131. ChenY.H. WuJ.X. YangS.F. HsiaoY.H. Synergistic combination of luteolin and asiatic acid on cervical cancer in vitro and in vivo.Cancers202315254810.3390/cancers15020548 36672499
    [Google Scholar]
  132. PanF. LiuY. LiuJ. WangE. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells.RSC Advances2019919108421085310.1039/C9RA01772K 35515294
    [Google Scholar]
  133. HuaF. LiC.H. ChenX.G. LiuX.P. Daidzein exerts anticancer activity towards SKOV3 human ovarian cancer cells by inducing apoptosis and cell cycle arrest and inhibiting the Raf/MEK/ERK cascade Retraction.Int. J. Mol. Med.201841634853492
    [Google Scholar]
  134. OllberdingN.J. LimU. WilkensL.R. Legume, soy, tofu, and isoflavone intake and endometrial cancer risk in postmenopausal women in the multiethnic cohort study.J. Natl. Cancer Inst.20121041677610.1093/jnci/djr475 22158125
    [Google Scholar]
  135. WangJ. ManG.C.W. ChanT.H. KwongJ. WangC.C. A prodrug of green tea polyphenol (–)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer.Cancer Lett.2018412102010.1016/j.canlet.2017.09.054 29024813
    [Google Scholar]
  136. YanC. YangJ. ShenL. ChenX. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression.Arch. Gynecol. Obstet.2012285245946710.1007/s00404‑011‑1942‑6 21698451
    [Google Scholar]
  137. LeeK. Hyun LeeD. JungY.J. ShinS.Y. LeeY.H. The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells.Applied Biological Chemistry201659219319910.1007/s13765‑016‑0160‑0
    [Google Scholar]
  138. YorikiK. MoriT. AoyamaK. Genistein induces long-term expression of progesterone receptor regardless of estrogen receptor status and improves the prognosis of endometrial cancer patients.Sci. Rep.20221211030310.1038/s41598‑022‑13842‑6 35717540
    [Google Scholar]
  139. NingY. FengW. CaoX. RETRACTED ARTICLE: Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis.J. Exp. Clin. Cancer Res.20193811910.1186/s13046‑018‑1010‑1 30646963
    [Google Scholar]
  140. GhaemiA. SoleimanjahiH. RazeghiS. Genistein induces a protective immunomodulatory effect in a mouse model of cervical cancer.Iran. J. Immunol.201292119127 22735799
    [Google Scholar]
  141. RenF ZhangG LiC LiG CaoY SunF Hesperidin induces mitochondria mediated intrinsic apoptosis in hpv-positive cervical cancer cells via regulation of E6/p53 expression.Available from: https://europepmc.org/article/ppr/ppr237899
  142. ShooreiH. BanimohammadM. KebriaM.M. Hesperidin improves the follicular development in 3D culture of isolated preantral ovarian follicles of mice.Exp. Biol. Med.2019244535236110.1177/1535370219831615 30781997
    [Google Scholar]
  143. CincinZ.B. KiranB. BaranY. CakmakogluB. Hesperidin promotes programmed cell death by downregulation of nongenomic estrogen receptor signalling pathway in endometrial cancer cells.Biomed. Pharmacother.201810333634510.1016/j.biopha.2018.04.020 29665555
    [Google Scholar]
  144. ImranM. RaufA. Abu-IzneidT. Luteolin, a flavonoid, as an anticancer agent: A review.Biomed. Pharmacother.201911210861210.1016/j.biopha.2019.108612 30798142
    [Google Scholar]
  145. KashafiE. MoradzadehM. MohamadkhaniA. ErfanianS. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.Biomed. Pharmacother.20178957357710.1016/j.biopha.2017.02.061 28258039
    [Google Scholar]
  146. WooJ.H. JangD.S. ChoiJ.H. Luteolin promotes apoptosis of endometriotic cells and inhibits the alternative activation of endometriosis-associated macrophages.Biomol. Ther.202129667868410.4062/biomolther.2021.045 34011694
    [Google Scholar]
  147. ChengH. JiangX. ZhangQ. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway.Exp. Ther. Med.20201963798380410.3892/etm.2020.8649 32346444
    [Google Scholar]
  148. AichingerG. BeislJ. MarkoD. The hop polyphenols xanthohumol and 8-prenyl-naringenin antagonize the estrogenic effects of fusarium mycotoxins in human endometrial cancer cells.Front. Nutr.201858510.3389/fnut.2018.00085 30283786
    [Google Scholar]
  149. ZhuH. GaoJ. WangL. QianK.J. CaiL.P. In vitro study on reversal of ovarian cancer cell resistance to cisplatin by naringin via the nuclear factor-κB signaling pathway.Exp. Ther. Med.20181532643264810.3892/etm.2018.5695 29456667
    [Google Scholar]
  150. FarhanM. RizviA. AatifM. AhmadA. Current understanding of flavonoids in cancer therapy and prevention.Metabolites202313448110.3390/metabo13040481 37110140
    [Google Scholar]
  151. MurataM. KomatsuS. MiyamotoE. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer.Biosci. Microbiota Food Health2023421879310.12938/bmfh.2022‑056 36660602
    [Google Scholar]
  152. LinsT.L.B.G. GouveiaB.B. BarberinoR.S. Rutin prevents cisplatin-induced ovarian damage via antioxidant activity and regulation of PTEN and FOXO3a phosphorylation in mouse model.Reprod. Toxicol.20209820921710.1016/j.reprotox.2020.10.001 33031932
    [Google Scholar]
  153. DeepikaM.S. ThangamR. SheenaT.S. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis.Biomed. Pharmacother.20191091181119510.1016/j.biopha.2018.10.178 30551368
    [Google Scholar]
  154. KoushkiM. Farrokhi YektaR. Amiri-DashatanN. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid.J. Funct. Foods202310410550210.1016/j.jff.2023.105502
    [Google Scholar]
  155. YouY. HeQ. LuH. Silibinin induces G2/M cell cycle arrest by activating Drp1-dependent mitochondrial fission in cervical cancer.Front. Pharmacol.20201127110.3389/fphar.2020.00271 32226384
    [Google Scholar]
  156. FanL. MaY. LiuY. ZhengD. HuangG. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.Eur. J. Pharmacol.2014743798810.1016/j.ejphar.2014.09.019 25242120
    [Google Scholar]
  157. GrossoG. BuscemiS. GalvanoF. Mediterranean diet and cancer: Epidemiological evidence and mechanism of selected aspects.BMC Surg.201313S2S1410.1186/1471‑2482‑13‑S2‑S14 24267672
    [Google Scholar]
  158. CassidyA. HuangT. RiceM.S. RimmE.B. TworogerS.S. Intake of dietary flavonoids and risk of epithelial ovarian cancer.Am. J. Clin. Nutr.201410051344135110.3945/ajcn.114.088708 25332332
    [Google Scholar]
  159. GrossoG. GodosJ. Lamuela-RaventosR. A comprehensive meta‐analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations.Mol. Nutr. Food Res.2017614160093010.1002/mnfr.201600930 27943649
    [Google Scholar]
  160. TavsanZ. KayaliH.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion.Biomed. Pharmacother.201911610900410.1016/j.biopha.2019.109004 31128404
    [Google Scholar]
  161. NielsenA.J. McNultyJ. Polyphenolic natural products and natural product–inspired steroidal mimics as aromatase inhibitors.Med. Res. Rev.20193941274129310.1002/med.21536 30171625
    [Google Scholar]
  162. BudhathokiS. IwasakiM. SawadaN. Soy food and isoflavone intake and endometrial cancer risk: the J apan public health center‐based prospective study.BJOG2015122330431110.1111/1471‑0528.12853 24941880
    [Google Scholar]
  163. PalM.K. JaiswarS.P. DwivediA. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial-mediated apoptosis in ovarian cancer.Anticancer. Agents Med. Chem.2017171217211732 28443516
    [Google Scholar]
  164. TanM ZhuJ PanY Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin.Bioinorg. Chem Appl20092009
    [Google Scholar]
  165. TalibW.H. AbuawadA. ThiabS. AlshweiatA. MahmodA.I. Flavonoid-based nanomedicines to target tumor microenvironment.OpenNano2022810008110.1016/j.onano.2022.100081
    [Google Scholar]
  166. BindhyaK.P. Uma MaheswariP. Meera Sheriffa BegumK.M. Milk protein inspired multifunctional magnetic carrier targeting progesterone receptors: Improved anticancer potential of soybean-derived genistein against breast and ovarian cancers.Mater. Chem. Phys.202127212505510.1016/j.matchemphys.2021.125055
    [Google Scholar]
  167. Kelte FilhoI MachadoCS DiedrichC Optimized chitosan-coated gliadin nanoparticles improved the hesperidin cytotoxicity over tumor cells.Braz Arch Biol Technol202164spee2120079510.1590/1678‑4324‑75years‑2021200795
    [Google Scholar]
  168. K Purushothaman BP UM, K M MSB. Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer.Int. J. Biol. Macromol.202015129330410.1016/j.ijbiomac.2020.02.172 32084471
    [Google Scholar]
  169. ZhangX. PanQ. HaoL. Preparation of magnetic fluorescent dual-drug nanocomposites for codelivery of kaempferol and paclitaxel.Journal of Wuhan University of Technology Mater. Sci. Ed.201833125626210.1007/s11595‑018‑1814‑z
    [Google Scholar]
  170. LuoH. JiangB. LiB. LiZ. JiangB.H. ChenY.C. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability.Int. J. Nanomedicine2012739513959 22866004
    [Google Scholar]
  171. AkalZ.Ü. AlpsoyL. BaykalA. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells.Appl. Surf. Sci.201637857258110.1016/j.apsusc.2016.03.217
    [Google Scholar]
  172. AlpsoyL. BaykalA. KurtanU. ÜlkerZ. Synthesis and characterization of carboxylated luteolin (CL)-functionalized SPION.J. Supercond. Nov. Magn.201730102797280410.1007/s10948‑017‑4056‑y
    [Google Scholar]
  173. FusterM.G. CarissimiG. MontalbánM.G. VílloraG. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles.Nanomaterials202010471810.3390/nano10040718 32290154
    [Google Scholar]
  174. FerreiraM. GomesD. NetoM. PassarinhaL.A. CostaD. SousaÂ. Development and characterization of quercetin-loaded delivery systems for increasing its bioavailability in cervical cancer cells.Pharmaceutics202315393610.3390/pharmaceutics15030936 36986797
    [Google Scholar]
  175. LongQ. XieY. HuangY. Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers.J. Biomed. Nanotechnol.20139696597510.1166/jbn.2013.1596 23858960
    [Google Scholar]
  176. FerreiraM. CostaD. SousaÂ. Flavonoids-based delivery systems towards cancer therapies.Bioengineering20229519710.3390/bioengineering9050197 35621475
    [Google Scholar]
  177. GaikwadS.S. MoradeY.Y. KothuleA.M. KshirsagarS.J. LaddhaU.D. SalunkheK.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook.Heliyon202396e1656110.1016/j.heliyon.2023.e16561 37260890
    [Google Scholar]
  178. KatopodiA. DetsiA. Solid lipid nanoparticles and nanostructured lipid carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids.Colloids Surf. A Physicochem. Eng. Asp.202163012752910.1016/j.colsurfa.2021.127529
    [Google Scholar]
  179. Mashhadi MalekzadehA. RamazaniA. Tabatabaei RezaeiS.J. NiknejadH. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.J. Colloid Interface Sci.2017490647310.1016/j.jcis.2016.11.014 27870961
    [Google Scholar]
  180. YaminaA.M. FizirM. ItatahineA. HeH. DramouP. Preparation of multifunctional PEG-graft-halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging.Colloids Surf. B Biointerfaces201817032232910.1016/j.colsurfb.2018.06.042 29936385
    [Google Scholar]
  181. Van ThoaiD. NguyenD.T. DangL.H. Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels.J. Polym. Res.2020271236910.1007/s10965‑020‑02216‑z
    [Google Scholar]
  182. RajawatS. KoutuV. SahaS. MalikM.M. Biopolymers as silver nanoparticle carriers for targeted drug delivery.Mater. Today Proc.2023610.1016/j.matpr.2022.12.226
    [Google Scholar]
  183. CaballeroS. LiY.O. McClementsD.J. Davidov-PardoG. Encapsulation and delivery of bioactive citrus pomace polyphenols: A review.Crit. Rev. Food Sci. Nutr.2021117 33983085
    [Google Scholar]
  184. KraulandA. AlonsoM. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system.Int. J. Pharm.20073401-213414210.1016/j.ijpharm.2007.03.005 17459620
    [Google Scholar]
  185. ZhuP. ChenL. ZhaoY. A novel host-guest complex based on biotin functionalized polyamine-β-cyclodextrin for tumor targeted delivery of luteolin.J. Mol. Struct.2021123713033910.1016/j.molstruc.2021.130339
    [Google Scholar]
  186. KhanH. UllahH. MartorellM. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects.Semin. Cancer Biol.2019577278 31374244
    [Google Scholar]
  187. WuD. ZhangJ. WangJ. LiJ. LiaoF. DongW. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species.Tumour Biol.20163733451345910.1007/s13277‑015‑4176‑6 26449828
    [Google Scholar]
  188. TuL.Y. BaiH.H. CaiJ.Y. DengS.P. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.Scanning201638664465310.1002/sca.21312 26890985
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947289878240126111236
Loading
/content/journals/cctr/10.2174/0115733947289878240126111236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test