Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Colorectal cancer (CRC) ranks as the third most prevalent cancer type and the second leading cause of cancer-related deaths globally. The mortality rate from colon cancer has seen a significant increase, correlating with the widespread adoption of Western dietary habits and lifestyles. Medicinal plants, notably those containing functional phytochemicals like polysaccharides, exhibit anti-tumor and anti-apoptotic properties, offering potential for CRC prevention and treatment. Enhancing the efficacy of herbal medicines and addressing problems related to them could eventually become possible with the help of nanoscale drug delivery systems. Improved solubility and bioavailability, protection from toxicity, resistance to physical and chemical degradation, increased pharmacological activity, better distribution to tissue macrophages, and more stable are merely some of the benefits of developing nano dosage forms for herbal drugs in phyto-formulation research. The article has been drafted by gathering recent information available in Scopus, Science Direct, Pubmed, Medline and Web of Science databases. The inclusion criterion was an English language article showing the effective use of whole plant or herbal products in CRC. Original articles and short communications on and experiments were included. Exclusion criteria included irrelevant studies, insufficient data, and mushroom or algae investigations. Case reports/case series, and letters to editors were not included but used to discover applicable primary material. This review suggests medicinal plants can produce anti-CRC chemicals. Herbs and spices with antiproliferative and angiogenesis-inhibiting properties may be useful as chemopreventive or chemotherapeutic therapies for colorectal cancer. This narrative review explores the usefulness of medicinal plants in the treatment of CRC using a novel drug delivery system. Nanotechnology is highlighted as a driving force behind the recent breakthroughs in CRC screening, diagnosis, and therapy. This review seeks to inform researchers on nanotechnology in CRC and inspire innovative nanotechnology-based therapies.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947279599231208095726
2024-01-26
2025-04-22
Loading full text...

Full text loading...

References

  1. WHOCancer 1211 Geneva.SwitzerlandWorld Health Organization2021
    [Google Scholar]
  2. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. Global Cancer Observatory: Cancer Today.Lyon, FranceInternational Agency for Research on Cancer2020
    [Google Scholar]
  3. HossainM.S. KaruniawatiH. JairounA.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies.Cancers20221471732173910.3390/cancers14071732 35406504
    [Google Scholar]
  4. PapamichaelD. AudisioR.A. GlimeliusB. Treatment of colorectal cancer in older patients: International Society of Geriatric Oncology (SIOG) consensus recommendations 2013.Ann. Oncol.201526346347610.1093/annonc/mdu253 25015334
    [Google Scholar]
  5. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.81072 31616522
    [Google Scholar]
  6. KuppusamyP. YusoffM.M. ManiamG.P. IchwanS.J.A. SoundharrajanI. GovindanN. Nutraceuticals as potential therapeutic agents for colon cancer: A review.Acta Pharm. Sin. B20144317318110.1016/j.apsb.2014.04.002 26579381
    [Google Scholar]
  7. DahiyaR DahiyaS Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticlesIn: handbook on nanobiomaterials for therapeutics and diagnostic applications. India: Elsevier2021297339
    [Google Scholar]
  8. YangC. MerlinD. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease?Expert Opin. Drug Deliv.20201711410.1080/17425247.2020.1698543 31770040
    [Google Scholar]
  9. ZafarS. AkhterS. GargN. SelvapandiyanA. Kumar JainG. AhmadF.J. Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: Formulation optimization and implications on cellular and in vivo toxicity.Eur. J. Pharm. Biopharm.2020148102610.1016/j.ejpb.2019.12.016 31923585
    [Google Scholar]
  10. LiS. XuS. LiangX. Nanotechnology: Breaking the current treatment limits of lung cancer.Adv. Healthc. Mater.20211012210007810.1002/adhm.202100078 34019739
    [Google Scholar]
  11. RahmanM.M. IslamM.R. AkashS. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.113305 35717779
    [Google Scholar]
  12. ViswanathB. KimS. LeeK. Recent insights into nanotechnology development for detection and treatment of colorectal cancer.Int. J. Nanomedicine20161124912504 27330292
    [Google Scholar]
  13. SawickiT. RuszkowskaM. DanielewiczA. Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers13092025 33922197
    [Google Scholar]
  14. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  15. Sánchez-AlcoholadoL. Ramos-MolinaB. OteroA. The role of the gut microbiome in colorectal cancer development and therapy response.Cancers2020126140610.3390/cancers12061406 32486066
    [Google Scholar]
  16. DobreM. SalviA. PelisencoI.A. Crosstalk between DNA methylation and gene mutations in colorectal cancer.Front. Oncol.20211169740910.3389/fonc.2021.697409 34277443
    [Google Scholar]
  17. Debesa-TurG. Pérez-BrocalV. Ruiz-RuizS. Metagenomic analysis of formalin-fixed paraffin-embedded tumor and normal mucosa reveals differences in the microbiome of colorectal cancer patients.Sci. Rep.202111139139410.1038/s41598‑020‑79874‑y 33432015
    [Google Scholar]
  18. ParmarS. EaswaranH. Genetic and epigenetic dependencies in colorectal cancer development.Gastroenterol. Rep.202210goac03510.1093/gastro/goac035 35975243
    [Google Scholar]
  19. MalkiA. ElRuzR.A. GuptaI. AllouchA. VranicS. Al MoustafaA.E. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements.Int. J. Mol. Sci.202022113010.3390/ijms22010130 33374459
    [Google Scholar]
  20. JeughtK.V. XuH.C. LiY.J. LuX.B. JiG. Drug resistance and new therapies in colorectal cancer.World J. Gastroenterol.201824343834384810.3748/wjg.v24.i34.3834 30228778
    [Google Scholar]
  21. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.202051222910.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  22. SunY. LiuY. CogdellD. Examining plasma microRNA markers for colorectal cancer at different stages.Oncotarget2016710114341144910.18632/oncotarget.7196 26863633
    [Google Scholar]
  23. SiegelR.L. MillerK.D. FedewaS.A. Colorectal cancer statistics, 2017.CA Cancer J. Clin.201767317719310.3322/caac.21395 28248415
    [Google Scholar]
  24. DeSantisC.E. SiegelR.L. SauerA.G. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.CA Cancer J. Clin.201666429030810.3322/caac.21340 26910411
    [Google Scholar]
  25. EdwardsB.K. WardE. KohlerB.A. Annual report to the nation on the status of cancer, 1975‐2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates.Cancer2010116354457310.1002/cncr.24760 19998273
    [Google Scholar]
  26. LabiancaR. BerettaG.D. KildaniB. Colon cancer.Crit. Rev. Oncol. Hematol.201074210613310.1016/j.critrevonc.2010.01.010 20138539
    [Google Scholar]
  27. WisemanM. The second world cancer research fund/american institute for cancer research expert report. Food, nutrition, physical activity, and the prevention of cancer: A global perspective.Proc. Nutr. Soc.200867325325610.1017/S002966510800712X 18452640
    [Google Scholar]
  28. Dela CruzC.S. TanoueL.T. MatthayR.A. Lung cancer: Epidemiology, etiology, and prevention.Clin. Chest Med.201132460564410.1016/j.ccm.2011.09.001 22054876
    [Google Scholar]
  29. ImranA. QamarH.Y. AliQ. Role of molecular biology in cancer treatment: A review article.Iran. J. Public Health2017461114751485 29167765
    [Google Scholar]
  30. GorgaF. The molecular basis of cancer.Bridgew Rev199817236
    [Google Scholar]
  31. PinoM.S. ChungD.C. The chromosomal instability pathway in colon cancer.Gastroenterology201013862059207210.1053/j.gastro.2009.12.065 20420946
    [Google Scholar]
  32. BensonA.B.III VenookA.P. Al-HawaryM.M. NCCN guidelines insights: Colon cancer.J. Natl. Compr. Canc. Netw.201816435936910.6004/jnccn.2018.0021 29632055
    [Google Scholar]
  33. HinesR.B. BarrettA. Twumasi-AnkrahP. Predictors of guideline treatment nonadherence and the impact on survival in patients with colorectal cancer.J. Natl. Compr. Canc. Netw.2015131516010.6004/jnccn.2015.0008 25583769
    [Google Scholar]
  34. SargentD.J. MarsoniS. MongesG. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer.J. Clin. Oncol.201028203219322610.1200/JCO.2009.27.1825 20498393
    [Google Scholar]
  35. KimJ.E. HongY.S. KimH.J. Defective mismatch repair status was not associated with DFS and OS in stage II colon cancer treated with adjuvant chemotherapy.Ann. Surg. Oncol.201522S363063710.1245/s10434‑015‑4807‑6 26271397
    [Google Scholar]
  36. McClearyN.J. MeyerhardtJ.A. GreenE. Impact of age on the efficacy of newer adjuvant therapies in patients with stage II/III colon cancer: Findings from the ACCENT database.J. Clin. Oncol.201331202600260610.1200/JCO.2013.49.6638 23733765
    [Google Scholar]
  37. YothersG. O’ConnellM.J. AllegraC.J. Oxaliplatin as adjuvant therapy for colon cancer: Updated results of NSABP C-07 trial, including survival and subset analyses.J. Clin. Oncol.201129283768377410.1200/JCO.2011.36.4539 21859995
    [Google Scholar]
  38. IzzoF. GranataV. GrassiR. Radiofrequency ablation and microwave ablation in liver tumors: An update.Oncologist20192410e990e100510.1634/theoncologist.2018‑0337 31217342
    [Google Scholar]
  39. ChenY. DaiJ. JiangY. Long-term outcomes of personalized stereotactic ablative brachytherapy for recurrent head and neck adenoid cystic carcinoma after surgery or external beam radiotherapy: A 9-year study.J. Pers. Med.202111983910.3390/jpm11090839 34575616
    [Google Scholar]
  40. LudmirE.B. PaltaM. WillettC.G. CzitoB.G. Total neoadjuvant therapy for rectal cancer: An emerging option.Cancer201712391497150610.1002/cncr.30600 28295220
    [Google Scholar]
  41. AndréT. BoniC. Mounedji-BoudiafL. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer.N. Engl. J. Med.2004350232343235110.1056/NEJMoa032709 15175436
    [Google Scholar]
  42. AndréT. de GramontA. VernereyD. Adjuvant fluorouracil, leucovorin, and ´ oxaliplatin in stage II to III colon cancer: Updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC Study.J. Clin. Oncol.201533354176418710.1200/JCO.2015.63.4238 26527776
    [Google Scholar]
  43. HallerD.G. TaberneroJ. MarounJ. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer.J. Clin. Oncol.201129111465147110.1200/JCO.2010.33.6297 21383294
    [Google Scholar]
  44. SchmollH.J. CartwrightT. TaberneroJ. Phase III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: A planned safety analysis in 1,864 patients.J. Clin. Oncol.200725110210910.1200/JCO.2006.08.1075 17194911
    [Google Scholar]
  45. KueblerJ.P. WieandH.S. O’ConnellM.J. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: Results from NSABP C-07.J. Clin. Oncol.200725162198220410.1200/JCO.2006.08.2974 17470851
    [Google Scholar]
  46. AndréT. BoniC. NavarroM. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial.J. Clin. Oncol.200927193109311610.1200/JCO.2008.20.6771 19451431
    [Google Scholar]
  47. WatanabeT. WuT.T. CatalanoP.J. Molecular predictors of survival after adjuvant chemotherapy for colon cancer.N. Engl. J. Med.2001344161196120610.1056/NEJM200104193441603 11309634
    [Google Scholar]
  48. HurwitzH. FehrenbacherL. NovotnyW. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N. Engl. J. Med.2004350232335234210.1056/NEJMoa032691 15175435
    [Google Scholar]
  49. HansenT.F. QvortrupC. PfeifferP. Angiogenesis inhibitors for colorectal cancer. a review of the clinical data.Cancers2021135103110.3390/cancers13051031 33804554
    [Google Scholar]
  50. LiQ.H. WangY.Z. TuJ. Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance.Gastroenterol. Rep.20208317919110.1093/gastro/goaa026 32665850
    [Google Scholar]
  51. RiechelmannR. GrotheyA. Antiangiogenic therapy for refractory colorectal cancer: Current options and future strategies.Ther. Adv. Med. Oncol.20179210612610.1177/1758834016676703 28203302
    [Google Scholar]
  52. Van CutsemE. KöhneC.H. LángI. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status.J. Clin. Oncol.201129152011201910.1200/JCO.2010.33.5091 21502544
    [Google Scholar]
  53. SienaS. Sartore-BianchiA. Di NicolantonioF. BalfourJ. BardelliA. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer.J. Natl. Cancer Inst.2009101191308132410.1093/jnci/djp280 19738166
    [Google Scholar]
  54. KafatosG. NiepelD. LoweK. RAS mutation prevalence among patients with metastatic colorectal cancer: A meta-analysis of real-world data.Biomarkers Med.201711975176010.2217/bmm‑2016‑0358 28747067
    [Google Scholar]
  55. YangY.P. QuJ.H. ChangX.J. High intratumoral metastasis-associated in colon cancer-1 expression predicts poor outcomes of cryoablation therapy for advanced hepatocellular carcinoma.J. Transl. Med.2013111414810.1186/1479‑5876‑11‑41 23414367
    [Google Scholar]
  56. PengC.L. LinH.C. ChiangW.L. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer.Photodiagn. Photodyn. Ther.20182311111810.1016/j.pdpdt.2018.06.008 29894822
    [Google Scholar]
  57. GolshaniG. ZhangY. Advances in immunotherapy forcolorectal cancer: A review.Therap. Adv. Gastroenterol.202013175628482091752710.1177/1756284820917527 32536977
    [Google Scholar]
  58. ElezE. BaraibarI. Immunotherapy in colorectal cancer: An unmet need deserving of change.Lancet Oncol.202223783083110.1016/S1470‑2045(22)00324‑2 35636443
    [Google Scholar]
  59. WangC.Z. ZhangC.F. ChenL. AndersonS. LuF. YuanC.S. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.Int. J. Oncol.20154751749175810.3892/ijo.2015.3173 26398706
    [Google Scholar]
  60. WangX. ZhangA. ZhouX. An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine.Sci. Rep.2016611899710.1038/srep18997 26750403
    [Google Scholar]
  61. WangY. AuyeungK.K. ZhangX. KoJ.K. Astragalus saponins modulates colon cancer development by regulating calpain-mediated glucose-regulated protein expression.BMC Complement. Altern. Med.201414140140510.1186/1472‑6882‑14‑401 25319833
    [Google Scholar]
  62. LiuQ. ZhangA. WangL. High-throughput chinmedomics-based prediction of effective components and targets from herbal medicine AS1350.Sci. Rep.2016613843710.1038/srep38437 27910928
    [Google Scholar]
  63. VayghanH.J. GhadimiS.S. NourazarianA.R. Preventive and therapeutic roles of ginseng - focus on colon cancer.Asian Pac. J. Cancer Prev.201415258558810.7314/APJCP.2014.15.2.585 24568461
    [Google Scholar]
  64. WangC.Z. ZhangZ. WanJ.Y. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer.Nutrients20157279981410.3390/nu7020799 25625815
    [Google Scholar]
  65. WangX. ZhangY. ZhangA. Application of Ultra-performance liquid chromatography with Time-of-Flight mass spectrometry for the rapid analysis of constituents and metabolites from the extracts of Acanthopanax senticosus harms leaf.Pharmacogn. Mag.2016124614515210.4103/0973‑1296.177902 27076752
    [Google Scholar]
  66. YuC. LiuS.L. QiM.H. ZouX. WuJ. ZhangJ. Herbal medicine Guan Chang Fu Fang enhances 5-fluorouracil cytotoxicity and affects drug-associated genes in human colorectal carcinoma cells.Oncol. Lett.20159270170810.3892/ol.2014.2766 25621039
    [Google Scholar]
  67. ZhangA. SunH. WangX. Mass spectrometry‐driven drug discovery for development of herbal medicine.Mass Spectrom. Rev.201837330732010.1002/mas.21529 28009933
    [Google Scholar]
  68. WangC. YangS. GaoL. WangL. CaoL. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice.Food Funct.2018952695270410.1039/C7FO01886J 29756138
    [Google Scholar]
  69. XiaoZ.M. WangA.M. WangX.Y. ShenS.R. Effects of ethanol extract of Radix Sophorae Flavescentis on activity of colon cancer HT29 cells.Afr. J. Tradit. Complement. Altern. Med.201310535235510.4314/ajtcam.v10i5.22 24311849
    [Google Scholar]
  70. NanY. ZhouX. LiuQ. Serum metabolomics strategy for understanding pharmacological effects of ShenQi pill acting on kidney yang deficiency syndrome.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2016102621722610.1016/j.jchromb.2015.12.004 26747643
    [Google Scholar]
  71. WangC.Z. YuanC.S. Potential role of ginseng in the treatment of colorectal cancer.Am. J. Chin. Med.20083661019102810.1142/S0192415X08006545 19051332
    [Google Scholar]
  72. JinY. HofsethA.B. CuiX. American ginseng suppresses colitis through p53-mediated apoptosis of inflammatory cells.Cancer Prev. Res.20103333934710.1158/1940‑6207.CAPR‑09‑0116 20179294
    [Google Scholar]
  73. QiL.W. WangC.Z. YuanC.S. American ginseng: Potential structure–function relationship in cancer chemoprevention.Biochem. Pharmacol.201080794795410.1016/j.bcp.2010.06.023 20599804
    [Google Scholar]
  74. ParkJ.W. LeeJ.C. AnnS. SeoD.W. A fermented ginseng extract, BST204, inhibits proliferation and motility of human colon cancer cells.Korean Soc Appl Pharmacol201119211217
    [Google Scholar]
  75. OuniY PharmPJ SciV HannachiH ElfallehW MarzoukS Related Papers Fat T Y Acids, St Erols, Polyphenols, and chlorophylls of olive oils Obt ained from Tunisian Wild Monji Msallem Ext Ra virgin olive oil component S and oxidat Ive St Abilit Y from Olives Grown in Tunisia Oil, Protein, Antioxidants and Fr In:
    [Google Scholar]
  76. FuentesE. PaucarF. TapiaF. OrtizJ. JimenezP. RomeroN. Effect of the composition of extra virgin olive oils on the differentiation and antioxidant capacities of twelve monovarietals.Food Chem.201824328529410.1016/j.foodchem.2017.09.130 29146340
    [Google Scholar]
  77. CebeG.E. KonyalI.S. Antioxidant activity of Olea europaea var. europaea leaves infusion.Ege Univ. Ziraat Fak. Derg.201249209212
    [Google Scholar]
  78. LucasL. RussellA. KeastR. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal.Curr. Pharm. Des.201117875476810.2174/138161211795428911 21443487
    [Google Scholar]
  79. Makowska-WąsJ GalantyA Gdula-ArgasińskaJ Identification of predominant phytochemical compounds and cytotoxic activity of wild olive leaves (Olea europaea L. ssp. sylvestris) harvested in South Portugal.Chem Biodivers2017143e160033110.1002/cbdv.201600331
    [Google Scholar]
  80. ZeriouhW. NaniA. BelarbiM. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.PLoS One2017122e017082310.1371/journal.pone.0170823 28212423
    [Google Scholar]
  81. ShamshoumH. VlavcheskiF. TsianiE. Anticancer effects of oleuropein.Biofactors201743451752810.1002/biof.1366 28612982
    [Google Scholar]
  82. JiX. AvulaB. KhanI.A. Quantitative and qualitative determination of six xanthones in Garcinia mangostana L. by LC–PDA and LC–ESI-MS.J. Pharm. Biomed. Anal.20074341270127610.1016/j.jpba.2006.10.018 17129697
    [Google Scholar]
  83. HeberD. Vegetables, fruits and phytoestrogens in the prevention of diseases.J. Postgrad. Med.2004502145149 15235216
    [Google Scholar]
  84. ChangH.F. YangL.L. Gamma-mangostin, a micronutrient of mangosteen fruit, induces apoptosis in human colon cancer cells.Molecules20121778010802110.3390/molecules17078010 22759914
    [Google Scholar]
  85. MukoK.N. OhiriF.C. A preliminary study on the anti-inflammatory properties of Emilia sonchifolia leaf extracts.Fitoterapia2000711656810.1016/S0367‑326X(99)00123‑9 11449473
    [Google Scholar]
  86. ShyleshB.S. PadikkalaJ. Antioxidant and anti-inflammatory activity of Emilia sonchifolia.Fitoterapia199970327527810.1016/S0367‑326X(99)00037‑4
    [Google Scholar]
  87. ShyleshB.S. PadikkalaJ. In vitro cytotoxic and antitumor property of Emilia sonchifolia (L.) DC in mice.J. Ethnopharmacol.200073349550010.1016/S0378‑8741(00)00317‑2 11091004
    [Google Scholar]
  88. BaiN. HeK. ZhouZ. Flavonoids from Rabdosia rubescens exert anti-inflammatory and growth inhibitory effect against human leukemia HL-60 cells.Food Chem.2010122383183510.1016/j.foodchem.2010.03.071
    [Google Scholar]
  89. GuoS. CuiX. JiangM. Simultaneous characterization and quantification of 17 main compounds in Rabdosia rubescens by high performance liquid chromatography.Yao Wu Shi Pin Fen Xi2017252417424 28911685
    [Google Scholar]
  90. YangJ. JiangH. WangC. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects.Biomed. Pharmacother.20157212513410.1016/j.biopha.2015.04.016 26054686
    [Google Scholar]
  91. GaoF.H. HuX.H. LiW. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc.BMC Cancer201010161010.1186/1471‑2407‑10‑610 21054888
    [Google Scholar]
  92. LeeS-Y. ChoiS-U. LeeK-R. Three new megastigmane glycosides from hylomecon vernalis.Bull. Korean Chem. Soc.201132103813381610.5012/bkcs.2011.32.10.3813
    [Google Scholar]
  93. LeeS.Y. KimK.H. LeeI.K. LeeK.H. ChoiS.U. LeeK.R. A new flavonol glycoside from Hylomecon vernalis.Arch. Pharm. Res.201235341542110.1007/s12272‑012‑0303‑8 22477187
    [Google Scholar]
  94. SunJ. ZhangX. SunY. TangZ.S. GuoD.Y. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells.Mol. Med. Rep.20171563485349210.3892/mmr.2017.6426 28393197
    [Google Scholar]
  95. LiY. LiJ. ZhongD. Clinical practice guidelines and experts’ consensuses of traditional Chinese herbal medicine for novel coronavirus (COVID-19): Protocol of a systematic review.Syst. Rev.20209117010.1186/s13643‑020‑01432‑4 32746913
    [Google Scholar]
  96. WangZ. LiuX. HoR. LamC. ChowM. Precision or personalized medicine for cancer chemotherapy: Is there a role for herbal medicine.Molecules201621788910.3390/molecules21070889 27399658
    [Google Scholar]
  97. ParkH.L. LeeH.S. Traditional medicine in China, Korea, and Japan: A brief introduction and comparison.Evid. Based Complement. Alternat. Med.20122012429103
    [Google Scholar]
  98. LiM. YueG.G.L. TsuiS.K.W. FungK.P. LauC.B.S. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo.Phytomedicine20184613114110.1016/j.phymed.2018.03.065 30097113
    [Google Scholar]
  99. SuzukiE. YorifujiT. TakaoS. Green tea consumption and mortality among Japanese elderly people: The prospective Shizuoka elderly cohort.Ann. Epidemiol.2009191073273910.1016/j.annepidem.2009.06.003 19628408
    [Google Scholar]
  100. LiY.S. KawasakiY. TomitaI. KawaiK. Antioxidant properties of green tea aroma in mice.J. Clin. Biochem. Nutr.2017611141710.3164/jcbn.16‑80 28751804
    [Google Scholar]
  101. ShimizuM. FukutomiY. NinomiyaM. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study.Cancer Epidemiol. Biomarkers Prev.200817113020302510.1158/1055‑9965.EPI‑08‑0528 18990744
    [Google Scholar]
  102. HuangJ. WangY. XieZ. ZhouY. ZhangY. WanX. The anti-obesity effects of green tea in human intervention and basic molecular studies.Eur. J. Clin. Nutr.201468101075108710.1038/ejcn.2014.143 25074392
    [Google Scholar]
  103. NikooM. RegensteinJ.M. Ahmadi GavlighiH. Antioxidant and antimicrobial activities of (-)-epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods.Compr. Rev. Food Sci. Food Saf.201817373275310.1111/1541‑4337.12346 33350134
    [Google Scholar]
  104. AdachiS. ShimizuM. ShirakamiY. (-)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells.Carcinogenesis20093091544155210.1093/carcin/bgp166 19578043
    [Google Scholar]
  105. ChenJ. Prevention of obesity-associated colon cancer by (-)-epigallocatechin-3 gallate and curcumin.Transl. Gastrointest. Cancer20121243249
    [Google Scholar]
  106. ShimizuM. ShirakamiY. SakaiH. (-)-Epigallocatechin gallate suppresses azoxymethane-induced colonic premalignant lesions in male C57BL/KsJ-db/db mice.Cancer Prev. Res.20081429830410.1158/1940‑6207.CAPR‑08‑0045 19138973
    [Google Scholar]
  107. SunQ. XieL. SongJ. LiX. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches.J. Ethnopharmacol.202026211316410.1016/j.jep.2020.113164 32738391
    [Google Scholar]
  108. BakE.J. ParkH.G. KimJ.M. KimJ.M. YooY-J. ChaJ-H. Inhibitory effect of evodiamine alone and in combination with rosiglitazone on in vitro adipocyte differentiation and in vivo obesity related to diabetes.Int. J. Obes.201034225026010.1038/ijo.2009.223 19859078
    [Google Scholar]
  109. HuangJ. ChenZ.H. RenC.M. Antiproliferation effect of evodiamine in human colon cancer cells is associated with IGF-1/HIF-1α downregulation.Oncol. Rep.20153463203321110.3892/or.2015.4309 26503233
    [Google Scholar]
  110. ZhuL. ZhangL. ZhangJ. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota.J. Integr. Med.2021191566510.1016/j.joim.2020.11.001 33277208
    [Google Scholar]
  111. ThomasS.E. JohnsonE.J. Xanthophylls.Adv. Nutr.20189216016210.1093/advances/nmx005 29659682
    [Google Scholar]
  112. TerasakiM. MutohM. FujiiG. TakahashiM. IshigamoriR. MasudaS. Potential ability of xanthophylls to prevent obesity-associated cancer.World J. Pharmacol.20143414015210.5497/wjp.v3.i4.140
    [Google Scholar]
  113. KochiT. ShimizuM. SumiT. Inhibitory effects of astaxanthin on azoxymethane-induced colonic preneoplastic lesions in C57/BL/KsJ-db/dbmice.BMC Gastroenterol.201414121221810.1186/s12876‑014‑0212‑z 25515685
    [Google Scholar]
  114. BermanA.Y. MotechinR.A. WiesenfeldM.Y. HolzM.K. The therapeutic potential of resveratrol: A review of clinical trials.NPJ Precis. Oncol.201711354010.1038/s41698‑017‑0038‑6 28989978
    [Google Scholar]
  115. KoushkiM. Amiri-DashatanN. AhmadiN. AbbaszadehH.A. Rezaei-TaviraniM. Resveratrol: A miraculous natural compound for diseases treatment.Food Sci. Nutr.2018682473249010.1002/fsn3.855 30510749
    [Google Scholar]
  116. LiD. WangG. JinG. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway.Int. J. Mol. Med.2019431630640 30387805
    [Google Scholar]
  117. WangB. SunJ. LiL. ZhengJ. ShiY. LeG. Regulatory effects of resveratrol on glucose metabolism and T-lymphocyte subsets in the development of high-fat diet-induced obesity in C57BL/6 mice.Food Funct.2014571452146310.1039/C3FO60714C 24812660
    [Google Scholar]
  118. KangL. HengW. YuanA. BaolinL. FangH. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: Relative to inhibition of inflammatory responses.Biochimie201092778979610.1016/j.biochi.2010.02.024 20188786
    [Google Scholar]
  119. CarterL.G. D’OrazioJ.A. PearsonK.J. Resveratrol and cancer: Focus on in vivo evidence.Endocr. Relat. Cancer2014213R209R22510.1530/ERC‑13‑0171 24500760
    [Google Scholar]
  120. HsiaoY.H. ChenN.C. KohY.C. NagabhushanamK. HoC.T. PanM.H. Pterostilbene inhibits adipocyte conditioned-medium-induced colorectal cancer cell migration through targeting FABP5-related signaling pathway.J. Agric. Food Chem.20196737103211032910.1021/acs.jafc.9b03997 31419115
    [Google Scholar]
  121. LiY. YaoJ. HanC. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  122. ZhangX.A. ZhangS. YinQ. ZhangJ. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.Pharmacogn. Mag.2015114240440910.4103/0973‑1296.153096 25829782
    [Google Scholar]
  123. SeoM.J. LeeY.J. HwangJ.H. KimK.J. LeeB.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling.J. Nutr. Biochem.201526111308131610.1016/j.jnutbio.2015.06.005 26277481
    [Google Scholar]
  124. MurakamiA. AshidaH. TeraoJ. Multitargeted cancer prevention by quercetin.Cancer Lett.2008269231532510.1016/j.canlet.2008.03.046 18467024
    [Google Scholar]
  125. KoolajiN. ShammugasamyB. SchindelerA. DongQ. DehghaniF. ValtchevP. Citrus peel flavonoids as potential cancer prevention agents.Curr. Dev. Nutr.202045nzaa02510.1093/cdn/nzaa025 32391511
    [Google Scholar]
  126. GohJ.X.H. TanL.T-H. GohJ.K. Nobiletin and derivatives: Functional compounds from citrus fruit peel for colon cancer chemoprevention.Cancers201911686787210.3390/cancers11060867 31234411
    [Google Scholar]
  127. TanakaT. YasuiY. Ishigamori-SuzukiR. OyamaT. Citrus compounds inhibit inflammation- and obesity-related colon carcinogenesis in mice.Nutr. Cancer200860S1708010.1080/01635580802381253 19003583
    [Google Scholar]
  128. LeeH.M. YangG. AhnT.G. An, antiadipogenic effects of aster glehni extract: in vivo and in vitro effects.Evid. Based Complement. Alternat. Med.20132013859624
    [Google Scholar]
  129. ChoiJ.H. ChungK.S. JinB.R. Anti-inflammatory effects of an ethanol extract of Aster glehni via inhibition of NF-κB activation in mice with DSS-induced colitis.Food Funct.2017872611262010.1039/C7FO00369B 28695925
    [Google Scholar]
  130. ChungK.S. CheonS.Y. RohS.S. LeeM. AnH.J. Chemopreventive effect of Aster glehni on inflammation-induced colorectal carcinogenesis in mice.Nutrients201810220210.3390/nu10020202 29439531
    [Google Scholar]
  131. JinB.R. ChungK.S. LeeM. AnH.J. High-fat diet propelled AOM/DSS-induced colitis-associated colon cancer alleviated by administration of Aster glehni via STAT3 signaling pathway.Biology2020922410.3390/biology9020024 32024285
    [Google Scholar]
  132. Forbes-HernandezT.Y. GasparriniM. AfrinS. The healthy effects of strawberry polyphenols: Which strategy behind antioxidant capacity?Crit. Rev. Food Sci. Nutr.201656S1S46S5910.1080/10408398.2015.1051919 26357900
    [Google Scholar]
  133. MayS. McDermottG. MarchesiJ.R. ParryL. Impact of black raspberries on the normal and malignant Apc deficient murine gut microbiome.J. Berry Res.2020101617610.3233/JBR‑180372
    [Google Scholar]
  134. YanB. ShiJ. XiuL.J. Xiaotan Tongfu granules contribute to the prevention of stress ulcers.World J. Gastroenterol.201319335473548410.3748/wjg.v19.i33.5473 24023490
    [Google Scholar]
  135. ZhaoY. XiuL. LiY. LuY. WangX. WeiP. Effects of Xiaotan Tongfu decoction on hepatic metastasis in obesity-associated colorectal cancer.J. Int. Med. Res.201947291592510.1177/0300060518813689 30616417
    [Google Scholar]
  136. SurhY.J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances.Mutat. Res.19994281-230532710.1016/S1383‑5742(99)00057‑5 10518003
    [Google Scholar]
  137. BodeA.M. DongZ. The amazing and mighty ginger.2nd ed BenzieI.F.F. Wachtel-GalorS. Herbal Medicine: Biomolecular and Clinical Aspects.Boca Raton, FLCRC Press/Taylor & Francis2011
    [Google Scholar]
  138. TangD. WuD. HiraoA. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53.J. Biol. Chem.200227715127101271710.1074/jbc.M111598200 11821415
    [Google Scholar]
  139. HsuY.L. KuoP.L. LinL.T. LinC.C. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells.J. Pharmacol. Exp. Ther.2005313133334410.1124/jpet.104.078808 15626723
    [Google Scholar]
  140. ParkG.H. ParkJ.H. SongH.M. Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells.BMC Complement. Altern. Med.201414140810.1186/1472‑6882‑14‑408 25338635
    [Google Scholar]
  141. LavradoJ. BritoH. BorralhoP.M. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines.Sci. Rep.2015519696970210.1038/srep09696 25853628
    [Google Scholar]
  142. De Souza TavaresW. AkhtarY. GonçalvesG.L.P. Turmeric powder and its derivatives from Curcuma longa rhizomes: insecticidal effects on cabbage looper and the role of synergists.Sci. Rep.201661111
    [Google Scholar]
  143. ShishodiaS. ChaturvediM.M. AggarwalB.B. Role of curcumin in cancer therapy.Curr. Probl. Cancer200731424330510.1016/j.currproblcancer.2007.04.001 17645940
    [Google Scholar]
  144. LiY.H. NiuY.B. SunY. Role of phytochemicals in colorectal cancer prevention.World J. Gastroenterol.201521319262927210.3748/wjg.v21.i31.9262 26309353
    [Google Scholar]
  145. ShehzadA. WahidF. LeeY.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials.Arch. Pharm.2010343948949910.1002/ardp.200900319 20726007
    [Google Scholar]
  146. DimasK. TsimplouliC. HouchenC. An ethanol extract of hawaiian turmeric: Extensive in vitro anticancer activity against human colon cancer cells.Altern. Ther. Health Med.201521S24654 26308760
    [Google Scholar]
  147. JayaprakashaG.K. Chidambara MurthyK.N. PatilB.S. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein.Eur. J. Pharmacol.201678929130010.1016/j.ejphar.2016.07.017 27404761
    [Google Scholar]
  148. DasiramJ.D. GanesanR. KannanJ. KotteeswaranV. SivalingamN. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.Biomed. Pharmacother.20178637338010.1016/j.biopha.2016.12.034 28011386
    [Google Scholar]
  149. FujimotoY. SakumaS. MaruyamaC. KohdaT. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest.Int J Pharmacol Res201442329
    [Google Scholar]
  150. DhakalS. SchmidtW.F. KimM. TangX. PengY. ChaoK. Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy.Foods20198514314910.3390/foods8050143 31027345
    [Google Scholar]
  151. NobileC.D.P. RestrepoO.J. ZúñigaO. SánchezA.R.A. Determination of nutritional value of turmeric flour and the antioxidant activity of Curcuma longa rhizome extracts from agroecological and conventional crops of Valle del Cauca-Colombia.Rev. Colomb. Quim.2020491263210.15446/rev.colomb.quim.v1n49.79334
    [Google Scholar]
  152. GulP. BakhtJ. Antimicrobial activity of turmeric extract and its potential use in food industry.J. Food Sci. Technol.20155242272227910.1007/s13197‑013‑1195‑4 25829609
    [Google Scholar]
  153. Sharifi-RadJ. RayessY.E. RizkA.A. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  154. BuhrmannC. ShayanP. BanikK. Targeting NF-κB signaling by calebin a, a compound of turmeric, in multicellular tumor microenvironment: Potential role of apoptosis induction in crc cells.Biomedicines20208823610.3390/biomedicines8080236 32708030
    [Google Scholar]
  155. PatelV.B. MisraS. PatelB.B. MajumdarA.P.N. Colorectal cancer: Chemopreventive role of curcumin and resveratrol.Nutr. Cancer201062795896710.1080/01635581.2010.510259 20924971
    [Google Scholar]
  156. PricciM. GirardiB. GiorgioF. LosurdoG. IerardiE. Di LeoA. Curcumin and colorectal cancer: From basic to clinical evidences.Int. J. Mol. Sci.2020217236410.3390/ijms21072364 32235371
    [Google Scholar]
  157. ParkJ. ConteasC.N. Anti-carcinogenic properties of curcumin on colorectal cancer.World J. Gastrointest. Oncol.20102416917610.4251/wjgo.v2.i4.169 21160593
    [Google Scholar]
  158. ShehzadA. KhanS. Sup LeeY. Curcumin molecular targets in obesity and obesity-related cancers.Future Oncol.20128217919010.2217/fon.11.145 22335582
    [Google Scholar]
  159. ShangA. CaoS.Y. XuX.Y. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods8070246 31284512
    [Google Scholar]
  160. RivlinR.S. Historical perspective on the use of garlic.J. Nutr.20011313951S954S10.1093/jn/131.3.951S 11238795
    [Google Scholar]
  161. OmarS.H. Al-WabelN.A. Organosulfur compounds and possible mechanism of garlic in cancer.Saudi Pharm. J.2010181515810.1016/j.jsps.2009.12.007 23960721
    [Google Scholar]
  162. MatsuuraN. MiyamaeY. YamaneK. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells.J. Nutr.2006136S3842S846S10.1093/jn/136.3.842S 16484577
    [Google Scholar]
  163. JikiharaH. QiG. NozoeK. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation.Oncol. Rep.20153331131114010.3892/or.2014.3705 25573280
    [Google Scholar]
  164. TungY.C. TsaiM.L. KuoF.L. Se-Methyl- l -selenocysteine induces apoptosis via endoplasmic reticulum stress and the death receptor pathway in human colon adenocarcinoma COLO 205 cells.J. Agric. Food Chem.201563205008501610.1021/acs.jafc.5b01779 25943382
    [Google Scholar]
  165. WaniS.A. KumarP. Fenugreek: A review on its nutraceutical properties and utilization in various food products.J. Saudi Soc. Agric. Sci.20181729710610.1016/j.jssas.2016.01.007
    [Google Scholar]
  166. SinghP. BajpaiV. GondV. KumarA. TadigoppulaN. KumarB. Determination of bioactive compounds of fenugreek (Trigonella foenum-graecum) seeds using LC-MS techniques.Methods Mol. Biol.20202107737739310.1007/978‑1‑0716‑0235‑5_21 31893460
    [Google Scholar]
  167. TewariD JóźwikA Łysek-GładysińskaM Fenugreek (Trigonella foenum-graecum L.) seeds dietary supplementation regulates liver antioxidant defense systems in aging mice.Nutrients2020129255210.3390/nu12092552 32846876
    [Google Scholar]
  168. RajuJ. PatlollaJ.M.R. SwamyM.V. RaoC.V. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells.Cancer Epidemiol. Biomarkers Prev.20041381392139810.1158/1055‑9965.1392.13.8 15298963
    [Google Scholar]
  169. NamikiM. Nutraceutical functions of sesame: A review.Crit. Rev. Food Sci. Nutr.200747765167310.1080/10408390600919114 17943496
    [Google Scholar]
  170. ElleuchM. BesbesS. RoiseuxO. BleckerC. AttiaH. Quality characteristics of sesame seeds and by-products.Food Chem.2007103264165010.1016/j.foodchem.2006.09.008
    [Google Scholar]
  171. HassanM.A.M. Studies on Egyptian Sesame Seeds (Sesamum indicum L.) and its products 1-physicochemical analysis and phenolic acids of roasted egyptian sesame seeds (Sesamum indicum L.).World J Dairy & Food Sci201272195201
    [Google Scholar]
  172. LimT.K. Sesamum indicum.Edible medicinal and non-medicinal plants.Dordrecht, The NetherlandsSpringer201218721910.1007/978‑94‑007‑4053‑2_26
    [Google Scholar]
  173. FujiY. UchidaA. FukahoriK. ChinoM. OhtsukiT. MatsufujiH. Chemical characterization and biological activity in young sesame leaves (Sesamum indicum L.) and changes in iridoid and polyphenol content at different growth stages.PLoS One2018133e019444910.1371/journal.pone.0194449 29584748
    [Google Scholar]
  174. GuptaA. SharmaS. KaurI. ChopraK. Renoprotective effects of sesamol in ferric nitrilotriacetate-induced oxidative renal injury in rats.Basic Clin. Pharmacol. Toxicol.2009104431632110.1111/j.1742‑7843.2009.00381.x 19281599
    [Google Scholar]
  175. ChuP.Y. ChienS.P. HsuD.Z. LiuM.Y. Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats.Food Chem. Toxicol.20104871821182610.1016/j.fct.2010.04.014 20398721
    [Google Scholar]
  176. ChuP.Y. HsuD.Z. HsuP.Y. LiuM.Y. Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation.Innate Immun.2010165333339b10.1177/1753425909351880 19939906
    [Google Scholar]
  177. KimS. YangH.Y. LeeH.J. JuJ. In vitro antioxidant and anti-colon cancer activities of sesamum indicum l. leaf extract and its major component, pedaliin.Foods20211061216122210.3390/foods10061216 34072150
    [Google Scholar]
  178. CarvalhoM.R. CarvalhoC.R. MaiaF.R. Peptide‐modified dendrimer nanoparticles for targeted therapy of colorectal cancer.Adv. Ther.2019211190013210.1002/adtp.201900132
    [Google Scholar]
  179. BriolayT. PetithommeT. FouetM. Nguyen-PhamN. BlanquartC. BoisgeraultN. Delivery of cancer therapies by synthetic and bio-inspired nanovectors.Mol. Cancer20212015510.1186/s12943‑021‑01346‑2 33761944
    [Google Scholar]
  180. PalzerJ. EcksteinL. SlabuI. ReisenO. NeumannU.P. RoethA.A. Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies.Nanomaterials20211111301310.3390/nano11113013 34835777
    [Google Scholar]
  181. SuciuM. IonescuC.M. CioritaA. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements.Beilstein J. Nanotechnol.2020111092110910.3762/bjnano.11.94 32802712
    [Google Scholar]
  182. DabaghiM. RasaS.M.M. CirriE. Iron oxide nanoparticles carrying 5-fluorouracil in combination with magnetic hyperthermia induce thrombogenic collagen fibers, cellular stress, and immune responses in heterotopic human colon cancer in mice.Pharmaceutics20211310162510.3390/pharmaceutics13101625 34683917
    [Google Scholar]
  183. AlkahtaneA.A. AlghamdiH.A. AljashamA.T. AlkahtaniS. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line.Saudi J. Biol. Sci.202229115416010.1016/j.sjbs.2021.08.078 35002403
    [Google Scholar]
  184. GilH.M. PriceT.W. ChelaniK. BouillardJ.S.G. CalaminusS.D.J. StasiukG.J. NIR-quantum dots in biomedical imaging and their future.iScience202124310218910.1016/j.isci.2021.102189 33718839
    [Google Scholar]
  185. MolaeiM.J. Carbon quantum dots and their biomedical and therapeutic applications: A review.RSC Adv.20199126460648110.1039/C8RA08088G 35518468
    [Google Scholar]
  186. JaiswalJ.K. MattoussiH. MauroJ.M. SimonS.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates.Nat. Biotechnol.2003211475110.1038/nbt767 12459736
    [Google Scholar]
  187. LidkeD.S. LidkeK.A. RiegerB. JovinT.M. Arndt-JovinD.J. Reaching out for signals.J. Cell Biol.2005170461962610.1083/jcb.200503140 16103229
    [Google Scholar]
  188. Carbary-GanzJ.L. WelgeW.A. BartonJ.K. UtzingerU. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging.J. Biomed. Opt.201520909601510.1117/1.JBO.20.9.096015 26397238
    [Google Scholar]
  189. LeeP.W. PokorskiJ.K. Poly(lactic‐co‐glycolic acid) devices: Production and applications for sustained protein delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018105e151610.1002/wnan.1516 29536634
    [Google Scholar]
  190. EmamiF. Mostafavi YazdiS.J. NaD.H. Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery.J. Pharm. Investig.201949442744210.1007/s40005‑019‑00443‑1
    [Google Scholar]
  191. JainA.K. SwarnakarN.K. GoduguC. SinghR.P. JainS. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen.Biomaterials201132250351510.1016/j.biomaterials.2010.09.037 20934747
    [Google Scholar]
  192. RezvantalabS. DrudeN.I. MoravejiM.K. PLGA-based nanoparticles in cancer treatment.Front. Pharmacol.20189126010.3389/fphar.2018.01260 30450050
    [Google Scholar]
  193. Al-JamalK.T. BaiJ. WangJ.T.W. Magnetic drug targeting: Preclinical in vivo studies, mathematical modeling, and extrapolation to humans.Nano Lett.20161695652566010.1021/acs.nanolett.6b02261 27541372
    [Google Scholar]
  194. EynaliS. KhoeiS. KhoeeS. EsmaelbeygiE. Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29.Int. J. Hyperthermia201733332733510.1080/02656736.2016.1243260 27701929
    [Google Scholar]
  195. WuP. ZhouQ. ZhuH. ZhuangY. BaoJ. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon.BMC Cancer202020135410.1186/s12885‑020‑06803‑7 32345258
    [Google Scholar]
  196. HandaliS. MoghimipourE. RezaeiM. RamezaniZ. DorkooshF.A. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer.Pharm. Dev. Technol.202025220621810.1080/10837450.2019.1684945 31648589
    [Google Scholar]
  197. LiJ. YuF. ChenY. OupickýD. Polymeric drugs: Advances in the development of pharmacologically active polymers.J. Control. Release201521936938210.1016/j.jconrel.2015.09.043 26410809
    [Google Scholar]
  198. YanW. TaoM. JiangB. Overcoming drug resistance in colon cancer by aptamer-mediated targeted co-delivery of drug and siRNA using grapefruit-derived nanovectors.Cell. Physiol. Biochem.2018501799110.1159/000493960 30278432
    [Google Scholar]
  199. XieJ. WangJ. ChenH. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells.Sci. Rep.201551944510.1038/srep09445 25819426
    [Google Scholar]
  200. NabavizadehF. FanaeiH. ImaniA. Evaluation of nanocarrier targeted drug delivery of capecitabine-PAMAM dendrimer complex in a mice colorectal cancer model.Acta Med. Iran.2016548485493 27701718
    [Google Scholar]
  201. AlibolandiM. HoseiniF. MohammadiM. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma.Int. J. Pharm.20185491-2677510.1016/j.ijpharm.2018.07.052 30048777
    [Google Scholar]
  202. AlibolandiM. TaghdisiS.M. RamezaniP. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.20175191-235236410.1016/j.ijpharm.2017.01.044 28126548
    [Google Scholar]
  203. EnglandR.M. HareJ.I. BarnesJ. Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers.J. Control. Release2017247738510.1016/j.jconrel.2016.12.034 28043863
    [Google Scholar]
  204. NarmaniA. KamaliM. AminiB. SalimiA. PanahiY. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: in vitro studies.Process Biochem.20186917818710.1016/j.procbio.2018.01.014
    [Google Scholar]
  205. JinH. GaoS. SongD. LiuY. ChenX. Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial–mesenchymal transition of colon cancer cells.Anticancer Drugs202132327828510.1097/CAD.0000000000001000 32976213
    [Google Scholar]
  206. González-DomínguezJ.M. GrasaL. Frontiñán-RubioJ. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells.Colloids Surf. B Biointerfaces202221211236310.1016/j.colsurfb.2022.112363 35123194
    [Google Scholar]
  207. LeeP.C. ChiouY.C. WongJ.M. PengC.L. ShiehM.J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody.Biomaterials201334348756876510.1016/j.biomaterials.2013.07.067 23937913
    [Google Scholar]
  208. SundaramP. AbrahamseH. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes.Int. J. Mol. Sci.20202113474510.3390/ijms21134745 32635295
    [Google Scholar]
  209. SilvaR. FerreiraH. Cavaco-PauloA. Sonoproduction of liposomes and protein particles as templates for delivery purposes.Biomacromolecules201112103353336810.1021/bm200658b 21905662
    [Google Scholar]
  210. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  211. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  212. StangJ. HaynesM. CarsonP. MoghaddamM. A preclinical system prototype for focused microwave thermal therapy of the breast.IEEE Trans. Biomed. Eng.20125992431243810.1109/TBME.2012.2199492 22614518
    [Google Scholar]
  213. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.160844 26258053
    [Google Scholar]
  214. SiddiqueS. ChowJ.C.L. Gold nanoparticles for drug delivery and cancer therapy.Appl. Sci.20201011382410.3390/app10113824
    [Google Scholar]
  215. ZhaoX. PanJ. LiW. YangW. QinL. PanY. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels.Int. J. Nanomedicine2018136207622110.2147/IJN.S176928 30349245
    [Google Scholar]
  216. PissuwanD. GazzanaC. MongkolsukS. CortieM.B. Single and multiple detections of foodborne pathogens by gold nanoparticle assays.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020121e158410.1002/wnan.1584 31532914
    [Google Scholar]
  217. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  218. Sánchez-LópezE. GuerraM. Dias-FerreiraJ. Current applications of nanoemulsions in cancer therapeutics.Nanomaterials20199682110.3390/nano9060821 31159219
    [Google Scholar]
  219. TiruwaR. A review on nanoparticles – preparation and evaluation parameters.Indian J Pharm Biol Res201642273110.30750/ijpbr.4.2.4
    [Google Scholar]
  220. Mohd-ZahidM.H. MohamudR. AbdullahC.A.C. LimJ. AlemH. HanaffiW.N.W. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles.RSC Adv.202010297398510.1039/C9RA08192E
    [Google Scholar]
  221. DonahueN.D. AcarH. WilhelmS. Concepts of nanoparticle cellular uptake. intracellular trafficking kinetics nanomedicine.Adv. Drug Deliv. Rev.20191436896
    [Google Scholar]
  222. AliE.S. SharkerS.M. IslamM.T. KhanI.N. ShawS. RahmanM.A. Targeting cancer cells with nanotherapeutics and nanodiagnostics: current status and future perspectives, seminars in cancer biology.Chicago, USAElsevier20215268
    [Google Scholar]
  223. RosenblumD. JoshiN. TaoW. KarpJ.M. PeerD. Progress and challenges towards targeted delivery of cancer therapeutics.Nat. Commun.201891141010.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947279599231208095726
Loading
/content/journals/cctr/10.2174/0115733947279599231208095726
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Colon cancer; drug; gut microbiota; medicinal herbs; phytochemicals; spices
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test