Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is one of the main causes of mortality that affects a large propotion of population worldwide each year. Traditional and synthetic medications are less successful in cancer treatment. The deleterious effects of synthetic compounds divert our attention toward the utilization of naturally derived compounds in current clinical research. The impact of biodiversity on population development and livelihood represents a wider area of interest that still heavily relies on natural medicines against the cure of various ailments. Since ancient times, people have been using natural plants because of their accessibility and economical affordability as a safe therapeutic alternative to traditional synthetic drugs. Currently, plants are used because of their remarkable properties in the form of staple drugs. These plants gain huge attention as a safe treatment option with anti-tumor, chemo-protective and anti-proliferative properties than conventional harmful therapeutics. The secondary metabolites extracted from medicinal plants lead to the production of innovative therapeutic strategies against cancer and other diseases. Targeted delivery of pharmaceuticals agents, through chemical and conventional methods is a significant challenge. The discovery of nano-vectors provides a solution to this issue with the innovation of plant-based nanoparticles have been manufactured using an ecologically sound method. Based on the highlights provided, the current review provides updated knowledge on diverse aspects of medicinal plants including challenges, significance and their role as a potential therapeutic agent against the treatment of various diseases, especially cancers. This subsequent review entails and clarifies the benefits of phytochemicals extracted from Asian medicinal plants due to their imperative values in cancer treatment and other pharmacological targets. The recent discoveries and findings linked to the understanding of medicinal drugs with significance on wide range of phytochemical constituents or secondary metabolites are a current attempt to update our knowledge towards the progress of natural therapeutics novel strategies.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947289705240206074048
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MahomoodallyM.F. Traditional medicines in Africa: An appraisal of ten potent african medicinal plants.Evid. Based Complement. Alternat. Med.2013201311410.1155/2013/61745924367388
    [Google Scholar]
  2. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.00816105678
    [Google Scholar]
  3. KunwarR.M. NepalB.K. KshhetriH.B. RaiS.K. BussmannR.W. Ethnomedicine in Himalaya: A case study from Dolpa, Humla, Jumla and Mustang districts of Nepal.J. Ethnobiol. Ethnomed.2006212710.1186/1746‑4269‑2‑2716749924
    [Google Scholar]
  4. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.224311829
    [Google Scholar]
  5. EftekhariA. KryschiC. PamiesD. Natural and synthetic nanovectors for cancer therapy.Nanotheranostics20237323625710.7150/ntno.7756437064613
    [Google Scholar]
  6. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  7. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.00121663778
    [Google Scholar]
  8. TangL. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment.Pharmaceutics20211311188810.3390/pharmaceutics13111888
    [Google Scholar]
  9. HoffmanA.S. The origins and evolution of “controlled” drug delivery systems.J. Control. Release2008132315316310.1016/j.jconrel.2008.08.01218817820
    [Google Scholar]
  10. AhmedM.J. MurtazaG. RashidF. IqbalJ. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents.Drug Dev. Ind. Pharm.201945101682169410.1080/03639045.2019.165622431407925
    [Google Scholar]
  11. AhmadianE. DizajS.M. RahimpourE. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line.Mater. Sci. Eng. C20189346547110.1016/j.msec.2018.08.02730274079
    [Google Scholar]
  12. BaranA. KeskinC. BaranM.F. Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: Anticancer and antimicrobial activities.Bioinorg. Chem. Appl.202120211810.1155/2021/205814934887909
    [Google Scholar]
  13. KhanDMA Introduction and Importance of Medicinal Plants and Herbs2016Available from: https://www.nhp.gov.in/introduction-and-importance-of-medicinal-plants-and-herbs_mtl#:~:text=Medicinal%20plants%20such%20as%20Aloe,their%20day%20to%20day%20life [cited 2023 24 Feb].
    [Google Scholar]
  14. Herbal medicine market – global industry analysis and forecast (2022-2029).2023Available from: https://www.maximizemarketresearch.com/market-report/herbal-medicine-market/148333/ [cited 2023 6 October].
  15. PrasadV. De JesúsK. MailankodyS. The high price of anticancer drugs: Origins, implications, barriers, solutions.Nat. Rev. Clin. Oncol.201714638139010.1038/nrclinonc.2017.3128290490
    [Google Scholar]
  16. AstutikS. PretzschJ. Ndzifon KimengsiJ. Asian medicinal plants’ production and utilization potentials: A review.Sustainability20191119548310.3390/su11195483
    [Google Scholar]
  17. RichardsonR.G. UnderwoodE. Douglas James and Thomson, William Archibald Robson. History of medicine.Encyclopedia Britannica2022Available from: https://www.britannica.com/science/history-of-medicine Accessed 24 February 2023.
    [Google Scholar]
  18. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.9584922654398
    [Google Scholar]
  19. FalodunA. Herbal medicine in africa-distribution, standardization and prospects.Res. J. Phytochem.20104315416110.3923/rjphyto.2010.154.161
    [Google Scholar]
  20. BarnesP.M. BloomB. NahinR.L. Complementary and alternative medicine use among adults and children: United States, 2007.Natl. Health Stat. Rep.20081212319361005
    [Google Scholar]
  21. PanS.Y. LitscherG. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources.Evid Based Complementary Altern Med2014525340
    [Google Scholar]
  22. TeohE.S. Secondary Metabolites of Plants.Medicinal Orchids of Asia20155
    [Google Scholar]
  23. KudumelaR.G. McGawL.J. MasokoP. Antibacterial interactions, anti-inflammatory and cytotoxic effects of four medicinal plant species.BMC Complement. Altern. Med.201818119910.1186/s12906‑018‑2264‑z29970064
    [Google Scholar]
  24. MalviyaN. JainS. MalviyaS. Antidiabetic potential of medicinal plants.Acta Pol. Pharm.201067211311820369787
    [Google Scholar]
  25. AnsariP. UddinM.J. RahmanM.M. Anti-inflammatory, anti-diarrheal, thrombolytic and cytotoxic activities of an ornamental medicinal plant: Persicaria orientalis.J. Basic Clin. Physiol. Pharmacol.2017281515810.1515/jbcpp‑2016‑002327487493
    [Google Scholar]
  26. Tiiu KullJ.A. Sek Man Wong, Orchid Biology: Reviews and Perspectives X.2009
    [Google Scholar]
  27. SinghR. KotechaM. A review on the standardization of herbal medicines.Int. J. Pharm. Sci. Res.2016797106
    [Google Scholar]
  28. FillingimR.B. LoeserJ.D. BaronR. EdwardsR.R. Assessment of chronic pain: Domains, methods, and mechanisms.J. Pain2016179Suppl.T10T2010.1016/j.jpain.2015.08.01027586827
    [Google Scholar]
  29. WallachJ. Bibenzyl Derivative (Medicinal Cannabis: an overview for health-care providers).Recent Advances in Phytochemistry2000Available from: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/bibenzyl-derivative
    [Google Scholar]
  30. WeiH. SongS. TianH. LiuT. Effects of phenanthrene on seed germination and some physiological activities of wheat seedling.C. R. Biol.201433729510010.1016/j.crvi.2013.11.00524581803
    [Google Scholar]
  31. Sánchez-DuffhuesG. CalzadoM.A. de VinuesaA.G. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-κB-dependent pathway.Biochem. Pharmacol.200876101240125010.1016/j.bcp.2008.09.00618840408
    [Google Scholar]
  32. HazafaA. RehmanK.U. JahanN. JabeenZ. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells.Nutr. Cancer202072338639710.1080/01635581.2019.163700631287738
    [Google Scholar]
  33. LiuW.J.H. Traditional Herbal Medicine Research Methods.New JerseyWiley201110.1002/9780470921340
    [Google Scholar]
  34. GuptaN. MalviyaR. Role of polysaccharides mimetic components in targeted cancer treatment.Curr. Drug Targets202223985686810.2174/138945012366622021412150535156570
    [Google Scholar]
  35. Kongmany SydaraM.X. Souliya Onevilay, Bethany G, Elkington, Djaja D, Soejarto. Inventory of medicinal plants of the Lao people’s democratic republic: A mini review.J. Med. Plants Res.201484312621274
    [Google Scholar]
  36. Chandra Prakash KalaP.P.D.B.S.S. Developing the medicinal plants sector in northern India: challenges and opportunities.J. Ethnobiol. Ethnomed.2006232
    [Google Scholar]
  37. FaridzadehA. SalimiY. GhasemiradH. Neuroprotective potential of aromatic herbs: Rosemary, sage, and lavender.Front. Neurosci.20221690983310.3389/fnins.2022.90983335873824
    [Google Scholar]
  38. HossainM.S. UrbiZ. SuleA. RahmanK.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology.Sci World J2014201412810.1155/2014/27490525950015
    [Google Scholar]
  39. SainiR. SharmaN. OladejiO.S. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review.J. Ethnopharmacol.202228211457010.1016/j.jep.2021.11457034480995
    [Google Scholar]
  40. PoojariR. Embelin – a drug of antiquity: shifting the paradigm towards modern medicine.Expert Opin. Investig. Drugs201423342744410.1517/13543784.2014.86701624397264
    [Google Scholar]
  41. ZhaoK. LiL. LuY. Characterization and comparative analysis of two rheum complete chloroplast genomes.BioMed Res. Int.2020202011110.1155/2020/649016432685515
    [Google Scholar]
  42. PandithS.A. DarR.A. LattooS.K. ShahM.A. ReshiZ.A. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: A review of its botany, ethnomedical uses, phytochemistry and pharmacology.Phytochem. Rev.201817357360910.1007/s11101‑018‑9551‑732214920
    [Google Scholar]
  43. RameshP. PalaniappanA. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine—a review.Pharmaceuticals202316112610.3390/ph1601012636678623
    [Google Scholar]
  44. BanazadehM. MehrabaniM. BanazadehN. DabaghzadehF. ShahabiF. Evaluating the effect of black myrobalan on cognitive, positive, and negative symptoms in patients with chronic schizophrenia: A randomized, double‐blind, placebo‐controlled trial.Phytother. Res.202236154355010.1002/ptr.734034814232
    [Google Scholar]
  45. KumarSuresh PaulSurender Kumar WaliaYogesh KumarAditya SinghalParul Therapeutic potential of medicinal plants: A review.J Biol Chem Chron2015114654
    [Google Scholar]
  46. DiasD.A. UrbanS. RoessnerU. A historical overview of natural products in drug discovery.Metabolites20122230333610.3390/metabo202030324957513
    [Google Scholar]
  47. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v17309302
    [Google Scholar]
  48. Tadeusz AniszewskiT.A. Alkaloids - Secrets of Life: Aklaloid Chemistry, Biological Significance, Applications and Ecological Role.1st edUSElsevier2007
    [Google Scholar]
  49. BalunasM.J. KinghornA.D. Drug discovery from medicinal plants.Life Sci.200578543144110.1016/j.lfs.2005.09.01216198377
    [Google Scholar]
  50. HowesM.J.R. PerryN.S.L. HoughtonP.J. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders.Phytother. Res.200317111810.1002/ptr.128012557240
    [Google Scholar]
  51. DeleuD. HanssensY. NorthwayM.G. Subcutaneous apomorphine.Drugs Aging2004211168770910.2165/00002512‑200421110‑0000115323576
    [Google Scholar]
  52. WinkM. Modes of action of herbal medicines and plant secondary metabolites.Medicines20152325128610.3390/medicines203025128930211
    [Google Scholar]
  53. OkpeO. Antimalarial potential of carica papaya and vernonia amygdalina in mice infected with plasmodium berghei.J Trop Med.2016873897210.1155/2016/8738972
    [Google Scholar]
  54. Oluwasegun VictorO. Sanni MorakinyoD. GC-MS analysis of phyto-components from the leaves of senna alata L.J. Plant Sci.20153313313610.11648/j.jps.20150303.14
    [Google Scholar]
  55. Bianca GarilliM.D. A Guide to Common Medicinal Herbs. In: Health Encyclopedia.NY, USAUniversity of Rochester Medical Center Rochester2023
    [Google Scholar]
  56. WallM.E. WaniM.C. Antineoplastic agents from plants.Annu. Rev. Pharmacol. Toxicol.197717111713210.1146/annurev.pa.17.040177.001001326159
    [Google Scholar]
  57. HuxtableR.J. The pharmacology of extinction.J. Ethnopharmacol.199237111110.1016/0378‑8741(92)90002‑91453701
    [Google Scholar]
  58. SiddiquiA.J. JahanS. SinghR. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention.BioMed Res. Int.2022202211810.1155/2022/542548535281598
    [Google Scholar]
  59. TwardziokM. KleinsimonS. RolffJ. Multiple active compounds from Viscum album L. Synergistically converge to promote apoptosis in ewing sarcoma.PLoS One2016119e015974910.1371/journal.pone.015974927589063
    [Google Scholar]
  60. MarvibaigiM. SupriyantoE. AminiN. Abdul MajidF.A. JaganathanS.K. Preclinical and clinical effects of mistletoe against breast cancer.BioMed Res. Int.2014201411510.1155/2014/78547925136622
    [Google Scholar]
  61. LimW. KimO. JungJ. Dichloromethane fraction from Gardenia jasminoides: DNA topoisomerase 1 inhibition and oral cancer cell death induction.Pharm. Biol.201048121354136010.3109/13880209.2010.48324620738175
    [Google Scholar]
  62. SobhaniZ. NamiS.R. EmamiS.A. SahebkarA. JavadiB. Medicinal plants targeting cardiovascular diseases in view of avicenna.Curr. Pharm. Des.201723172428244328215156
    [Google Scholar]
  63. DesaiA. QaziG. GanjuR. Medicinal plants and cancer chemoprevention.Curr. Drug Metab.20089758159110.2174/13892000878582165718781909
    [Google Scholar]
  64. RätschC. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications.SwitzerlandA. Hoffman1997
    [Google Scholar]
  65. WinkM. SchmellerT. Latz-BrüningB. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA, and other molecular targets.J. Chem. Ecol.199824111881193710.1023/A:1022315802264
    [Google Scholar]
  66. EstellerM. Epigenetic gene silencing in cancer: The DNA hypermethylome.Hum. Mol. Genet.200716R1R50R5910.1093/hmg/ddm01817613547
    [Google Scholar]
  67. AzmiA.S. BhatS.H. HanifS. HadiS.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties.FEBS Lett.2006580253353810.1016/j.febslet.2005.12.05916412432
    [Google Scholar]
  68. GuptaS.C. TyagiA.K. Deshmukh-TaskarP. HinojosaM. PrasadS. AggarwalB.B. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols.Arch. Biochem. Biophys.2014559919910.1016/j.abb.2014.06.00624946050
    [Google Scholar]
  69. GreenwellM. RahmanP.K. Medicinal plants: Their use in anticancer treatment.Int. J. Pharm. Sci. Res.20156104103411226594645
    [Google Scholar]
  70. CaoJ. XiaX. ChenX. XiaoJ. WangQ. Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities.Food Chem. Toxicol.20135124225010.1016/j.fct.2012.09.03923063594
    [Google Scholar]
  71. KumarS. PathaniaA.S. SaxenaA.K. VishwakarmaR.A. AliA. BhushanS. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells.Chem. Biol. Interact.2013205212813710.1016/j.cbi.2013.06.02023850732
    [Google Scholar]
  72. BishopG.J. KonczC. Brassinosteroids and plant steroid hormone signaling.Plant Cell200214Suppl.S97S11010.1105/tpc.001461
    [Google Scholar]
  73. MalíkováJ. SwaczynováJ. KolářZ. StrnadM. Anticancer and antiproliferative activity of natural brassinosteroids.Phytochemistry200869241842610.1016/j.phytochem.2007.07.02817869317
    [Google Scholar]
  74. BabuT.D. KuttanG. PadikkalaJ. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.).Urban. J Ethnopharmacol1995481535710.1016/0378‑8741(95)01284‑K8569247
    [Google Scholar]
  75. HenaryM. NarayanaL. AhadS. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity.Biochem. Pharmacol.201492219220510.1016/j.bcp.2014.07.02025124704
    [Google Scholar]
  76. ChenX. DangT.T.T. FacchiniP.J. Noscapine comes of age.Phytochemistry201511171310.1016/j.phytochem.2014.09.00825583437
    [Google Scholar]
  77. CanelC. MoraesR.M. DayanF.E. FerreiraD. Podophyllotoxin.Phytochemistry200054211512010.1016/S0031‑9422(00)00094‑710872202
    [Google Scholar]
  78. SoloweyE. LichtensteinM. SallonS. PaavilainenH. SoloweyE. Lorberboum-GalskiH. Evaluating medicinal plants for anticancer activity.Sci World J2014201411210.1155/2014/72140225478599
    [Google Scholar]
  79. PezzutoJ.M. Plant-derived anticancer agents.Biochem. Pharmacol.199753212113310.1016/S0006‑2952(96)00654‑59037244
    [Google Scholar]
  80. AminA. Gali-MuhtasibH. OckerM. Schneider-StockR. Overview of major classes of plant-derived anticancer drugs.Int. J. Biomed. Sci.20095111110.59566/IJBS.2009.500123675107
    [Google Scholar]
  81. SonI.H. ChungI.M. LeeS.I. YangH.D. MoonH.I. Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera.Bioorg. Med. Chem. Lett.200717174753475510.1016/j.bmcl.2007.06.06017662606
    [Google Scholar]
  82. Ajaya KumarR. SrideviK. Vijaya KumarN. NanduriS. RajagopalS. Anticancer and immunostimulatory compounds from Andrographis paniculata.J. Ethnopharmacol.2004922-329129510.1016/j.jep.2004.03.00415138014
    [Google Scholar]
  83. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231A36339812680238
    [Google Scholar]
  84. SurhY.J. ChunK.S. ChaH.H. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation.Mutat. Res.2001480-48124326810.1016/S0027‑5107(01)00183‑X11506818
    [Google Scholar]
  85. MitraA. ChakrabartiJ. BanerjiA. ChatterjeeA. DasB.R. Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2.J. Environ. Pathol. Toxicol. Oncol.200625467969010.1615/JEnvironPatholToxicolOncol.v25.i4.7017341208
    [Google Scholar]
  86. MalikF. SinghJ. KhajuriaA. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice.Life Sci.200780161525153810.1016/j.lfs.2007.01.02917336338
    [Google Scholar]
  87. SyrovetsT. GschwendJ.E. BücheleB. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J. Biol. Chem.200528076170618010.1074/jbc.M40947720015576374
    [Google Scholar]
  88. PotmesilM. Camptothecins: From bench research to hospital wards.Cancer Res.1994546143114398137244
    [Google Scholar]
  89. ChiuH.F. ChihT.T. HsianY.M. TsengC.H. WuM.J. WuY.C. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells.Biochem. Pharmacol.200365331932710.1016/S0006‑2952(02)01554‑X12527325
    [Google Scholar]
  90. RajeshkumarN.V. JoyK.L. KuttanG. RamsewakR.S. NairM.G. KuttanR. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract.J. Ethnopharmacol.2002811172210.1016/S0378‑8741(01)00419‑612020923
    [Google Scholar]
  91. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.01116009521
    [Google Scholar]
  92. LiuY. ChenY. LinL. LiH. Gambogic acid as a candidate for cancer therapy: A review.Int. J. Nanomedicine202015103851039910.2147/IJN.S27764533376327
    [Google Scholar]
  93. ChenL. ChenS. SunP. LiuX. ZhanZ. WangJ. Psoralea corylifolia L.: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics.Chin. Med.2023181410.1186/s13020‑022‑00704‑636627680
    [Google Scholar]
  94. KongY. LiF. NianY. KHF16 is a leading structure from cimicifuga foetida that suppresses breast cancer partially by inhibiting the nf-κb signaling pathway.Theranostics20166687588610.7150/thno.1469427162557
    [Google Scholar]
  95. GurbuzI. Anti-ulcerogenic lignans from Taxus baccata L.Z. Naturforsch. C J. Biosci.2004593-423323610.1515/znc‑2004‑3‑420
    [Google Scholar]
  96. Espirito Santo BLSd, et alMedicinal potential of garcinia species and their compounds.Molecules202025194513
    [Google Scholar]
  97. MiaoZ-H. Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells.Int. J. Cancer2003106110811510.1002/ijc.11174
    [Google Scholar]
  98. ReddyV.V. SirsiM. Effect of Abrus precatorius L. on experimental tumors.Cancer Res.1969297144714515799161
    [Google Scholar]
  99. DharM.L. DharM.M. DhawanB.N. MehrotraB.N. RayC. Screening of Indian plants for biological activity: I.Indian J. Exp. Biol.1968642322475720682
    [Google Scholar]
  100. AielloP. SharghiM. MansourkhaniS.M. Medicinal plants in the prevention and treatment of colon cancer.Oxid. Med. Cell. Longev.2019201915110.1155/2019/207561432377288
    [Google Scholar]
  101. KimH.Y. YuR. KimJ.S. KimY.K. SungM.K. Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells.Cancer Lett.200421011610.1016/j.canlet.2004.01.00915172114
    [Google Scholar]
  102. ZhuQ. MeisingerJ. ThielD.H.V. ZhangY. MobarhanS. Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells.Nutr. Cancer200242113114010.1207/S15327914NC421_1812235645
    [Google Scholar]
  103. SaleemM. AdhamiV.M. SiddiquiI.A. MukhtarH. Tea beverage in chemoprevention of prostate cancer: A mini-review.Nutr. Cancer2003471132310.1207/s15327914nc4701_214769533
    [Google Scholar]
  104. JungY.D. KimM.S. ShinB.A. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells.Br. J. Cancer200184684485010.1054/bjoc.2000.169111259102
    [Google Scholar]
  105. RoomiM. IvanovV. KalinovskyT. NiedzwieckiA. RathM. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human colon cancer cell HCT 116 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry.Oncol. Rep.200513342142510.3892/or.13.3.42115706410
    [Google Scholar]
  106. BoslandM.C. HortonL. CondonM.S. Effects of green tea on prostate carcinogenesis in rat models and a human prostate cancer xenograft model.Prostate202282111117112410.1002/pros.2436435485427
    [Google Scholar]
  107. PerkinsS. VerschoyleR.D. HillK. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis.Cancer Epidemiol. Biomarkers Prev.200211653554012050094
    [Google Scholar]
  108. ParkJ. ConteasC.N. Anti-carcinogenic properties of curcumin on colorectal cancer.World J. Gastrointest. Oncol.20102416917610.4251/wjgo.v2.i4.16921160593
    [Google Scholar]
  109. DanciuC. VlaiaL. FeteaF. Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells.Biol. Res.2015481110.1186/0717‑6287‑48‑125654588
    [Google Scholar]
  110. OzakiK. KawataY. AmanoS. HanazawaS. Stimulatory effect of curcumin on osteoclast apoptosis.Biochem. Pharmacol.200059121577158110.1016/S0006‑2952(00)00277‑X10799655
    [Google Scholar]
  111. DeebD. XuY.X. JiangH. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells.Mol. Cancer Ther.2003219510312533677
    [Google Scholar]
  112. RashmiR. Santhosh KumarT.R. KarunagaranD. Human colon cancer cells differ in their sensitivity to curcumin‐induced apoptosis and heat shock protects them by inhibiting the release of apoptosis‐inducing factor and caspases.FEBS Lett.20035381-3192410.1016/S0014‑5793(03)00099‑112633846
    [Google Scholar]
  113. LiF. JiangT. LiQ. LingX. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.20177122350239429312794
    [Google Scholar]
  114. BhargavaR. ChasenM. EltenM. MacDonaldN. The effect of ginger (Zingiber officinale Roscoe) in patients with advanced cancer.Support. Care Cancer20202873279328610.1007/s00520‑019‑05129‑w31745695
    [Google Scholar]
  115. AkramM. Zingiber officinale Roscoe (A Medicinal Plant).Pak. J. Nutr.201110
    [Google Scholar]
  116. JagetiaG.C. NayakV. VidyasagarM.S. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells.Cancer Lett.19981271-2718210.1016/S0304‑3835(98)00047‑09619860
    [Google Scholar]
  117. JagetiaG.C. RaoS.K. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice.Biol. Pharm. Bull.200629346046610.1248/bpb.29.46016508146
    [Google Scholar]
  118. AnsahC. MensahK.B. A review of the anticancer potential of the antimalarial herbal cryptolepis sanguinolenta and its major alkaloid cryptolepine.Ghana Med. J.201347313714724391229
    [Google Scholar]
  119. PrajapatiR. KalariyaM. ParmarS. ShethN. Phytochemical and pharmacological review of Lagenaria sicereria.J. Ayurveda Integr. Med.20101426627210.4103/0975‑9476.7443121731373
    [Google Scholar]
  120. OsafoN. MensahK.B. YeboahO.K. Phytochemical and pharmacological review of cryptolepis sanguinolenta (lindl.) schlechter.Adv. Pharmacol. Sci.2017201711310.1155/2017/302637029750083
    [Google Scholar]
  121. ZhuH. GooderhamN.J. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells.Toxicol. Sci.200691113213910.1093/toxsci/kfj14616510557
    [Google Scholar]
  122. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  123. AsifM. RizwaniG.H. ZahidH. KhanZ. QasimR. Pharmacognostic studies on Taxus baccata L.: A brilliant source of Anti-cancer agents.Pak. J. Pharm. Sci.201629110510926826823
    [Google Scholar]
  124. MajeedM. HakeemK.R. RehmanR.U. Mistletoe lectins: From interconnecting proteins to potential tumour inhibiting agents.Phytomedicine Plus20211310003910.1016/j.phyplu.2021.100039
    [Google Scholar]
  125. ChernyshovV.P. OmelchenkoL.I. HeusserP. Immunomodulatory actions of Viscum album (Iscador) in children with recurrent respiratory disease as a result of the Chernobyl nuclear accident.Complement. Ther. Med.19975314114610.1016/S0965‑2299(97)80056‑8
    [Google Scholar]
  126. KienleG.S. GlockmannA. SchinkM. KieneH. Viscum album L. extracts in breast and gynaecological cancers: A systematic review of clinical and preclinical research.J. Exp. Clin. Cancer Res.20092817910.1186/1756‑9966‑28‑7919519890
    [Google Scholar]
  127. StagosD. AmoutziasG.D. MatakosA. SpyrouA. TsatsakisA.M. KouretasD. Chemoprevention of liver cancer by plant polyphenols.Food Chem. Toxicol.20125062155217010.1016/j.fct.2012.04.00222521445
    [Google Scholar]
  128. SahpazidouD. GeromichalosG.D. StagosD. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells.Toxicol. Lett.2014230221822410.1016/j.toxlet.2014.01.04224508987
    [Google Scholar]
  129. CheE. GaoY. WanL. Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo.Microporous Mesoporous Mater.201520422623410.1016/j.micromeso.2014.11.013
    [Google Scholar]
  130. BhatnagarP. PantA.B. ShuklaY. ChaudhariB. KumarP. GuptaK.C. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]] anthracene induced skin carcinogenesis in mouse model.Eur. J. Pharm. Biopharm.201591354610.1016/j.ejpb.2015.01.01525619920
    [Google Scholar]
  131. SivarajR. RahmanP.K.S.M. RajivP. NarendhranS. VenckateshR. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412925525810.1016/j.saa.2014.03.02724747845
    [Google Scholar]
  132. BalasubramaniG. RamkumarR. KrishnaveniN. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn.J. Trace Elem. Med. Biol.201530838910.1016/j.jtemb.2014.11.00125432487
    [Google Scholar]
  133. PawarA.P. VinugalaD. BothirajaC. WITHDRAWN: Nanocochleates derived from nanoliposomes for paclitaxel oral use: Preparation, characterization, in vitro anticancer testing, bioavailability and biodistribution study in rats.Biomed. Pharmacother.2014350210.1016/j.biopha.2014.11.014
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947289705240206074048
Loading
/content/journals/cctr/10.2174/0115733947289705240206074048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test