Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

The second most prevalent cause of fatalities globally is malignant tumors. The avoidance and therapy of cancer proliferation still have many prospects for betterment despite enormous advancements. Chemotherapy can occasionally have a lot of unfavorable adverse reactions. Novel agents from botanicals, especially the use of cancer therapeutic ingredients, may decrease negative consequences. There are currently several products from plants used for fighting cancer. However, numerous plant chemicals have not yet been examined in people but show extremely encouraging anti-cancer properties. Further research is required to determine whether these plant chemicals are beneficial in treating human cancers. The present work has focused on the various traditional herbal remedies and the phytochemicals that exhibited promising anticancer impact. The desirable activity may be due to novel agents isolated from plant sources. The present investigations address natural ingredients for cancer treatment and chemoprevention that are now being used in clinical settings and/or are undergoing clinical studies. Potential research concentrating on naturally anticancer drugs can create an entirely novel avenue in the fight against cancer that could significantly boost the chance of survival for cancer patients.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947266657231114075805
2024-01-15
2024-11-22
Loading full text...

Full text loading...

References

  1. Preventing chronic diseases: A vital investment, in WHO press. Geneva: WHO Global report2005
    [Google Scholar]
  2. PrakashO. UsmaniS. GuptaA. SinghR. SinghN. VedA. Bioactive natural polyphenols as apoptosis inducer: New strategies to combat cancer.Curr. Bioact. Compd.20181410.2174/1573407214666181030122046
    [Google Scholar]
  3. PrakashO. UsmaniS. SinghR. MahapatraD.K. GuptaA. Cancer chemotherapy by novel bio-active natural products: Looking towards the future.Curr. Cancer Ther. Rev.2019151374910.2174/1573394714666180321151315
    [Google Scholar]
  4. WhiteR.O. BeechB.M. MillerS. Health care disparities and diabetes care: Practical considerations for primary care providers.Clin. Diabetes200927310511210.2337/diaclin.27.3.10521289869
    [Google Scholar]
  5. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  6. PrakashO. SinghR. SinghN. Anticancer potential of naringenin, biosynthesis, molecular target, and structural perspectives.Mini Rev. Med. Chem.202222575876910.2174/138955752166621091311273334517796
    [Google Scholar]
  7. XingQ.Q. LiJ.M. ChenZ.J. Global burden of common cancers attributable to metabolic risks from 1990 to 2019.Med202343168181.e310.1016/j.medj.2023.02.00236868237
    [Google Scholar]
  8. SungH. FerlayJ. SiegelR.L. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  9. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  10. BrownJ.S. AmendS.R. AustinR.H. GatenbyR.A. HammarlundE.U. PientaK.J. Updating the definition of cancer.Mol. Cancer Res.202321111142114710.1158/1541‑7786.MCR‑23‑041137409952
    [Google Scholar]
  11. NguyenS.M. PhamA.T. NguyenL.M. Chemotherapy-induced toxicities and their associations with clinical and non-clinical factors among breast cancer patients in vietnam.Curr. Oncol.202229118269828410.3390/curroncol2911065336354713
    [Google Scholar]
  12. AlterP. HerzumM. SoufiM. SchaeferJ. MaischB. Cardiotoxicity of 5-Fluorouracil.Cardiovasc. Hematol. Agents Med. Chem.2006411510.2174/18715250677526878516529545
    [Google Scholar]
  13. RastogiN. ChagM. AyyagariS. Myocardial ischemia after 5-fluorouracil chemotherapy.Int. J. Cardiol.199342328528710.1016/0167‑5273(93)90061‑K8138338
    [Google Scholar]
  14. ThornC.F. OshiroC. MarshS. Doxorubicin pathways.Pharmacogenet. Genomics201121744044610.1097/FPC.0b013e32833ffb5621048526
    [Google Scholar]
  15. DadsonK. ThavendiranathanP. HauckL. Statins protect against early stages of doxorubicin-induced cardiotoxicity through the regulation of akt signaling and SERCA2.CJC Open20224121043105210.1016/j.cjco.2022.08.00636562012
    [Google Scholar]
  16. KilickapS. AkgulE. AksoyS. AytemirK. BaristaI. Doxorubicin-induced second degree and complete atrioventricular block.Europace20057322723010.1016/j.eupc.2004.12.01215878560
    [Google Scholar]
  17. YemmK.E. AlwanL.M. MalikA.B. SalazarL.G. Renal toxicity with liposomal doxorubicin in metastatic breast cancer.J. Oncol. Pharm. Pract.20192571738174210.1177/107815521879815730170515
    [Google Scholar]
  18. Celik SamanciT. GökcimenA. Kilic ErenM. GürsesK.M. PilevneliH. KuyucuY. Effects of bone marrow‐derived mesenchymal stem cells on doxorubicin‐induced liver injury in rats.J. Biochem. Mol. Toxicol.2022364e2298510.1002/jbt.2298535225400
    [Google Scholar]
  19. Laprise-LachanceM. LemieuxP. GrégoireJ.P. Risk of pulmonary toxicity of bleomycin and filgrastim.J. Oncol. Pharm. Pract.20192571638164410.1177/107815521880429330319063
    [Google Scholar]
  20. RamasamyK. ThakkarD.N. AdithanS. SelvarajanS. DubashiB. Frequency and risk factors of bleomycin-induced pulmonary toxicity in South Indian patients with germ-cell tumors.J. Cancer Res. Ther.202117244344910.4103/jcrt.JCRT_348_1934121690
    [Google Scholar]
  21. YonezawaR. YamamotoS. TakenakaM. TRPM2 channels in alveolar epithelial cells mediate bleomycin-induced lung inflammation.Free Radic. Biol. Med.20169010111310.1016/j.freeradbiomed.2015.11.02126600069
    [Google Scholar]
  22. PretoriusM. SteenkampI. SpiesL. Van der LindeG. Bleomycin-induced skin toxicity: A case of flagellate dermatitis.Dermatol. Online J.202127810.5070/D32785472134755969
    [Google Scholar]
  23. SenthilkumarS. YogeetaS.K. SubashiniR. DevakiT. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats.Chem. Biol. Interact.2006160325226010.1016/j.cbi.2006.02.00416554041
    [Google Scholar]
  24. LoscalzoJ. Molecular interaction networks and drug development: Novel approach to drug target identification and drug repositioning.FASEB J.2023371e2266010.1096/fj.202201683R36468661
    [Google Scholar]
  25. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.224311829
    [Google Scholar]
  26. NarayanC. KumarA. Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo.Mol. Biol. Rep.201441117919110.1007/s11033‑013‑2850‑624190493
    [Google Scholar]
  27. MondalA. BanerjeeS. BoseS. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations.Pharmacol. Res.202217510583710.1016/j.phrs.2021.10583734450316
    [Google Scholar]
  28. Ajaya KumarR. SrideviK. Vijaya KumarN. NanduriS. RajagopalS. Anticancer and immunostimulatory compounds from Andrographis paniculata.J. Ethnopharmacol.2004922-329129510.1016/j.jep.2004.03.00415138014
    [Google Scholar]
  29. IlangoS. SahooD.K. PaitalB. A review on annona muricata and its anticancer activity.Cancers20221418453910.3390/cancers1418453936139697
    [Google Scholar]
  30. KviecinskiM.R. BenelliP. FelipeK.B. SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity.J. Supercrit. Fluids201156324324810.1016/j.supflu.2010.12.011
    [Google Scholar]
  31. ChengG. ZhangY. ZhangX. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, functions by inducing apoptosis in human glioblastoma U87MG cells.Bioorg. Med. Chem. Lett.200616174575458010.1016/j.bmcl.2006.06.02016784856
    [Google Scholar]
  32. KwonN.Y. SungS.H. SungH.K. ParkJ.K. Anticancer activity of bee venom components against breast cancer.Toxins202214746010.3390/toxins1407046035878198
    [Google Scholar]
  33. RomanoB. BorrelliF. PaganoE. CascioM.G. PertweeR.G. IzzoA.A. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol.Phytomedicine201421563163910.1016/j.phymed.2013.11.00624373545
    [Google Scholar]
  34. TianQ.E. LiH.D. YanM. CaiH.L. TanQ.Y. ZhangW.Y. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice.World J. Gastroenterol.201218477079708610.3748/wjg.v18.i47.707923323011
    [Google Scholar]
  35. DarwicheN. El-SabbanM. Gali-MuhtasibH. Purified salograviolide a isolated from centaurea ainetensis causes growth inhibition and apoptosis in neoplastic epidermal cells.Int. J. Oncol.200832484184910.3892/ijo.32.4.84118360711
    [Google Scholar]
  36. WangY. RenN. RankinG.O. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells.J. Funct. Foods20173731032110.1016/j.jff.2017.08.00132719725
    [Google Scholar]
  37. MatićI.Z. ErgünS. Đorđić CrnogoracM. Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models.Cytotechnology202173337338910.1007/s10616‑021‑00464‑534149173
    [Google Scholar]
  38. TundisR. LoizzoM.R. BonesiM. PeruzziL. EfferthT. Daphne striata Tratt. and D. mezereum L.: a study of anti-proliferative activity towards human cancer cells and antioxidant properties.Nat. Prod. Res.201933121809181210.1080/14786419.2018.143743229431466
    [Google Scholar]
  39. UsmaniS. PrakashO. GuptaA. Bioactive extracts of ziziphus mauritiana induces apoptosis in A549 human lung epithelial carcinoma cells through the generation of reactive oxygen species.Curr. Cancer Ther. Rev.2022181576810.2174/1573394717666210805115802
    [Google Scholar]
  40. VimalrajS. AshokkumarT. SaravananS. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties.Biomed. Pharmacother.201810544044810.1016/j.biopha.2018.05.15129879628
    [Google Scholar]
  41. RegassaH. SourirajanA. KumarV. PandeyS. KumarD. DevK. A review of medicinal plants of the himalayas with anti-proliferative activity for the treatment of various cancers.Cancers20221416389810.3390/cancers1416389836010892
    [Google Scholar]
  42. KumarD.R.N. GeorgeV.C. SureshP.K. KumarR.A. Cytotoxicity, apoptosis induction and anti-metastatic potential of Oroxylum indicum in human breast cancer cells.Asian Pac. J. Cancer Prev.20121362729273410.7314/APJCP.2012.13.6.272922938449
    [Google Scholar]
  43. WangX. GaoA. JiaoY. ZhaoY. YangX. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells.Int. J. Biol. Macromol.201810862563410.1016/j.ijbiomac.2017.12.00629233711
    [Google Scholar]
  44. Tayarani-NajaranZ. Eghbali-FerizS. TaleghaniA. Anti-melanogenesis and anti-tyrosinase properties of Pistacia atlantica subsp. mutica extracts on B16F10 murine melanoma cells.Res. Pharm. Sci.201813653354510.4103/1735‑5362.24596530607151
    [Google Scholar]
  45. SoniD. GroverA. “Picrosides” from Picrorhiza kurroa as potential anti-carcinogenic agents.Biomed. Pharmacother.20191091680168710.1016/j.biopha.2018.11.04830551422
    [Google Scholar]
  46. KumarS. SinghR. DuttaD. In vitro anticancer activity of methanolic extract of justicia adhatoda leaves with special emphasis on human breast cancer cell line.Molecules20222723822210.3390/molecules2723822236500313
    [Google Scholar]
  47. Brandon-WarnerE. EheimA.L. FoureauD.M. WallingT.L. SchrumL.W. McKillopI.H. Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice.Cancer Lett.20123261889510.1016/j.canlet.2012.07.02822863537
    [Google Scholar]
  48. LiY.L. GanG.P. ZhangH.Z. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines.J. Ethnopharmacol.2007113111512410.1016/j.jep.2007.05.01617606345
    [Google Scholar]
  49. Setty BalakrishnanA. NathanA.A. KumarM. RamamoorthyS. Ramia MothilalS.K. Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression.Prostate Int.201752758310.1016/j.prnil.2017.03.00228593171
    [Google Scholar]
  50. PathakK. PathakM.P. SaikiaR. Cancer chemotherapy via natural bioactive compounds.Curr. Drug Discov. Technol.2022194e31032220288810.2174/157016381966622033109574435362385
    [Google Scholar]
  51. KooH.N. HongS.H. SongB.K. KimC.H. YooY.H. KimH.M. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells.Life Sci.20047491149115710.1016/j.lfs.2003.07.03014687655
    [Google Scholar]
  52. Ravi ShankaraB.E. DhananjayaB.L. RamachandraY.L. Evaluating the anticancer potential of ethanolic gall extract of Terminalia chebula (Gaertn.) Retz. (combretaceae).Pharmacognosy Res.20168320921210.4103/0974‑8490.18291927365992
    [Google Scholar]
  53. ParkG.H. ParkJ.H. SongH.M. Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells.BMC Complement. Altern. Med.201414140810.1186/1472‑6882‑14‑40825338635
    [Google Scholar]
  54. JohnsonW. TchounwouP. YedjouC. Therapeutic mechanisms of vernonia amygdalina delile in the treatment of prostate cancer.Molecules20172210159410.3390/molecules2210159428937624
    [Google Scholar]
  55. AllsoppP. PossemiersS. CampbellD. OyarzábalI.S. GillC. RowlandI. An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity.Anaerobe201322384410.1016/j.anaerobe.2013.05.00623714623
    [Google Scholar]
  56. KimT.Y. KohK.S. JuJ.M. Proteomics analysis of antitumor activity of agrimonia pilosa ledeb. in human oral squamous cell carcinoma cells.Curr. Issues Mol. Biol.20224483324333410.3390/cimb4408022935892715
    [Google Scholar]
  57. JeongM. KimH.M. AhnJ.H. LeeK.T. JangD.S. ChoiJ.H. 9-Hydroxycanthin-6-one isolated from stem bark of Ailanthus altissima induces ovarian cancer cell apoptosis and inhibits the activation of tumor-associated macrophages.Chem. Biol. Interact.20182809910810.1016/j.cbi.2017.12.01129225138
    [Google Scholar]
  58. BaradwajR.G. RaoM.V. Senthil KumarT. Novel purification of 1‘S-1’-Acetoxychavicol acetate from Alpinia galanga and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480.Biomed. Pharmacother.20179148549310.1016/j.biopha.2017.04.11428477464
    [Google Scholar]
  59. NumataM. YamamotoA. MoribayashiA. YamadaH. Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi.Planta Med.199460435635910.1055/s‑2006‑9595007938271
    [Google Scholar]
  60. ChangS.H. BaeJ.H. HongD.P. Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells.J. Ethnopharmacol.2010130224825410.1016/j.jep.2010.04.03820438825
    [Google Scholar]
  61. KoW.G. KangT.H. LeeS.J. Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells.Food Chem. Toxicol.2000381086186510.1016/S0278‑6915(00)00079‑X11039319
    [Google Scholar]
  62. Al-MenhaliA. Al-RumaihiA. Al-MohammedH. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.J. Med. Food2015181545910.1089/jmf.2013.312125379783
    [Google Scholar]
  63. LoonatA. ChandranR. PellowJ. AbrahamseH. Photodynamic effects of thuja occidentalis on lung cancer cells.Front. Pharmacol.20221392813510.3389/fphar.2022.92813535910365
    [Google Scholar]
  64. EbrahimzadehM.A. HashemiZ. MohammadyanM. FakharM. Mortazavi-DerazkolaS. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract.Surf. Interfaces20212310096310.1016/j.surfin.2021.100963
    [Google Scholar]
  65. HuangY.W. ChuangC.Y. HsiehY.S. Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway.Environ. Toxicol.20173231037104610.1002/tox.2230227322511
    [Google Scholar]
  66. ShenoudaN.S. SaklaM.S. NewtonL.G. Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo.Endocr. J.2007311728110.1007/s12020‑007‑0014‑y17709901
    [Google Scholar]
  67. TandrasasmitaO.M. LeeJ.S. BaekS.H. TjandrawinataR.R. Induction of cellular apoptosis in human breast cancer by DLBS1425, a Phaleria macrocarpa compound extract, via down-regulation of PI3-kinase/AKT pathway.Cancer Biol. Ther.201010881482310.4161/cbt.10.8.1308520703095
    [Google Scholar]
  68. PennisiR. Ben AmorI. GargouriB. Analysis of antioxidant and antiviral effects of olive (Olea europaea L.) leaf extracts and pure compound using cancer cell model.Biomolecules202313223810.3390/biom1302023836830607
    [Google Scholar]
  69. ParkC. LeeW.S. HanM.H. LONICERA JAPONICA Thunb. Induces caspase‐dependent apoptosis through death receptors and suppression of AKT in U937 human leukemic cells.Phytother. Res.201832350451310.1002/ptr.599629193390
    [Google Scholar]
  70. RamkumarR. BalasubramaniG. RajaR.K. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials.Artif. Cells Nanomed. Biotechnol.201745474875710.1080/21691401.2016.127692328064507
    [Google Scholar]
  71. ChangI.S. SyL.K. CaoB. Shotgun proteomics and quantitative pathway analysis of the mechanisms of action of dehydroeffusol, a bioactive phytochemical with anticancer activity from juncus effusus.J. Proteome Res.20181772470247910.1021/acs.jproteome.8b0022729812950
    [Google Scholar]
  72. AbdellatifA.A.H. AlsharidahM. Evaluation of the anticancer activity of Origanum Marjoram as a safe natural drink for daily use.Drug Dev. Ind. Pharm.2023131810.1080/03639045.2023.225779637688795
    [Google Scholar]
  73. JuaidN. AminA. AbdallaA. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights.Int. J. Mol. Sci.202122191077410.3390/ijms22191077434639131
    [Google Scholar]
  74. SalemA.A. LotfyM. AminA. GhattasM.A. Characterization of human serum albumin’s interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques.Biochem. Biophys. Rep.20212510090110.1016/j.bbrep.2019.10067031535038
    [Google Scholar]
  75. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.77750035177980
    [Google Scholar]
  76. NelsonD.R. HroutA.A. AlzahmiA.S. ChaiboonchoeA. AminA. Salehi-AshtianiK. Molecular mechanisms behind safranal’s toxicity to HepG2 cells from dual omics.Antioxidants2022116112510.3390/antiox1106112535740022
    [Google Scholar]
  77. AbdallaA. MuraliC. AminA. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In Vitro and ex vivo insights.Front. Oncol.2022111178917210.3389/fonc.2021.78917235211395
    [Google Scholar]
  78. LozonL. SalehE. MenonV. RamadanW.S. AminA. El-AwadyR. Effect of safranal on the response of cancer cells to topoisomerase I inhibitors: Does sequence matter?Front. Pharmacol.20221393847110.3389/fphar.2022.93847136120345
    [Google Scholar]
  79. IbrahimS. BaigB. HisaindeeS. Development and evaluation of crocetin-functionalized pegylated magnetite nanoparticles for hepatocellular carcinoma.Molecules2023287288210.3390/molecules2807288237049645
    [Google Scholar]
  80. AwadB. HamzaA.A. Al-MaktoumA. Al-SalamS. AminA. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma.Cancers20231516406310.3390/cancers1516406337627094
    [Google Scholar]
  81. Salmerón-ManzanoE. Garrido-CardenasJ.A. Manzano-AgugliaroF. Worldwide research trends on medicinal plants.Int. J. Environ. Res. Public Health20201710337610.3390/ijerph1710337632408690
    [Google Scholar]
  82. DesaiA. QaziG. GanjuR. Medicinal plants and cancer chemoprevention.Curr. Drug Metab.20089758159110.2174/13892000878582165718781909
    [Google Scholar]
  83. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  84. NarayanankuttyA. SidhicJ. GeorgeS. Traditional medicinal plants usage in cancer therapy and chemoprevention: A review of preclinical and clinical studies.Curr. Nutr. Food Sci.20231910.2174/1573401319666230816141305
    [Google Scholar]
  85. HosseiniA. GhorbaniA. Cancer therapy with phytochemicals: Evidence from clinical studies.Avicenna J. Phytomed.201552849725949949
    [Google Scholar]
  86. SancilioS. Di StasoS. SebastianiS. Curcuma longa is able to induce apoptotic cell death of pterygium-derived human keratinocytes.BioMed Res. Int.201720171910.1155/2017/295659729392130
    [Google Scholar]
  87. SuantaweeT. ThilavechT. ChengH. AdisakwattanaS. Cyanidin attenuates methylglyoxal-induced oxidative stress and apoptosis in INS-1 pancreatic β-cells by increasing glyoxalase-1 activity.Nutrients2020125131910.3390/nu1205131932384625
    [Google Scholar]
  88. Kedhari SundaramM. RainaR. AfrozeN. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells.Biosci. Rep.2019398BSR2019072010.1042/BSR2019072031366565
    [Google Scholar]
  89. LiuQ. HodgeJ. WangJ. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation.Theranostics202010188365838110.7150/thno.4539532724475
    [Google Scholar]
  90. KhozooeiS. LettauK. BarlettaF. Fisetin induces DNA double-strand break and interferes with the repair of radiation-induced damage to radiosensitize triple negative breast cancer cells.J. Exp. Clin. Cancer Res.202241125610.1186/s13046‑022‑02442‑x35989353
    [Google Scholar]
  91. KhanS. NayakD. KhuranaA. ManchandaR.K. TandonC. TandonS. In vitro assessment of homeopathic potencies of hydrastis canadensis on hormone-dependent and independent breast cancer.Homeopathy2020109419820610.1055/s‑0040‑170966832610349
    [Google Scholar]
  92. GeromichalosG.D. PapadopoulosT. SahpazidouD. SinakosZ. Safranal, a Crocus sativus L constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study.Food Chem. Toxicol.201474455010.1016/j.fct.2014.09.00125239662
    [Google Scholar]
  93. ChenS.S. GuY. LuF. Antiangiogenic effect of crocin on breast cancer cell MDA-MB-231.J. Thorac. Dis.201911114464447310.21037/jtd.2019.11.1831903234
    [Google Scholar]
  94. LiS. ShenX.Y. OuyangT. QuY. LuoT. WangH.Q. Synergistic anticancer effect of combined crocetin and cisplatin on KYSE-150 cells via p53/p21 pathway.Cancer Cell Int.20171719810.1186/s12935‑017‑0468‑929093644
    [Google Scholar]
  95. ShoyamaY. FujimotoK. OhtaT. Suppression of polyps formation by saffron extract in Adenomatous polyposis coli Min/+ mice.Pharmacognosy Res.20191119810110.4103/pr.pr_152_18
    [Google Scholar]
  96. AmerizadehF. RezaeiN. RahmaniF. Crocin synergistically enhances the antiproliferative activity of 5‐flurouracil through Wnt/PI3K pathway in a mouse model of colitis‐associated colorectal cancer.J. Cell. Biochem.201811912102501026110.1002/jcb.2736730129057
    [Google Scholar]
  97. ArziL. FarahiA. JafarzadehN. RiaziG. SadeghizadehM. HoshyarR. Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with wnt/β-catenin pathway in murine model.DNA Cell Biol.201837121068107510.1089/dna.2018.435130351203
    [Google Scholar]
  98. AkbarpoorV. KarimabadM.N. MahmoodiM. MirzaeiM.R. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS).Gene Rep.20201910062910.1016/j.genrep.2020.100629
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947266657231114075805
Loading
/content/journals/cctr/10.2174/0115733947266657231114075805
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; antioxidant; apoptosis; Medicinal plants; phytoconstituents; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test