Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Chemotherapy resistance often occurs in the conventional treatment with AML and results in poor cure rates. CKI was found to have a good therapeutic effect when it was combined with other chemotherapy drugs in the clinical treatment of AML. However, the underlying mechanism is unclear. Therefore, this study aims to preliminarily describe the pharmacological activity and mechanism of CKI through comprehensive network pharmacology methods.

Objective

This study aimed to explore the possible mechanism of Compound Kushen Injection (CKI) in the treatment of acute myeloid leukemia (AML) by using network pharmacology, molecular docking, and molecular dynamics techniques.

Methods

Active compounds of CKI were identified based on the Traditional Chinese Medicine Systems Pharmacy (TCMSP) database, and the related targets of the active compounds were predicted using Swiss Target Prediction; AML-related targets from Gene Cards and Online Mendelian Inheritance in Man (OMIM) were collected. Protein-protein interaction (PPI) network was constructed, and its mechanism was predicted through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The protein-protein interaction (PPI) network construction, module partitioning, and hub node screening were visualized by using the Cytoscape software and its plugins. These module partitionings were also verified by using molecular docking and molecular dynamics modeling.

Results

Fifty-six active ingredients corresponding to 223 potential targets were identified. Biological function analysis showed that 731, 70, and 137 GO entries were associated with biological processes, cellular components, and molecular functions, respectively. A total of 163 KEGG pathways were identified. Network analysis showed that the key anti-AML targets of CKI are MAPK3, EGFR, SRC, PIK3CA, and PIK3R1 targets, which are involved in the PI3K/Akt and Ras/MAPK signaling pathways or related crosstalk pathways.

Conclusion

Our results suggested that the key anti-AML targets of CKI, such as MAPK3, EGFR, SRC, PIK3CA and PIK3R1, are involved in the PI3K/Akt and Ras/MAPK signaling pathways or related crosstalk pathways. Concentrating on the dynamic and complex crosstalk regulation between PI3K/Akt and Ras/MAPK signal pathways and related signal pathways may be a new direction in anti-AML therapy in the future.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947271076231204181500
2024-01-09
2024-11-22
Loading full text...

Full text loading...

References

  1. FerraraF. SchifferC.A. Acute myeloid leukaemia in adults.Lancet2013381986548449510.1016/S0140‑6736(12)61727‑923399072
    [Google Scholar]
  2. De KouchkovskyI. Abdul-HayM. ‘Acute myeloid leukemia: A comprehensive review and 2016 update’.Blood Cancer J.201667e44110.1038/bcj.2016.5027367478
    [Google Scholar]
  3. ShortN.J. RyttingM.E. CortesJ.E. Acute myeloid leukaemia.Lancet20183921014759360610.1016/S0140‑6736(18)31041‑930078459
    [Google Scholar]
  4. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.0012330846939
    [Google Scholar]
  5. ShortN.J. KonoplevaM. KadiaT.M. Advances in the treatment of acute myeloid leukemia: New drugs and new challenges.Cancer Discov.202010450652510.1158/2159‑8290.CD‑19‑101132014868
    [Google Scholar]
  6. NiuJ. PengD. LiuL. Drug resistance mechanisms of acute myeloid leukemia stem cells.Front. Oncol.20221289642610.3389/fonc.2022.89642635865470
    [Google Scholar]
  7. McLornanD.P. McMullinM.F. JohnstonP. LongleyD.B. Molecular mechanisms of drug resistance in acute myeloid leukaemia.Expert Opin. Drug Metab. Toxicol.20073336337710.1517/17425255.3.3.36317539744
    [Google Scholar]
  8. YangM. ZhuS. ShenC. Clinical application of chinese herbal injection for cancer care: Evidence-mapping of the systematic reviews, meta-analyses, and randomized controlled trials.Front. Pharmacol.20211266636810.3389/fphar.2021.66636834025425
    [Google Scholar]
  9. WangW. YouR. QinW. Anti-tumor activities of active ingredients in compound kushen injection.Acta Pharmacol. Sin.201536667667910.1038/aps.2015.2425982630
    [Google Scholar]
  10. WangH. HuH. RongH. ZhaoX. Effects of compound Kushen injection on pathology and angiogenesis of tumor tissues.Oncol. Lett.20191722278228230719109
    [Google Scholar]
  11. JinY. YangQ. LiangL. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway.J. Exp. Clin. Cancer Res.201837127710.1186/s13046‑018‑0948‑330454068
    [Google Scholar]
  12. TuH. LeiB. MengS. Efficacy of compound kushen injection in combination with induction chemotherapy for treating adult patients newly diagnosed with acute leukemia.Evid. Based Complement. Alternat. Med.201620161710.1155/2016/312140227738441
    [Google Scholar]
  13. HuiW. BinyaS. XiaohongZ. Clinical observation of acute myeloid leukemia treated by compound Kushen injection.Modern Oncol20172523112314
    [Google Scholar]
  14. ShenH. QuZ. Harata-LeeY. Understanding the mechanistic contribution of herbal extracts in compound kushen injection with transcriptome analysis.Front. Oncol.2019963210.3389/fonc.2019.0063231380274
    [Google Scholar]
  15. LiuX. BaiM. LiH. Single-cell RNA-sequencing uncovers compound kushen injection synergistically improves the efficacy of chemotherapy by modulating the tumor environment of breast cancer.Front. Immunol.20221396534210.3389/fimmu.2022.96534236389835
    [Google Scholar]
  16. LiY. WangK. ChenY. A system pharmacology model for decoding the synergistic mechanisms of compound kushen injection in treating breast cancer.Front. Pharmacol.20211272314710.3389/fphar.2021.72314734899291
    [Google Scholar]
  17. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  18. XuX. ZhangW. HuangC. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms1306696422837674
    [Google Scholar]
  19. GongP. WangD. CuiD. Anti-aging function and molecular mechanism of Radix Astragali and Radix Astragali preparata via network pharmacology and PI3K/Akt signaling pathway.Phytomedicine20218415350910.1016/j.phymed.2021.15350933636579
    [Google Scholar]
  20. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.00925666163
    [Google Scholar]
  21. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  22. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz38231106366
    [Google Scholar]
  23. SafranM. RosenN. TwikM. The genecards suite. AbugessaisaI. KasukawaT. Practical Guide to Life Science Databases.SingaporeSpringer Nature Singapore2021275610.1007/978‑981‑16‑5812‑9_2
    [Google Scholar]
  24. AmbergerJ.S. BocchiniC.A. ScottA.F. HamoshA. OMIM.org: Leveraging knowledge across phenotype–gene relationships.Nucleic Acids Res.201947D1D1038D104310.1093/nar/gky115130445645
    [Google Scholar]
  25. ShermanB.T. HaoM. QiuJ. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216-2110.1093/nar/gkac19435325185
    [Google Scholar]
  26. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556-6010.1093/nar/gkz43031114875
    [Google Scholar]
  27. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  28. VaradiM. AnyangoS. DeshpandeM. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab106134791371
    [Google Scholar]
  29. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  30. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  31. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  32. YuY. KrämerA. VenableR.M. Semi-automated optimization of the CHARMM36 lipid force field to include explicit treatment of long-range dispersion.J. Chem. Theory Comput.20211731562158010.1021/acs.jctc.0c0132633620214
    [Google Scholar]
  33. BishtA. TewariD. KumarS. ChandraS. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia.Mol. Divers.202310.1007/s11030‑023‑10684‑w37439907
    [Google Scholar]
  34. DixitN. MotwaniH. PatelS.K. RawalR.M. SolankiH.A. Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: A network pharmacology integrated molecular docking and dynamics approach.J. Biomol. Struct. Dyn.20232011910.1080/07391102.2023.225686637728545
    [Google Scholar]
  35. NepstadI. HatfieldK.J. GrønningsæterI.S. ReikvamH. The PI3K-Akt-mTOR signaling pathway in human Acute Myeloid Leukemia (AML) cells.Int. J. Mol. Sci.2020218290710.3390/ijms2108290732326335
    [Google Scholar]
  36. XieC. HeY. ZhenM. WangY. XuY. LouL. Puquitinib, a novel orally available PI 3Kδ inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia.Cancer Sci.201710871476148410.1111/cas.1326328418085
    [Google Scholar]
  37. WangP. ZhangJ. ZhangH. ZhangF. The role of MACF1 on acute myeloid leukemia cell proliferation is involved in Runx2-targeted PI3K/Akt signaling.Mol. Cell. Biochem.2023478343344110.1007/s11010‑022‑04517‑x35857251
    [Google Scholar]
  38. MartelliA.M. EvangelistiC. ChiariniF. McCubreyJ.A. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients.Oncotarget2010128910310.18632/oncotarget.11420671809
    [Google Scholar]
  39. TabeY. TafuriA. SekiharaK. YangH. KonoplevaM. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia.Expert Opin. Ther. Targets201721770571410.1080/14728222.2017.133360028537457
    [Google Scholar]
  40. NepstadI. HatfieldK.J. AasebøE. Two acute myeloid leukemia patient subsets are identified based on the constitutive PI3K-Akt-mTOR signaling of their leukemic cells; a functional, proteomic, and transcriptomic comparison.Expert Opin. Ther. Targets201822763965310.1080/14728222.2018.148740129889583
    [Google Scholar]
  41. BertacchiniJ. HeidariN. MedianiL. Targeting PI3K/AKT/mTOR network for treatment of leukemia.Cell. Mol. Life Sci.201572122337234710.1007/s00018‑015‑1867‑525712020
    [Google Scholar]
  42. YeQ. ZhangN. ChenK. ZhuJ. JiangH. Effects of portulacerebroside a on apoptosis of human leukemia HL60 cells and p38/JNK signaling pathway.Int. J. Clin. Exp. Pathol.2015811139681397726823708
    [Google Scholar]
  43. TaghilooS. NoroziS. Asgarian-OmranH. The Effects of PI3K/Akt/mTOR signaling pathway inhibitors on the expression of immune checkpoint ligands in acute myeloid leukemia cell line.Iran. J. Allergy Asthma Immunol.202221217818810.18502/ijaai.v21i2.922535490271
    [Google Scholar]
  44. SteelmanL.S. FranklinR.A. AbramsS.L. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy.Leukemia20112571080109410.1038/leu.2011.6621494257
    [Google Scholar]
  45. DaverN CortesJ Molecular targeted therapy in acute myeloid leukemia.Hematology201217sup1s596210.1179/102453312X1333616915561922507781
    [Google Scholar]
  46. KadiaT.M. KantarjianH. KornblauS. Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS.Cancer2012118225550555910.1002/cncr.2759622569880
    [Google Scholar]
  47. KhouryJ.D. TashakoriM. YangH. Pan-RAF inhibition shows anti-leukemic activity in RAS-mutant acute myeloid leukemia cells and potentiates the effect of sorafenib in cells with FLT3 mutation.Cancers20201212351110.3390/cancers1212351133255818
    [Google Scholar]
  48. KamA.Y.F. PiryaniS.O. LeeC.L. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells.Mol. Cancer Res.202119588689910.1158/1541‑7786.MCR‑20‑097333514658
    [Google Scholar]
  49. WangH. HuH. ZhangQ. Dynamic transcriptomes of human myeloid leukemia cells.Genomics2013102425025610.1016/j.ygeno.2013.06.00423806289
    [Google Scholar]
  50. HazafaA. RehmanK.U. JahanN. JabeenZ. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells.Nutr. Cancer202072338639710.1080/01635581.2019.163700631287738
    [Google Scholar]
  51. LiJ. ZhangX. ShenX. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait.Fitoterapia202014310455610.1016/j.fitote.2020.10455632194169
    [Google Scholar]
  52. ZhangL. ZhaoX. TaoG.J. ChenJ. ZhengZ.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis.Food Chem.2017223404810.1016/j.foodchem.2016.12.01728069121
    [Google Scholar]
  53. KoH.H. TsaiY.T. YenM.H. Norartocarpetin from a folk medicine Artocarpus communis plays a melanogenesis inhibitor without cytotoxicity in B16F10 cell and skin irritation in mice.BMC Complement. Altern. Med.201313134810.1186/1472‑6882‑13‑34824325567
    [Google Scholar]
  54. RyuY.B. HaT.J. Curtis-LongM.J. RyuH.W. GalS.W. ParkK.H. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz.J. Enzyme Inhib. Med. Chem.200823692293010.1080/1475636070181020718608767
    [Google Scholar]
  55. NguyenH.X. NguyenN.T. NguyenM.H.K. Tyrosinase inhibitory activity of flavonoids from Artocarpus heterophyllous.Chem. Cent. J.2016101210.1186/s13065‑016‑0150‑726834825
    [Google Scholar]
  56. HaririR. SaeediM. AkbarzadehT. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors.J. Pept. Sci.2021277e332910.1002/psc.332933860571
    [Google Scholar]
  57. TorelloC.O. AlvarezM.C. Olalla SaadS.T. Polyphenolic flavonoid compound quercetin effects in the treatment of acute myeloid leukemia and myelodysplastic syndromes.Molecules20212619578110.3390/molecules2619578134641325
    [Google Scholar]
  58. ShiH. LiX.Y. ChenY. Quercetin induces apoptosis via downregulation of vascular endothelial growth factor/Akt signaling pathway in acute myeloid leukemia cells.Front. Pharmacol.20201153417110.3389/fphar.2020.53417133362534
    [Google Scholar]
  59. ChenLC HuangHL HuangFuWC Biological evaluation of selected flavonoids as inhibitors of mnks targeting acute myeloid leukemia.J. Nat. Prod.202083102967297510.1021/acs.jnatprod.0c0051633026809
    [Google Scholar]
  60. JiaG. JiangX. LiZ. Decoding the mechanism of shen qi sha bai decoction in treating acute myeloid leukemia based on network pharmacology and molecular docking.Front. Cell Dev. Biol.2021979675710.3389/fcell.2021.79675734988084
    [Google Scholar]
  61. De FordC. UlloaJ.L. CatalánC.A.N. The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines.Phytochemistry201511733233910.1016/j.phytochem.2015.06.02026125943
    [Google Scholar]
  62. ArafehR. SamuelsY. PIK3CA in cancer: The past 30 years.Semin. Cancer Biol.201959364910.1016/j.semcancer.2019.02.00230742905
    [Google Scholar]
  63. Vallejo-DíazJ. ChagoyenM. Olazabal-MoránM. González-GarcíaA. CarreraA.C. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer.Trends Cancer20195423324410.1016/j.trecan.2019.02.00930961830
    [Google Scholar]
  64. LeeJ.W. SoungY.H. KimS.Y. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.Oncogene20052481477148010.1038/sj.onc.120830415608678
    [Google Scholar]
  65. FanH.Y. LiuZ. ShimadaM. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility.Science2009324592993894110.1126/science.117139619443782
    [Google Scholar]
  66. OyeniranC. TanfinZ. MAPK14 cooperates with MAPK3/1 to regulate endothelin-1-mediated prostaglandin synthase 2 induction and survival in leiomyoma but not in normal myometrial cells.Biol. Reprod.201184349550410.1095/biolreprod.110.08901121084714
    [Google Scholar]
  67. DuY. ZhangJ. MengY. HuangM. YanW. WuZ. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells.AMB Express202010113410.1186/s13568‑020‑01072‑w32737620
    [Google Scholar]
  68. YuT.T. WangC.Y. TongR. ERBB2 gene expression silencing involved in ovarian cancer cell migration and invasion through mediating MAPK1/MAPK3 signaling pathway.Eur. Rev. Med. Pharmacol. Sci.202024105267528032495860
    [Google Scholar]
  69. ParkE. ParkJ. HanS.W. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations.Int. J. Oncol.20124041259126610.3892/ijo.2011.129022159814
    [Google Scholar]
  70. ShiY. HeM. PfIRR interacts with HrIGF-I and activates the MAP-kinase and PI3-kinase signaling pathways to regulate glycogen metabolism in pinctada fucata.Sci. Rep.2016612206310.1038/srep2206326911653
    [Google Scholar]
  71. AksamitieneE. KiyatkinA. KholodenkoB.N. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance.Biochem. Soc. Trans.201240113914610.1042/BST2011060922260680
    [Google Scholar]
  72. EricksonK.E. RukhlenkoO.S. PosnerR.G. HlavacekW.S. KholodenkoB.N. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling.Semin. Cancer Biol.20195416217310.1016/j.semcancer.2018.02.00829518522
    [Google Scholar]
  73. López-DíazF.J. GascardP. BalakrishnanS.K. Coordinate transcriptional and translational repression of p53 by TGF-β1 impairs the stress response.Mol. Cell201350455256410.1016/j.molcel.2013.04.02923706820
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947271076231204181500
Loading
/content/journals/cctr/10.2174/0115733947271076231204181500
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test