Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Non-small cell lung cancer (NSCLC) is a ubiquitous form of lung cancer. Most patients already have metastasis at the time of diagnosis. Chemotherapy and radiotherapy are widely used to treat the early stages of NSCLC, but cancer relapses are common, and the mortality rate is also high. Hence, there is a definite need for newer and advanced therapies to control the recurrence and metastasis of NSCLC. Many clinical trials are underway, which could improve the current treatment options. Targeted therapy and immunotherapies are increasingly developing to expand the overall survival rate of NSCLC patients. Yet, the continuous mutation in the tumor site, drug resistance, adverse effects, and tumor recurrence pose several challenges to the efficacy of the treatment. Many drugs in phase I and II clinical trials prove significant effectiveness against NSCLC mutations. Combination therapy has shown enhanced progression-free and overall survival rates when compared to monotherapy. Recently, FDA-approved genetically engineered patients’ immune cells and chimeric antigen receptors (CAR) improved T-cells for the treatment of malignancies. This review emphasizes the recent development in the treatment regimen and strategy used for improving the outcomes of NSCLC.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947276538240129053601
2024-02-19
2025-04-19
Loading full text...

Full text loading...

References

  1. Cancer Facts & Figures1930Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2023/2023-cancer-facts-and-figures.pdf [Cited on 19 September 2023]
  2. TravisW.D. BrambillaE. BurkeA.P. MarxA. NicholsonA.G. Introduction to the 2015 world health organization classification of tumors of the lung, pleura, thymus, and heart.J. Thorac. Oncol.20151091240124210.1097/JTO.0000000000000663 26291007
    [Google Scholar]
  3. CouraudS. ZalcmanG. MilleronB. MorinF. SouquetP.J. Lung cancer in never smokers – A review.Eur. J. Cancer20124891299131110.1016/j.ejca.2012.03.007 22464348
    [Google Scholar]
  4. LissowskaJ ForetovaL Dąbek J Family history and lung cancer risk: International multicentre case–control study in Eastern and Central Europe and meta-analyses.Cancer Causes Control20102171091110410.1007/s10552‑010‑9537‑2 20306329
    [Google Scholar]
  5. ShielsM.S. ColeS.R. KirkG.D. PooleC. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals.J. Acquir. Immune Defic. Syndr.200952561162210.1097/QAI.0b013e3181b327ca 19770804
    [Google Scholar]
  6. OmennG.S. GoodmanG.E. ThornquistM.D. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease.N. Engl. J. Med.1996334181150115510.1056/NEJM199605023341802 8602180
    [Google Scholar]
  7. GoebelC. LoudenC.L. McKennaR.Jr OnughaO. WachtelA. LongT. Diagnosis of non-small cell lung cancer for early stage asymptomatic patients.Cancer Genomics Proteomics201916422924410.21873/cgp.20128 31243104
    [Google Scholar]
  8. ChenZ. HuangL. ZhuB. Assessment of seven clinical tumor markers in diagnosis of non-small-cell lung cancer.Dis. Markers201820181710.1155/2018/9845123 30647803
    [Google Scholar]
  9. SculierJ-P. Moro-SibilotD. First- and second-line therapy for advanced nonsmall cell lung cancer.Eur. Respir. J.200933491593010.1183/09031936.00132008 19336594
    [Google Scholar]
  10. ZerA. LeighlN. Promising targets and current clinical trials in metastatic non-squamous NSCLC.Front. Oncol.2014432910.3389/fonc.2014.00329 25505733
    [Google Scholar]
  11. MinguetJ. SmithK.H. BramlageP. Targeted therapies for treatment of non‐small cell lung cancer—Recent advances and future perspectives.Int. J. Cancer2016138112549256110.1002/ijc.29915 26537995
    [Google Scholar]
  12. HirshV. Next-generation covalent irreversible kinase inhibitors in NSCLC: Focus on afatinib.BioDrugs201529316718310.1007/s40259‑015‑0130‑9 26123538
    [Google Scholar]
  13. SchmidS. LiJ.J.N. LeighlN.B. Mechanisms of osimertinib resistance and emerging treatment options.Lung Cancer202014712312910.1016/j.lungcan.2020.07.014 32693293
    [Google Scholar]
  14. EnoM.S. BrubakerJ.D. CampbellJ.E. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer.J. Med. Chem.202265149662967710.1021/acs.jmedchem.2c00704 35838760
    [Google Scholar]
  15. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  16. ZhongW.Z. YanH.H. ChenK.N. Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer: Final overall survival analysis of the EMERGING-CTONG 1103 randomised phase II trial.Signal Transduct. Target. Ther.2023817610.1038/s41392‑022‑01286‑3 36823150
    [Google Scholar]
  17. WangY. YangN. ZhangY. Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S Triple mutations by brigatinib and cetuximab combination therapy.J. Thorac. Oncol.20201581369137510.1016/j.jtho.2020.04.014 32353596
    [Google Scholar]
  18. BodorJ.N. BoumberY. BorghaeiH. Biomarkers for immune checkpoint inhibition in non–small cell lung cancer (NSCLC).Cancer2020126226027010.1002/cncr.32468 31691957
    [Google Scholar]
  19. DesaiA. PetersS. Immunotherapy-based combinations in metastatic NSCLC.Cancer Treat. Rev.202311610254510.1016/j.ctrv.2023.102545 37030062
    [Google Scholar]
  20. XiaoB.F. ZhangJ.T. ZhuY.G. Chimeric antigen receptor T-Cell therapy in lung cancer: Potential and challenges.Front. Immunol.20211278277510.3389/fimmu.2021.782775 34790207
    [Google Scholar]
  21. ChmielewskiM. AbkenH. CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors.Cell Rep.201721113205321910.1016/j.celrep.2017.11.063 29241547
    [Google Scholar]
  22. AlexanderM. KimS.Y. ChengH. Update 2020: Management of Non-Small Cell Lung Cancer.Lung2020198689790710.1007/s00408‑020‑00407‑5 33175991
    [Google Scholar]
  23. RotowJ. BivonaT.G. Understanding and targeting resistance mechanisms in NSCLC.Nat. Rev. Cancer2017171163765810.1038/nrc.2017.84 29068003
    [Google Scholar]
  24. ShigematsuH. GazdarA.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers.Int. J. Cancer2006118225726210.1002/ijc.21496 16231326
    [Google Scholar]
  25. PennellN.A. ArcilaM.E. GandaraD.R. WestH. Biomarker testing for patients with advanced non–small cell lung cancer: Real-world issues and tough choices.Am. Soc. Clin. Oncol. Educ. Book2019393953154210.1200/EDBK_237863 31099633
    [Google Scholar]
  26. LeT. GerberD.E. ALK alterations and inhibition in lung cancer.Semin. Cancer Biol.201742818810.1016/j.semcancer.2016.08.007 27637426
    [Google Scholar]
  27. LiangH. WangM. MET oncogene in non-small cell lung cancer: Mechanism of MET dysregulation and agents targeting the HGF/c-Met axis.OncoTargets Ther.2020132491251010.2147/OTT.S231257 32273721
    [Google Scholar]
  28. SehgalK. PatellR. RangachariD. CostaD.B. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors.Transl. Cancer Res.20187S7Suppl. 7S779S78610.21037/tcr.2018.08.11 30327756
    [Google Scholar]
  29. LadanyiM. PaoW. Lung adenocarcinoma: Guiding EGFR-targeted therapy and beyond.Mod. Pathol.200821S2Suppl. 2S16S2210.1038/modpathol.3801018 18437168
    [Google Scholar]
  30. da Cunha SantosG. ShepherdF.A. TsaoM.S. EGFR mutations and lung cancer.Annu. Rev. Pathol.201161496910.1146/annurev‑pathol‑011110‑130206 20887192
    [Google Scholar]
  31. ShigematsuH. LinL. TakahashiT. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.J. Natl. Cancer Inst.200597533934610.1093/jnci/dji055 15741570
    [Google Scholar]
  32. SakuradaA. ShepherdF.A. TsaoM.S. Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: Impact of primary or secondary mutations.Clin. Lung Cancer20067Suppl. 4S138S14410.3816/CLC.2006.s.005 16764754
    [Google Scholar]
  33. ShawA.T. EngelmanJ.A. ALK in lung cancer: Past, present, and future.J. Clin. Oncol.20133181105111110.1200/JCO.2012.44.5353 23401436
    [Google Scholar]
  34. SodaM. ChoiY.L. EnomotoM. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer.Nature2007448715356156610.1038/nature05945 17625570
    [Google Scholar]
  35. GainorJ.F. ShawA.T. Novel targets in non-small cell lung cancer: ROS1 and RET fusions.Oncologist201318786587510.1634/theoncologist.2013‑0095 23814043
    [Google Scholar]
  36. RossiG. JocolléG. ContiA. Detection of ROS1 rearrangement in non-small cell lung cancer: Current and future perspectives.Lung Cancer20178455510.2147/LCTT.S120172 28740441
    [Google Scholar]
  37. LinJ.J. ShawA.T. Recent advances in targeting ROS1 in lung cancer.J. Thorac. Oncol.201712111611162510.1016/j.jtho.2017.08.002 28818606
    [Google Scholar]
  38. DrusboskyL.M. RodriguezE. DawarR. IkpeazuC.V. Therapeutic strategies in RET gene rearranged non-small cell lung cancer.J. Hematol. Oncol.20211415010.1186/s13045‑021‑01063‑9 33771190
    [Google Scholar]
  39. DabirS. BabakoohiS. KlugeA. RET mutation and expression in small-cell lung cancer.J. Thorac. Oncol.2014991316132310.1097/JTO.0000000000000234 25122427
    [Google Scholar]
  40. BlackR.C. KhurshidH. NSCLC: An update of driver mutations, their role in pathogenesis and clinical significance.R.I. Med. J.201598102528
    [Google Scholar]
  41. O’LearyC.G. AndelkovicV. LadwaR. Targeting BRAF mutations in non-small cell lung cancer.Transl. Lung Cancer Res.2019861119112410.21037/tlcr.2019.10.22 32010589
    [Google Scholar]
  42. YanN. GuoS. ZhangH. ZhangZ. ShenS. LiX. BRAF-mutated non-small cell lung cancer: Current treatment status and future perspective.Front. Oncol.20221286304310.3389/fonc.2022.863043 35433454
    [Google Scholar]
  43. BirchmeierC. BirchmeierW. GherardiE. Vande WoudeG.F. Met, metastasis, motility and more.Nat. Rev. Mol. Cell Biol.200341291592510.1038/nrm1261 14685170
    [Google Scholar]
  44. WolfJ. SetoT. HanJ.Y. Capmatinib in MET exon 14–mutated or MET -amplified non–small-cell lung cancer.N. Engl. J. Med.20203831094495710.1056/NEJMoa2002787 32877583
    [Google Scholar]
  45. HaratakeN. SetoT. NTRK fusion-positive non–small-cell lung cancer: The diagnosis and targeted therapy.Clin. Lung Cancer20212211510.1016/j.cllc.2020.10.013 33272813
    [Google Scholar]
  46. VaishnaviA. CapellettiM. LeA.T. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer.Nat. Med.201319111469147210.1038/nm.3352 24162815
    [Google Scholar]
  47. KhederE.S. HongD.S. Emerging targeted therapy for tumors with NTRK fusion proteins.Clin. Cancer Res.201824235807581410.1158/1078‑0432.CCR‑18‑1156 29986850
    [Google Scholar]
  48. HeistR.S. Mino-KenudsonM. SequistL.V. FGFR1 amplification in squamous cell carcinoma of the lung.J. Thorac. Oncol.20127121775178010.1097/JTO.0b013e31826aed28 23154548
    [Google Scholar]
  49. ZhouZ. LiuZ. OuQ. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases.Cancer Biol. Med.202118249050110.20892/j.issn.2095‑3941.2020.0120 33710807
    [Google Scholar]
  50. MartinucarA. NakasA. PillingJ. WestK. WallerD. A case-matched study of anatomical segmentectomy versus lobectomy for stage I lung cancer in high-risk patients.Eur. J. Cardiothorac. Surg.200527467567910.1016/j.ejcts.2005.01.006 15784373
    [Google Scholar]
  51. BillmeierS.E. AyanianJ.Z. ZaslavskyA.M. NerenzD.R. JaklitschM.T. RogersS.O. Predictors and outcomes of limited resection for early-stage non-small cell lung cancer.J. Natl. Cancer Inst.2011103211621162910.1093/jnci/djr387 21960708
    [Google Scholar]
  52. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.013 31378236
    [Google Scholar]
  53. LepreC.A. LippardS.J. Interaction of platinum antitumor compounds with DNA.In: Nucleic Acids and Molecular Biology. Springer Berlin Heidelberg: Berlin, Heidelberg: Eckstein, F., Lilley, D. M. J., Eds.; Nucleic Acids and Molecular Biology;1990493810.1007/978‑3‑642‑84150‑7_2
    [Google Scholar]
  54. GoodsellD.S. The molecular perspective.Cisplatin. Stem Cells200624351451510.1634/stemcells.2006‑CSC2 16582013
    [Google Scholar]
  55. KosmidisP. Chemotherapy in NSCLC: Historical review.Lung Cancer200238Suppl. 3192210.1016/S0169‑5002(02)00261‑1 12468139
    [Google Scholar]
  56. LilenbaumR.C. LangenbergP. DickersinK. Single agent versus combination chemotherapy in patients with advanced nonsmall cell lung carcinoma.Cancer199882111612610.1002/(SICI)1097‑0142(19980101)82:1<116:AID‑CNCR14>3.0.CO;2‑5 9428487
    [Google Scholar]
  57. AltahaR. LiangX. YuJ.J. ReedE. Excision repair cross complementing-group 1: Gene expression and platinum resistance.Int. J. Mol. Med.2004146959970 15547660
    [Google Scholar]
  58. BeplerG. KusmartsevaI. SharmaS. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer.J. Clin. Oncol.200624294731473710.1200/JCO.2006.06.1101 16966686
    [Google Scholar]
  59. ShaoH. TangH. SalavaggioneO.E. Improved response to nab-paclitaxel compared with cremophor-solubilized paclitaxel is independent of secreted protein acidic and rich in cysteine expression in non-small cell lung cancer.J. Thorac. Oncol.201166998100510.1097/JTO.0b013e318217b739 21532503
    [Google Scholar]
  60. EljackN.D. MaH.Y.M. DruckerJ. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin.Metallomics20146112126213310.1039/C4MT00238E 25306996
    [Google Scholar]
  61. BasuA. KrishnamurthyS. Cellular responses to Cisplatin-induced DNA damage.J. Nucleic Acids2010201011610.4061/2010/182894 20811617
    [Google Scholar]
  62. StoverE.H. KonstantinopoulosP.A. MatulonisU.A. SwisherE.M. Biomarkers of response and resistance to DNA repair targeted therapies.Clin. Cancer Res.201622235651566010.1158/1078‑0432.CCR‑16‑0247 27678458
    [Google Scholar]
  63. JainA. JahagirdarD. NilenduP. SharmaN.K. Molecular approaches to potentiate cisplatin responsiveness in carcinoma therapeutics.Expert Rev. Anticancer Ther.201717981582510.1080/14737140.2017.1356231 28705091
    [Google Scholar]
  64. DasariS. Bernard TchounwouP. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  65. KongF.M. ZhaoJ. WangJ. Faivre-FinnC. Radiation dose effect in locally advanced non-small cell lung cancer.J. Thorac. Dis.201464336347 24688778
    [Google Scholar]
  66. ChanC. LangS. RowbottomC. GuckenbergerM. Faivre-FinnC. Intensity-modulated radiotherapy for lung cancer: current status and future developments.J. Thorac. Oncol.20149111598160810.1097/JTO.0000000000000346 25436795
    [Google Scholar]
  67. MartelM. Ten HakenR.K. HazukaM.B. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients.Lung Cancer1999241313710.1016/S0169‑5002(99)00019‑7 10403692
    [Google Scholar]
  68. OnishiH. ShiratoH. NagataY. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study.J. Thorac. Oncol.200727Suppl. 3S94S10010.1097/JTO.0b013e318074de34 17603311
    [Google Scholar]
  69. KongF.M. Ten HakenR.K. SchipperM.J. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non–small-cell lung cancer: Long-term results of a radiation dose escalation study.Int. J. Radiat. Oncol. Biol. Phys.200563232433310.1016/j.ijrobp.2005.02.010 16168827
    [Google Scholar]
  70. MachtayM. BaeK. MovsasB. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: An analysis of the Radiation Therapy Oncology Group.Int. J. Radiat. Oncol. Biol. Phys.201282142543410.1016/j.ijrobp.2010.09.004 20980108
    [Google Scholar]
  71. PottersL. KavanaghB. GalvinJ.M. American society for therapeutic radiology and oncology (ASTRO) and american college of radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.201076232633210.1016/j.ijrobp.2009.09.042 20117285
    [Google Scholar]
  72. SinghB. CarpenterG. CoffeyR.J. EGF receptor ligands: Recent advances.F1000 Res.20165227010.12688/f1000research.9025.1 27635238
    [Google Scholar]
  73. YonedaK. ImanishiN. IchikiY. TanakaF. Treatment of non-small cell lung cancer with <i>EGFR</i>-mutations.J. UOEH201941215316310.7888/juoeh.41.153 31292359
    [Google Scholar]
  74. LynchT.J. BellD.W. SordellaR. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2004350212129213910.1056/NEJMoa040938 15118073
    [Google Scholar]
  75. PaoW. MillerV.A. PolitiK.A. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain.PLoS Med.200523e7310.1371/journal.pmed.0020073 15737014
    [Google Scholar]
  76. BalakM.N. GongY. RielyG.J. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors.Clin. Cancer Res.200612216494650110.1158/1078‑0432.CCR‑06‑1570 17085664
    [Google Scholar]
  77. BeanJ. RielyG.J. BalakM. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma.Clin. Cancer Res.200814227519752510.1158/1078‑0432.CCR‑08‑0151 19010870
    [Google Scholar]
  78. SanfordM. ScottL.J. Gefitinib.Drugs200969162303232810.2165/10489100‑000000000‑00000 19852530
    [Google Scholar]
  79. RukazenkovY. SpeakeG. MarshallG. Epidermal growth factor receptor tyrosine kinase inhibitors: Similar but different?Anticancer Drugs2009201085686610.1097/CAD.0b013e32833034e1 19657272
    [Google Scholar]
  80. ShepherdF.A. Rodrigues PereiraJ. CiuleanuT. Erlotinib in previously treated non-small-cell lung cancer.N. Engl. J. Med.2005353212313210.1056/NEJMoa050753 16014882
    [Google Scholar]
  81. GreigS.L. Osimertinib: First global approval.Drugs201676226327310.1007/s40265‑015‑0533‑4 26729184
    [Google Scholar]
  82. SequistL.V. SoriaJ.C. GoldmanJ.W. Rociletinib in EGFR-mutated non-small-cell lung cancer.N. Engl. J. Med.2015372181700170910.1056/NEJMoa1413654 25923550
    [Google Scholar]
  83. DhillonS. Nintedanib: A review of its use as second-line treatment in adults with advanced non-small cell lung cancer of adenocarcinoma histology.Target. Oncol.201510230331010.1007/s11523‑015‑0367‑8 25894578
    [Google Scholar]
  84. LavacchiD. MazzoniF. GiacconeG. Clinical evaluation of dacomitinib for the treatment of metastatic non-small cell lung cancer (NSCLC): Current perspectives.Drug Des. Devel. Ther.2019133187319810.2147/DDDT.S194231 31564835
    [Google Scholar]
  85. SequistL.V. BesseB. LynchT.J. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer.J. Clin. Oncol.201028183076308310.1200/JCO.2009.27.9414 20479403
    [Google Scholar]
  86. OgoshiY. ShienK. YoshiokaT. Anti tumor effect of neratinib against lung cancer cells harboring HER2 oncogene alterations.Oncol. Lett.20191732729273610.3892/ol.2019.9908 30854046
    [Google Scholar]
  87. ChuangJ.C. NealJ.W. Crizotinib as first line therapy for advanced ALK-positive non-small cell lung cancers.Transl. Lung Cancer Res.20154563964110.3978/j.issn.2218‑6751.2015.03.06 26629437
    [Google Scholar]
  88. PaikJ. DhillonS. Alectinib: A review in advanced, ALK-positive NSCLC.Drugs201878121247125710.1007/s40265‑018‑0952‑0 30030733
    [Google Scholar]
  89. DeeksE.D. Ceritinib: A review in ALK-positive advanced NSCLC.Target. Oncol.201611569370010.1007/s11523‑016‑0460‑7 27699584
    [Google Scholar]
  90. BronteG. CafaroA. PasiniL. Brigatinib in the first-line treatment of ALK+ metastatic NSCLC: Safety and efficacy.Expert Rev. Anticancer Ther.202121880981710.1080/14737140.2021.1923485 33905667
    [Google Scholar]
  91. DrilonA. TanD.S.W. LassenU.N. Efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase fusion–positive lung cancers.JCO Precis. Oncol.202266e210041810.1200/PO.21.00418 35085007
    [Google Scholar]
  92. Sartore-BianchiA. PizzutiloE.G. MarrapeseG. TosiF. CereaG. SienaS. Entrectinib for the treatment of metastatic NSCLC: Safety and efficacy.Expert Rev. Anticancer Ther.202020533334110.1080/14737140.2020.1747439 32223357
    [Google Scholar]
  93. KawamuraT. MurakamiH. Dabrafenib in patients with BRAF-mutated non-small cell lung cancer.Transl. Cancer Res.20165S2S342S34410.21037/tcr.2016.07.41
    [Google Scholar]
  94. DrilonA. RekhtmanN. ArcilaM. Cabozantinib in patients with advanced RET -rearranged non-small-cell lung cancer: An open-label, single-centre, phase 2, single-arm trial.Lancet Oncol.201617121653166010.1016/S1470‑2045(16)30562‑9 27825636
    [Google Scholar]
  95. YohK. SetoT. SatouchiM. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): An open-label, multicentre phase 2 trial.Lancet Respir. Med.201751425010.1016/S2213‑2600(16)30322‑8 27825616
    [Google Scholar]
  96. DrilonA. OxnardG.R. TanD.S.W. Efficacy of selpercatinib in RET fusion–positive non–small-cell lung cancer.N. Engl. J. Med.2020383981382410.1056/NEJMoa2005653 32846060
    [Google Scholar]
  97. KimJ. BradfordD. LarkinsE. FDA approval summary: Pralsetinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions.Clin. Cancer Res.202127205452545610.1158/1078‑0432.CCR‑21‑0967 34045295
    [Google Scholar]
  98. RobertC. KaraszewskaB. SchachterJ. Improved overall survival in melanoma with combined dabrafenib and trametinib.N. Engl. J. Med.20153721303910.1056/NEJMoa1412690 25399551
    [Google Scholar]
  99. SyedY.Y. Lorlatinib: First global approval.Drugs2019791939810.1007/s40265‑018‑1041‑0 30604291
    [Google Scholar]
  100. SkoulidisF. LiB.T. DyG.K. Sotorasib for lung cancers with KRAS p.G12C mutation.N. Engl. J. Med.2021384252371238110.1056/NEJMoa2103695 34096690
    [Google Scholar]
  101. GonzalvezF. VincentS. BakerT.E. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non–small cell lung cancer.Cancer Discov.20211171672168710.1158/2159‑8290.CD‑20‑1683 33632773
    [Google Scholar]
  102. HerbstR.S. MajemM. BarlesiF. COAST: An open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non–small-cell lung cancer.J. Clin. Oncol.202240293383339310.1200/JCO.22.00227 35452273
    [Google Scholar]
  103. ZhangP. DaiJ. SunF. Neoadjuvant sintilimab and chemotherapy for resectable stage IIIA non-small cell lung cancer.Ann. Thorac. Surg.2022114394995810.1016/j.athoracsur.2022.01.039 35176262
    [Google Scholar]
  104. SarivalasisA. BoudousquiéC. BalintK. A phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma.J. Transl. Med.201917139110.1186/s12967‑019‑02133‑w 31771601
    [Google Scholar]
  105. AoL. FangS. ZhangK. Sequence-dependent synergistic effect of aumolertinib-pemetrexed combined therapy on EGFR-mutant non-small-cell lung carcinoma with pre-clinical and clinical evidence.J. Exp. Clin. Cancer Res.202241116310.1186/s13046‑022‑02369‑3 35501907
    [Google Scholar]
  106. ZhangF.L. GaoE.Y. ShuR.B. Human recombinant endostatin combined with cisplatin based doublets in treating patients with advanced NSCLC and evaluation by CT perfusion imaging.Asian Pac. J. Cancer Prev.201516156765676810.7314/APJCP.2015.16.15.6765 26434908
    [Google Scholar]
  107. FordeP.M. SpicerJ. LuS. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer.N. Engl. J. Med.2022386211973198510.1056/NEJMoa2202170 35403841
    [Google Scholar]
  108. LiF. DengL. JacksonK.R. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations.J. Immunother. Cancer202197e00253110.1136/jitc‑2021‑002531 34244308
    [Google Scholar]
  109. HeymachJ.V. MitsudomiT. HarpoleD. Design and rationale for a phase III, double-blind, placebo-controlled study of neoadjuvant durvalumab + chemotherapy followed by adjuvant durvalumab for the treatment of patients with resectable stages II and III non-small-cell lung cancer: The AEGEAN trial.Clin. Lung Cancer2022233e247e25110.1016/j.cllc.2021.09.010 34819266
    [Google Scholar]
  110. ZangX. LokeP. KimJ. MurphyK. WaitzR. AllisonJ.P. B7x: A widely expressed B7 family member that inhibits T cell activation.Proc. Natl. Acad. Sci. USA200310018103881039210.1073/pnas.1434299100 12920180
    [Google Scholar]
  111. SharpeA.H. FreemanG.J. The B7–CD28 superfamily.Nat. Rev. Immunol.20022211612610.1038/nri727 11910893
    [Google Scholar]
  112. SundarR. SoongR. ChoB.C. BrahmerJ.R. SooR.A. Immunotherapy in the treatment of non-small cell lung cancer.Lung Cancer201485210110910.1016/j.lungcan.2014.05.005 24880938
    [Google Scholar]
  113. SchreiberR.D. OldL.J. SmythM.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion.Science201133160241565157010.1126/science.1203486 21436444
    [Google Scholar]
  114. VeselyM.D. KershawM.H. SchreiberR.D. SmythM.J. Natural innate and adaptive immunity to cancer.Annu. Rev. Immunol.201129123527110.1146/annurev‑immunol‑031210‑101324 21219185
    [Google Scholar]
  115. FerraraN. Vascular endothelial growth factor as a target for anticancer therapy.Oncologist20049S1Suppl. 121010.1634/theoncologist.9‑suppl_1‑2 15178810
    [Google Scholar]
  116. RussoA.E. PrioloD. AntonelliG. LibraM. MccubreyJ.A. FerraùF. Bevacizumab in the treatment of NSCLC: Patient selection and perspectives.Lung Cancer2017825926910.2147/LCTT.S110306 29276417
    [Google Scholar]
  117. WangX. WangG. WangZ. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway.Mol. Immunol.2019109202610.1016/j.molimm.2019.02.009 30851633
    [Google Scholar]
  118. QuatriniL. MariottiF.R. MunariE. TuminoN. VaccaP. MorettaL. The immune checkpoint PD-1 in natural killer cells: Expression, function and targeting in tumour immunotherapy.Cancers20201211328510.3390/cancers12113285 33172030
    [Google Scholar]
  119. FranciscoL.M. SageP.T. SharpeA.H. The PD‐1 pathway in tolerance and autoimmunity.Immunol. Rev.2010236121924210.1111/j.1600‑065X.2010.00923.x 20636820
    [Google Scholar]
  120. CarrenoB.M. BennettF. ChauT.A. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression.J. Immunol.200016531352135610.4049/jimmunol.165.3.1352 10903737
    [Google Scholar]
  121. BallyA.P.R. AustinJ.W. BossJ.M. Genetic and epigenetic regulation of PD-1 expression.J. Immunol.201619662431243710.4049/jimmunol.1502643 26945088
    [Google Scholar]
  122. SharpeA.H. WherryE.J. AhmedR. FreemanG.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection.Nat. Immunol.20078323924510.1038/ni1443 17304234
    [Google Scholar]
  123. ChemnitzJ.M. ParryR.V. NicholsK.E. JuneC.H. RileyJ.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation.J. Immunol.2004173294595410.4049/jimmunol.173.2.945 15240681
    [Google Scholar]
  124. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  125. LeachD.R. KrummelM.F. AllisonJ.P. Enhancement of antitumor immunity by CTLA-4 blockade.Science199627152561734173610.1126/science.271.5256.1734 8596936
    [Google Scholar]
  126. BuquéA. BloyN. ArandaF. Trial watch: Immunomodulatory monoclonal antibodies for oncological indications.OncoImmunology201544e100881410.1080/2162402X.2015.1008814 26137403
    [Google Scholar]
  127. SynN.L. TengM.W.L. MokT.S.K. SooR.A. De-novo and acquired resistance to immune checkpoint targeting.Lancet Oncol.20171812e731e74110.1016/S1470‑2045(17)30607‑1 29208439
    [Google Scholar]
  128. SocinskiM.A. JotteR.M. CappuzzoF. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC.N. Engl. J. Med.2018378242288230110.1056/NEJMoa1716948 29863955
    [Google Scholar]
  129. HellmannM.D. Paz-AresL. Bernabe CaroR. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer.N. Engl. J. Med.2019381212020203110.1056/NEJMoa1910231 31562796
    [Google Scholar]
  130. CaponnettoS. DraghiA. BorchT.H. Cancer immunotherapy in patients with brain metastases.Cancer Immunol. Immunother.201867570371110.1007/s00262‑018‑2146‑8 29520474
    [Google Scholar]
  131. DoniaM. PedersenM. SvaneI.M. Cancer immunotherapy in patients with preexisting autoimmune disorders.Semin. Immunopathol.201739333333710.1007/s00281‑016‑0595‑8 27730287
    [Google Scholar]
  132. StewartR. MorrowM. HammondS.A. Identification and characterization of MEDI4736, an antagonistic anti–pd-L1 monoclonal antibody.Cancer Immunol. Res.2015391052106210.1158/2326‑6066.CIR‑14‑0191 25943534
    [Google Scholar]
  133. PostowM.A. CallahanM.K. WolchokJ.D. Immune checkpoint blockade in cancer therapy.J. Clin. Oncol.201533171974198210.1200/JCO.2014.59.4358 25605845
    [Google Scholar]
  134. GogishviliM. MelkadzeT. MakharadzeT. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: A randomized, controlled, double-blind phase 3 trial.Nat. Med.202228112374238010.1038/s41591‑022‑01977‑y 36008722
    [Google Scholar]
  135. RibasA. Tumor immunotherapy directed at PD-1.N. Engl. J. Med.2012366262517251910.1056/NEJMe1205943 22658126
    [Google Scholar]
  136. JohnsonD.B. PengC. SosmanJ.A. Nivolumab in melanoma: Latest evidence and clinical potential.Ther. Adv. Med. Oncol.2015729710610.1177/1758834014567469 25755682
    [Google Scholar]
  137. NasserN.J. GorenbergM. AgbaryaA. First line immunotherapy for non-small cell lung cancer.Pharmaceuticals2020131137310.3390/ph13110373 33171686
    [Google Scholar]
  138. TarhiniA. IqbalF. CTLA-4 blockade: Therapeutic potential in cancer treatments.OncoTargets Ther.20103152510.2147/OTT.S4833 20616954
    [Google Scholar]
  139. IbarrondoF.J. Comin-AnduixB. Escuin-OrdinasH. Tremelimumab: Research and clinical development.OncoTargets Ther.20162016176710.2147/OTT.S65802
    [Google Scholar]
  140. PoustJ. Targeting metastatic melanoma.Am J Health Syst Pharm200865(24_Supplement_9)(Suppl. 9): S9-S15.10.2146/ajhp080461 19052265
    [Google Scholar]
  141. PlanchardD. YokoiT. McCleodM.J. A phase III study of durvalumab (MEDI4736) with or without tremelimumab for previously treated patients with advanced NSCLC: Rationale and protocol design of the ARCTIC study.Clin. Lung Cancer2016173232236.e110.1016/j.cllc.2016.03.003 27265743
    [Google Scholar]
  142. Di CostanzoF. MazzoniF. Micol MelaM. Bevacizumab in non-small cell lung cancer.Drugs200868673774610.2165/00003495‑200868060‑00002 18416583
    [Google Scholar]
  143. ArrietaO. Zatarain-BarrónZ.L. CardonaA.F. CarmonaA. Lopez-MejiaM. Ramucirumab in the treatment of non-small cell lung cancer.Expert Opin. Drug Saf.201716563764410.1080/14740338.2017.1313226 28395526
    [Google Scholar]
  144. HirschF. GenovaC. Clinical potential of necitumumab in non-small cell lung carcinoma.OncoTargets Ther.201695427543710.2147/OTT.S114039 27621656
    [Google Scholar]
  145. LiS. KussieP. FergusonK.M. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8.Structure200816221622710.1016/j.str.2007.11.009 18275813
    [Google Scholar]
  146. ThakurM. WozniakA. Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma.Lung Cancer20178131910.2147/LCTT.S104207 28293124
    [Google Scholar]
  147. LiB.T. SmitE.F. GotoY. Trastuzumab deruxtecan in HER2 -mutant non–small-cell lung cancer.N. Engl. J. Med.2022386324125110.1056/NEJMoa2112431 34534430
    [Google Scholar]
  148. PetriniI. GiacconeG. Amivantamab in the treatment of metastatic NSCLC: Patient selection and special considerations.OncoTargets Ther.2022151197121010.2147/OTT.S329095 36246734
    [Google Scholar]
  149. Paz-AresL.G. CiuleanuT.E. PluzanskiA. Safety of first-line nivolumab plus ipilimumab in patients with metastatic NSCLC: A pooled analysis of checkmate 227, checkmate 568, and checkmate 817.J. Thorac. Oncol.2023181799210.1016/j.jtho.2022.08.014 36049658
    [Google Scholar]
  150. WangZ. WuL. LiB. Toripalimab plus chemotherapy for patients with treatment-naive advanced non–small-cell lung cancer: A multicenter randomized phase III trial (CHOICE-01).J. Clin. Oncol.202341365166310.1200/JCO.22.00727 36206498
    [Google Scholar]
  151. SunD. LiuJ. ZhouH. Classification of tumor immune microenvironment according to programmed death-ligand 1 expression and immune infiltration predicts response to immunotherapy plus chemotherapy in advanced patients with NSCLC.J. Thorac. Oncol.202318786988110.1016/j.jtho.2023.03.012 36948245
    [Google Scholar]
  152. LuS. WuL. JianH. Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): Second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Respir. Med.202311762463610.1016/S2213‑2600(23)00135‑2 37156249
    [Google Scholar]
  153. GravekampC. Cancer vaccines in old age.Exp. Gerontol.200742544145010.1016/j.exger.2006.11.009 17197144
    [Google Scholar]
  154. KellyR.J. GiacconeG. Lung cancer vaccines.Cancer J.201117530230810.1097/PPO.0b013e318233e6b4 21952280
    [Google Scholar]
  155. NemunaitisJ. DillmanR.O. SchwarzenbergerP.O. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer.J. Clin. Oncol.200624294721473010.1200/JCO.2005.05.5335 16966690
    [Google Scholar]
  156. NemunaitisJ. NemunaitisM. SenzerN. Phase II trial of Belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients.Cancer Gene Ther.200916862062410.1038/cgt.2009.15 19287371
    [Google Scholar]
  157. GiacconeG. BazhenovaL.A. NemunaitisJ. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer.Eur. J. Cancer201551162321232910.1016/j.ejca.2015.07.035 26283035
    [Google Scholar]
  158. WardS. CaseyD. LabartheM.C. Immunotherapeutic potential of whole tumour cells.Cancer Immunol. Immunother.200251735135710.1007/s00262‑002‑0286‑2 12192534
    [Google Scholar]
  159. LimacherJ.M. QuoixE. TG4010: A therapeutic vaccine against MUC1 expressing tumors.OncoImmunology20121579179210.4161/onci.19863 22934285
    [Google Scholar]
  160. VaradhacharyA. WolfJ.S. PetrakK. Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy.Int. J. Cancer2004111339840310.1002/ijc.20271 15221967
    [Google Scholar]
  161. RamalingamS. CrawfordJ. ChangA. Talactoferrin alfa versus placebo in patients with refractory advanced non-small-cell lung cancer (FORTIS-M trial).Ann. Oncol.201324112875288010.1093/annonc/mdt371 24050956
    [Google Scholar]
  162. VenanziF. ShifrinV. ShermanM.Y. Broad-spectrum anti-tumor and anti-metastatic DNA vaccine based on p62-encoding vector.Oncotarget20134101829183510.18632/oncotarget.1397 24121124
    [Google Scholar]
  163. PonomarenkoD.M. KlimovaI.D. ChapyginaY.A. Safety and efficacy of p62 DNA vaccine ELENAGEN in a first-in-human trial in patients with advanced solid tumors.Oncotarget2017832537305373910.18632/oncotarget.16574 28881846
    [Google Scholar]
  164. ChenJ. ChenL. ZhangH. QuanY. Enhancing the antitumour-specific immunity of a lung DNA vaccine in vivo by fusion expression of MAGE-A3 and soluble PD-1.Biotechnol. Biotechnol. Equip.20173151064106910.1080/13102818.2017.1343100
    [Google Scholar]
  165. EmensL JaffeeE. Cancer vaccines: An old idea comes of age.Cancer Biol Ther20032sup 116016710.4161/cbt.217
    [Google Scholar]
  166. GoldmanB. DeFrancescoL. The cancer vaccine roller coaster.Nat. Biotechnol.200927212913910.1038/nbt0209‑129 19204689
    [Google Scholar]
  167. CarpenitoC. MiloneM.C. HassanR. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc. Natl. Acad. Sci. USA200910693360336510.1073/pnas.0813101106 19211796
    [Google Scholar]
  168. SrivastavaS. RiddellS.R. Engineering CAR-T cells: Design concepts.Trends Immunol.201536849450210.1016/j.it.2015.06.004 26169254
    [Google Scholar]
  169. ChenJ. López-MoyadoI.F. SeoH. NR4A transcription factors limit CAR T cell function in solid tumours.Nature2019567774953053410.1038/s41586‑019‑0985‑x 30814732
    [Google Scholar]
  170. YeL. LouY. LuL. FanX. Mesothelin targeted second generation CAR T cells inhibit growth of mesothelin expressing tumors in vivo.Exp. Ther. Med.201810.3892/etm.2018.7015 30651858
    [Google Scholar]
  171. LiH. HuangY. JiangD.Q. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.Cell Death Dis.20189217710.1038/s41419‑017‑0238‑6 29415996
    [Google Scholar]
  172. SrivastavaS. FurlanS.N. Jaeger-RuckstuhlC.A. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade.Cancer Cell2021392193208.e1010.1016/j.ccell.2020.11.005 33357452
    [Google Scholar]
  173. WeiX. LaiY. LiJ. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells.OncoImmunology201763e128472210.1080/2162402X.2017.1284722 28405515
    [Google Scholar]
  174. McKennaM.K. EnglischA. BrennerB. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity.Mol. Ther.20212951808182010.1016/j.ymthe.2021.02.004 33571680
    [Google Scholar]
  175. LiuM. WangX. LiW. Targeting PD-L1 in non-small cell lung cancer using CAR T cells.Oncogenesis2020987210.1038/s41389‑020‑00257‑z 32792499
    [Google Scholar]
  176. WangL.C.S. LoA. SchollerJ. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity.Cancer Immunol. Res.20142215416610.1158/2326‑6066.CIR‑13‑0027 24778279
    [Google Scholar]
  177. LiB. DaiC. WangL. A novel drug repurposing approach for non-small cell lung cancer using deep learning.PLoS One2020156e023311210.1371/journal.pone.0233112 32525938
    [Google Scholar]
  178. MurrayJ.C. LevyB. Repurposed drugs trials by cancer type.Cancer J.201925212713310.1097/PPO.0000000000000371 30896535
    [Google Scholar]
  179. MarroneK.A. ZhouX. FordeP.M. A randomized phase II study of metformin plus paclitaxel/carboplatin/bevacizumab in patients with chemotherapy-naïve advanced or metastatic nonsquamous non-small cell lung cancer.Oncologist201823785986510.1634/theoncologist.2017‑0465 29487223
    [Google Scholar]
  180. UngM.H. MacKenzieT.A. OnegaT.L. AmosC.I. ChengC. Statins associate with improved mortality among patients with certain histological subtypes of lung cancer.Lung Cancer2018126899610.1016/j.lungcan.2018.10.022 30527197
    [Google Scholar]
  181. BivonaT.G. DoebeleR.C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers.Nat. Med.201622547247810.1038/nm.4091 27149220
    [Google Scholar]
  182. LiJ. JiangK. QiuX. Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer.BMB Rep.2014471333810.5483/BMBRep.2014.47.1.069 24209634
    [Google Scholar]
  183. RobbinsD. ZhaoY. New aspects of mitochondrial uncoupling proteins (UCPs) and their roles in tumorigenesis.Int. J. Mol. Sci.20111285285529310.3390/ijms12085285 21954358
    [Google Scholar]
  184. BlakelyC.M. PazarentzosE. OlivasV. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer.Cell Rep.20151119811010.1016/j.celrep.2015.03.012 25843712
    [Google Scholar]
  185. EngelmanJ.A. ZejnullahuK. MitsudomiT. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.Science200731658271039104310.1126/science.1141478 17463250
    [Google Scholar]
  186. LeiT. XuT. ZhangN. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis.Pharmacol. Res.202318810666810.1016/j.phrs.2023.106668 36681369
    [Google Scholar]
  187. LitoP. RosenN. SolitD.B. Tumor adaptation and resistance to RAF inhibitors.Nat. Med.201319111401140910.1038/nm.3392 24202393
    [Google Scholar]
  188. Van AllenE.M. WagleN. SuckerA. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.Cancer Discov.2014419410910.1158/2159‑8290.CD‑13‑0617 24265153
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947276538240129053601
Loading
/content/journals/cctr/10.2174/0115733947276538240129053601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test