Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Chemotherapy is a multimodal strategy that entails very complicated regimens to treat cancer. Despite the better effectiveness and increased longevity afforded by chemotherapy, its side effects and long-term sequelae continue to be significant causes of worry for both physicians and patients. The patients often experience nausea, vomiting, cardiac toxicity, lung toxicity, hepatotoxicity, nephrotoxicity, ., as adverse drug reactions (ADRs). The ignorance of toxicity caused by the current medications can cause long-term consequences or can cause new side effects that only make patients feel worse. These side effects need to be facilitated to ensure the patient's safety. New methods to increase tolerance and lessen the impact of cancer chemotherapy are urgently required. The current study is focused on various toxicities associated with chemotherapy and their amelioration by substituent medications or methods.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947274568231121173724
2024-01-23
2025-05-09
Loading full text...

Full text loading...

References

  1. StewartB.W. KleihuesP. World cancer report.LyonIARC press2003
    [Google Scholar]
  2. GhonchehM. PournamdarZ. SalehiniyaH. Incidence and mortality and epidemiology of breast cancer in the world.Asian Pac. J. Cancer Prev.201617Suppl. 3434610.7314/APJCP.2016.17.S3.43 27165206
    [Google Scholar]
  3. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  4. PengG. HakimM. BrozaY.Y. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors.Br. J. Cancer2010103454255110.1038/sj.bjc.6605810 20648015
    [Google Scholar]
  5. ChuE SartorelliAC Cancer chemotherapy. Lange’s Basic.Clin Pharmacol2018948976
    [Google Scholar]
  6. Sources and effects of ionizing radiation, united nations scientific committee on the effects of atomic radiation (UNSCEAR) 2008 report In: Report to the general assembly, with scientific annexes A and B-sources.United Nations2008Oct 7.
    [Google Scholar]
  7. MeadowsA.T. FriedmanD.L. NegliaJ.P. Second neoplasms in survivors of childhood cancer: Findings from the Childhood Cancer Survivor Study cohort.J. Clin. Oncol.200927142356236210.1200/JCO.2008.21.1920 19255307
    [Google Scholar]
  8. GlenC.D. DubrovaY.E. Exposure to anticancer drugs can result in transgenerational genomic instability in mice.Proc. Natl. Acad. Sci. USA201210982984298810.1073/pnas.1119396109 22308437
    [Google Scholar]
  9. UllahM.F. Cancer multidrug resistance (MDR): A major impediment to effective chemotherapy.Asian Pac. J. Cancer Prev.20089116 18439063
    [Google Scholar]
  10. RangH.P. DaleM.M. RitterJ.M. Anticancer drugs, text book of pharmacology.Churchill Livingstone1999
    [Google Scholar]
  11. GuichardN. GuillarmeD. BonnabryP. Fleury-SouverainS. Antineoplastic drugs and their analysis: A state of the art review.Analyst2017142132273232110.1039/C7AN00367F 28560370
    [Google Scholar]
  12. LavianoA. Rossi FanelliF. Toxicity in chemotherapy--when less is more.N. Engl. J. Med.2012366242319232010.1056/NEJMcibr1202395 22694004
    [Google Scholar]
  13. AsifM. MohdI. Prospects of medicinal plants derived nutraceuticals: A re-emerging new era of medicine and health aid.Prog Chem Biochem Res201924150169
    [Google Scholar]
  14. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.011 16009521
    [Google Scholar]
  15. NirmalaM.J. SamundeeswariA. SankarP.D. Natural plant resources in anticancer therapy-A review.Res. Plant Biol.201113114
    [Google Scholar]
  16. ChuiC.H. GambariR. LauF.Y. TeoI.T. Anticancer potential of traditional Chinese herbal medicines and microbial fermentation products.Minerva Biotecnol.2005173183
    [Google Scholar]
  17. MajoloF. de Oliveira Becker DelwingL.K. MarmittD.J. Bustamante-FilhoI.C. GoettertM.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery.Phytochem. Lett.20193119620710.1016/j.phytol.2019.04.003
    [Google Scholar]
  18. YanagawaH. KoyamaY. KobayashiY. KobayashiH. ShimadaS. The development of a novel antioxidant-based antiemetic drug to improve quality of life during anticancer therapy.Biochem. Biophys. Rep.20223210136310.1016/j.bbrep.2022.101363 36237446
    [Google Scholar]
  19. WorkalemahuG. AbdelaO.A. YenitM.K. Chemotherapy-related adverse drug reaction and associated factors among hospitalized paediatric cancer patients at hospitals in North-West Ethiopia.Drug Healthc. Patient Saf.20201219520510.2147/DHPS.S254644 33177883
    [Google Scholar]
  20. WatchaM.F. WhiteP.F. Postoperative nausea and vomiting. Its etiology, treatment, and prevention.Anesthesiology199277116218410.1097/00000542‑199207000‑00023 1609990
    [Google Scholar]
  21. SugiyamaM. ShinoharaK. MiyataT. SekiguchiH. Utility of palonosetron for chemotherapy-induced nausea and vomiting in patients with failure of prophylactic antiemetics.J Jpn Assoc Rural Med201867213910.2185/jjrm.67.139
    [Google Scholar]
  22. AaproM. CINV: still troubling patients after all these years.Support. Care Cancer201826S1Suppl. 15910.1007/s00520‑018‑4131‑3 29556808
    [Google Scholar]
  23. AaproM. RuffoP. PanteriR. CostaS. PiovesanaV. Oncologist perspectives on chemotherapy‐induced nausea and vomiting (CINV) management and outcomes: A quantitative market research‐based survey.Cancer Rep.201814e112710.1002/cnr2.1127 32729252
    [Google Scholar]
  24. NavariR.M. Management of chemotherapy-induced nausea and vomiting in pediatric patients.Paediatr. Drugs201719321322210.1007/s40272‑017‑0228‑2 28447301
    [Google Scholar]
  25. JordanK. JahnF. AaproM. Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): A comprehensive review.Ann. Oncol.20152661081109010.1093/annonc/mdv138 25755107
    [Google Scholar]
  26. TanL. LiuJ. LiuX. Clinical research of Olanzapine for prevention of chemotherapy-induced nausea and vomiting.J. Exp. Clin. Cancer Res.200928113110.1186/1756‑9966‑28‑131 19775450
    [Google Scholar]
  27. MeiriE. JhangianiH. VredenburghJ.J. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting.Curr. Med. Res. Opin.200723353354310.1185/030079907X167525 17355735
    [Google Scholar]
  28. GrimisonP. MersiadesA. KirbyA. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: a randomised, placebo-controlled, phase II crossover trial.Ann. Oncol.202031111553156010.1016/j.annonc.2020.07.020 32801017
    [Google Scholar]
  29. RyanJ.L. HecklerC.E. RoscoeJ.A. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: A URCC CCOP study of 576 patients.Support. Care Cancer20122071479148910.1007/s00520‑011‑1236‑3 21818642
    [Google Scholar]
  30. MillerK.D. SiegelR.L. LinC.C. Cancer treatment and survivorship statistics, 2016.CA Cancer J. Clin.201666427128910.3322/caac.21349 27253694
    [Google Scholar]
  31. CardinaleD. BiasilloG. CipollaC.M. Curing cancer, saving the heart: A challenge that cardioncology should not miss.Curr. Cardiol. Rep.20161865110.1007/s11886‑016‑0731‑z 27108361
    [Google Scholar]
  32. MadedduC. DeiddaM. PirasA. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy.J. Cardiovasc. Med.2016171Suppl. 1e12e1810.2459/JCM.0000000000000376 27183520
    [Google Scholar]
  33. BansalN. AdamsM.J. GanatraS. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors.Cardiooncology2019511810.1186/s40959‑019‑0054‑5 32154024
    [Google Scholar]
  34. GuglinM. KrischerJ. TamuraR. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer.J. Am. Coll. Cardiol.201973222859286810.1016/j.jacc.2019.03.495 31171092
    [Google Scholar]
  35. PituskinE. MackeyJ.R. KoshmanS. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–Breast): A randomized trial for the prevention of trastuzumab-associated cardiotoxicity.J. Clin. Oncol.201735887087710.1200/JCO.2016.68.7830 27893331
    [Google Scholar]
  36. HeckS.L. GulatiG. HoffmannP. Effect of candesartan and metoprolol on myocardial tissue composition during anthracycline treatment: The PRADA trial.Eur. Heart J. Cardiovasc. Imaging201819554455210.1093/ehjci/jex159 29106497
    [Google Scholar]
  37. AhmedIA Ameliorating the anticancer drug “Adriamycin” acute Cardiotoxicity by Rosuvastatin and Telmisartan in rats.Iraqi j cancer med gent20147210.29409/ijcmg.v7i2.138
    [Google Scholar]
  38. KayaM.G. OzkanM. GunebakmazO. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: A randomized control study.Int. J. Cardiol.201316752306231010.1016/j.ijcard.2012.06.023 22727976
    [Google Scholar]
  39. TodorovaV. VanderpoolD. BlossomS. Oral glutamine protects against cyclophosphamide-induced cardiotoxicity in experimental rats through increase of cardiac glutathione.Nutrition2009257-881281710.1016/j.nut.2009.01.004 19251394
    [Google Scholar]
  40. LiW. NieS. XieM. ChenY. LiC. ZhangH. A major green tea component, (-)-epigallocatechin-3-gallate, ameliorates doxorubicin-mediated cardiotoxicity in cardiomyocytes of neonatal rats.J. Agric. Food Chem.201058168977898210.1021/jf101277t 20666448
    [Google Scholar]
  41. YuanL. KaplowitzN. Mechanisms of drug-induced liver injury.Clin. Liver Dis.2013174507518vii.10.1016/j.cld.2013.07.002 24099014
    [Google Scholar]
  42. SharifudinS.A. FakuraziS. HidayatM.T. HairuszahI. Aris Mohd MoklasM. ArulselvanP. Therapeutic potential of Moringa oleifera extracts against acetaminophen-induced hepatotoxicity in rats.Pharm. Biol.201351327928810.3109/13880209.2012.720993 23043505
    [Google Scholar]
  43. OmobowaleT.O. OyagbemiA.A. AjufoU.E. Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system.J. Diet. Suppl.201815218319610.1080/19390211.2017.1335822 28718673
    [Google Scholar]
  44. MansourD.F. SalehD.O. MostafaR.E. Genistein ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators.Open Access Maced. J. Med. Sci.20175783684310.3889/oamjms.2017.093 29362606
    [Google Scholar]
  45. ZareiM. ShivanandappaT. Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of Decalepis hamiltonii in mice.Food Chem. Toxicol.20135717918410.1016/j.fct.2013.03.028 23542512
    [Google Scholar]
  46. FamurewaA.C. UfebeO.G. EgedigweC.A. NwankwoO.E. ObajeG.S. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.Biomed. Pharmacother.20178743744210.1016/j.biopha.2016.12.123 28068634
    [Google Scholar]
  47. ElshaterA.E.A. HaridyM.A.M. SalmanM.M.A. FayyadA.S. HammadS. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats.Biomed. Pharmacother.201897535910.1016/j.biopha.2017.10.134 29080458
    [Google Scholar]
  48. BasuA. BhattacharjeeA. SamantaA. BhattacharyaS. Prevention of cyclophosphamide-induced hepatotoxicity and genotoxicity: Effect of an l-cysteine based oxovanadium(IV) complex on oxidative stress and DNA damage.Environ. Toxicol. Pharmacol.201540374775710.1016/j.etap.2015.08.035 26432771
    [Google Scholar]
  49. KabelA.M. AlzahraniA.A. BawazirN.M. KhawtaniR.O. ArabH.H. Targeting the proinflammatory cytokines, oxidative stress, apoptosis and TGF-β1/STAT-3 signaling by irbesartan to ameliorate doxorubicin-induced hepatotoxicity.J. Infect. Chemother.201824862363110.1016/j.jiac.2018.03.010 29753615
    [Google Scholar]
  50. ElbarbaryNS IsmailEAR FarahatRK El-HamamsyM ω-3 fatty acids as an adjuvant therapy ameliorates methotrexate-induced hepatotoxicity in children and adolescents with acute lymphoblastic leukemia: A randomized placebo-controlled study.Nutrition2016321414710.1016/j.nut.2015.06.010 26421385
    [Google Scholar]
  51. SchwaiblmairM. BehrW. HaeckelT. MärklB. FoergW. BerghausT. Drug induced interstitial lung disease.Open Respir. Med. J.201261637410.2174/1874306401206010063 22896776
    [Google Scholar]
  52. YohK. KenmotsuH. YamaguchiY. Severe interstitial lung disease associated with amrubicin treatment.J. Thorac. Oncol.2010591435143810.1097/JTO.0b013e3181e369a8 20683210
    [Google Scholar]
  53. ShahbazM. KamranS.H. AnwarR. Amelioration of bleomycin and methotrexate-induced pulmonary toxicity by serratiopeptidase and fisetin.Nutr. Cancer20217311-122774278410.1080/01635581.2020.1860242 33353415
    [Google Scholar]
  54. BodhankarS.L. KandhareA.D. MohanV. ThakurdesaiP. Glycosides based standardized fenugreek seed extract ameliorates bleomycin-induced liver fibrosis in rats via modulation of endogenous enzymes.J. Pharm. Bioallied Sci.20179318519410.4103/0975‑7406.214688 28979073
    [Google Scholar]
  55. MotawiT.M.K. WilliamM.M. NoohM.M. Abd-ElgawadH.M. Amelioration of cyclophosphamide toxicity via modulation of metabolizing enzymes by avocado (Persea americana) extract.J. Pharm. Pharmacol.202274336737610.1093/jpp/rgab084 34173661
    [Google Scholar]
  56. KilicT. ParlakpinarH. PolatA. Protective and therapeutic effect of molsidomine on bleomycin-induced lung fibrosis in rats.Inflammation20143741167117810.1007/s10753‑014‑9841‑1 24526289
    [Google Scholar]
  57. TangH. GaoL. MaoJ. Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-κB and TGF-β1/Smad-2/-3 pathways.Cell Stress Chaperones201621223924910.1007/s12192‑015‑0654‑4 26577463
    [Google Scholar]
  58. JiY. WangT. WeiZ. Paeoniflorin, the main active constituent of Paeonia lactiflora roots, attenuates bleomycin-induced pulmonary fibrosis in mice by suppressing the synthesis of type I collagen.J. Ethnopharmacol.2013149382583210.1016/j.jep.2013.08.017 23973787
    [Google Scholar]
  59. Haghi-AminjanH. FarhoodB. RahimifardM. The protective role of melatonin in chemotherapy‐induced nephrotoxicity: A systematic review of non-clinical studies.Expert Opin. Drug Metab. Toxicol.201814993795010.1080/17425255.2018.1513492 30118646
    [Google Scholar]
  60. DenkerB. Robles-OsorioM.L. SabathE. Recent advances in diagnosis and treatment of acute kidney injury in patients with cancer.Eur. J. Intern. Med.201122434835410.1016/j.ejim.2011.02.002 21767751
    [Google Scholar]
  61. SalahudeenA.K. BonventreJ.V. Onconephrology.J. Am. Soc. Nephrol.2013241263010.1681/ASN.2012070690 23138480
    [Google Scholar]
  62. SchachtR.G. FeinerH.D. GalloG.R. LiebermanA. BaldwinD.S. Nephrotoxicity of nitrosoureas.Cancer19814861328133410.1002/1097‑0142(19810915)48:6<1328:AID‑CNCR2820480613>3.0.CO;2‑N 7272960
    [Google Scholar]
  63. Heidari-SoreshjaniS. Asadi-SamaniM. YangQ. Saeedi-BoroujeniA. Phytotherapy of nephrotoxicity-induced by cancer drugs: An updated review.J. Nephropathol.20176325426310.15171/jnp.2017.41 28975109
    [Google Scholar]
  64. SahniV. ChoudhuryD. AhmedZ. Chemotherapy-associated renal dysfunction.Nat. Rev. Nephrol.20095845046210.1038/nrneph.2009.97 19564889
    [Google Scholar]
  65. GarnierA.S. DellamaggioreJ. BrillandB. High incidence of amoxicillin-induced crystal nephropathy in patients receiving high dose of intravenous amoxicillin.J. Clin. Med.202097202210.3390/jcm9072022 32605085
    [Google Scholar]
  66. PinheiroF.V. PimentelV.C. De BonaK.S. ScolaG. SalvadorM. FunchalC. Decrease of adenosine deaminase activity and increase of the lipid peroxidation after acute methotrexate treatment in young rats: protective effects of grape seed extract.In: Cell Biochemistry and FunctionCellular biochemistry and its modulation by active agents or disease2010281899410.1002/cbf.1627
    [Google Scholar]
  67. UgurS. UluR. DogukanA. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity.Ren. Fail.201537233233610.3109/0886022X.2014.986005 25594614
    [Google Scholar]
  68. NairC.K.K. JoyJ. Amelioration of cisplatin induced nephrotoxicity in Swiss albino mice by Rubia cordifolia extract.J. Cancer Res. Ther.20084311111510.4103/0973‑1482.43139 18923202
    [Google Scholar]
  69. ChakrabortyP. RoyS.S. SkU.H. BhattacharyaS. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate.Free Radic. Res.201145217718710.3109/10715762.2010.521155 20942565
    [Google Scholar]
  70. HassanH.A. EdreesG.M. El-GamelE.M. El-sayedE.A. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage.Cytotechnology201466341942910.1007/s10616‑013‑9589‑8 23761012
    [Google Scholar]
  71. AnY. XinH. YanW. ZhouX. Amelioration of cisplatin-induced nephrotoxicity by pravastatin in mice.Exp. Toxicol. Pathol.201163321521910.1016/j.etp.2009.12.002 20060696
    [Google Scholar]
  72. QuS. DaiC. LangF. Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats.Antimicrob. Agents Chemother.2019631e01545e1810.1128/AAC.01545‑18 30397060
    [Google Scholar]
  73. ZhaoY. DaiW. Effect of phloretin treatment ameliorated the cisplatin-induced nephrotoxicity and oxidative stress in experimental rats.Pharmacogn. Mag.20201669207
    [Google Scholar]
  74. OkurM.E. Ayla Ş, Karadağ AE, Çiçek Polat D, Demirci S, Seçkin İ. Opuntia ficus indica fruits ameliorate cisplatin-induced nephrotoxicity in mice.Biol. Pharm. Bull.202043583183810.1248/bpb.b19‑01044 32378560
    [Google Scholar]
  75. ScholzJ. FinnerupN.B. AttalN. The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain.Pain20191601535910.1097/j.pain.0000000000001365 30586071
    [Google Scholar]
  76. EdwardsH. MulveyM. BennettM. Cancer-related neuropathic pain.Cancers201911337310.3390/cancers11030373 30884837
    [Google Scholar]
  77. StaffN.P. GrisoldA. GrisoldW. WindebankA.J. Chemotherapy‐induced peripheral neuropathy: A current review.Ann. Neurol.201781677278110.1002/ana.24951 28486769
    [Google Scholar]
  78. WolfS. BartonD. KottschadeL. GrotheyA. LoprinziC. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies.Eur. J. Cancer200844111507151510.1016/j.ejca.2008.04.018 18571399
    [Google Scholar]
  79. ZajączkowskaR Kocot-KępskaM LeppertW WrzosekA MikaJ WordliczekJ. Mechanisms of chemotherapy-induced peripheral neuropathy.Int. J. Mol. Sci.2019206145110.3390/ijms20061451 30909387
    [Google Scholar]
  80. Boyette-DavisJ.A. HouS. AbdiS. DoughertyP.M. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy.Pain Manag. (Lond.)20188536337510.2217/pmt‑2018‑0020 30212277
    [Google Scholar]
  81. FlattersS.J.L. DoughertyP.M. ColvinL.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review.Br. J. Anaesth.2017119473774910.1093/bja/aex229 29121279
    [Google Scholar]
  82. RiveraD.R. GanzP.A. WeyrichM.S. BandosH. MelnikowJ. Chemotherapy-associated peripheral neuropathy in patients with early-stage breast cancer: A systematic review.J. Natl. Cancer Inst.20181102djx14010.1093/jnci/djx140 28954296
    [Google Scholar]
  83. Al-MassriK.F. AhmedL.A. El-AbharH.S. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor.Neurochem. Int.201812016417110.1016/j.neuint.2018.08.007 30118739
    [Google Scholar]
  84. SunY. ShuY. LiuB. A prospective study to evaluate the efficacy and safety of oral acetyl-L-carnitine for the treatment of chemotherapy-induced peripheral neuropathy.Exp. Ther. Med.20161264017402410.3892/etm.2016.3871 28105133
    [Google Scholar]
  85. AnandP. ElsafaE. PriviteraR. Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8% patch: From pain relief towards disease modification.J. Pain Res.2019122039205210.2147/JPR.S213912 31308732
    [Google Scholar]
  86. KhalefaH.G. ShawkiM.A. AboelhassanR. El WakeelL.M. Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled study.Breast Cancer Res. Treat.2020183111712510.1007/s10549‑020‑05762‑8 32601973
    [Google Scholar]
  87. MagnowskaM IżyckaN Kapoła-CzyżJ Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy.Ginekol. Pol.201889420120510.5603/GP.a2018.0034 29781075
    [Google Scholar]
  88. SmithE.M.L. PangH. CirrincioneC. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial.JAMA2013309131359136710.1001/jama.2013.2813 23549581
    [Google Scholar]
  89. MayJ.E. DonaldsonC. GynnL. MorseH.R. Chemotherapy-induced genotoxic damage to bone marrow cells: Long-term implications.Mutagenesis201833324125110.1093/mutage/gey014 30239865
    [Google Scholar]
  90. GuillonJ. PetitC. ToutainB. GuetteC. LelièvreE. CoqueretO. Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor heterogeneity.Cell Cycle201918192385239710.1080/15384101.2019.1652047 31397193
    [Google Scholar]
  91. KourJ. AliM.N. GanaieH.A. TabassumN. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense.Toxicol. Rep.2017422623310.1016/j.toxrep.2017.05.001 28959643
    [Google Scholar]
  92. FahmyM.A. HassanN.H.A. El-FikyS.A. ElalfyH.G. A mixture of honey bee products ameliorates the genotoxic side effects of cyclophosphamide.Asian Pac. J. Trop. Dis.20155863864410.1016/S2222‑1808(15)60904‑5
    [Google Scholar]
  93. Sekeroğlu V, Aydin B, Sekeroğlu ZA. Viscum album L. extract and quercetin reduce cyclophosphamide-induced cardiotoxicity, urotoxicity and genotoxicity in mice.Asian Pac. J. Cancer Prev.2011121129252931 22393965
    [Google Scholar]
  94. ChenH. WangW. ShiX. LiW. Effect of Chinese herbal compound combining chemotherapy on recurrence breast cancer. Liaon.J. Tradit. Chin. Med.20154210031005
    [Google Scholar]
  95. BoonH. WongJ. Botanical medicine and cancer: A review of the safety and efficacy.Expert Opin. Pharmacother.20045122485250110.1517/14656566.5.12.2485 15571467
    [Google Scholar]
  96. JunL. Clinical research on 58 cases of advanced non-small cell lung cancer treated by the intergrated TCM and western medicine.Henan Tradit Chin Med20086022
    [Google Scholar]
  97. FuB. WangN. TanH.Y. LiS. CheungF. FengY. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences.Front. Pharmacol.20189139410.3389/fphar.2018.01394 30555327
    [Google Scholar]
  98. KoehnF.E. CarterG.T. The evolving role of natural products in drug discovery.Nat. Rev. Drug Discov.20054320622010.1038/nrd1657 15729362
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947274568231121173724
Loading
/content/journals/cctr/10.2174/0115733947274568231121173724
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; cardiotoxicity; chemotherapy; methotrexate; nephrotoxicity; neuropathy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test