Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Thunb. (Asteraceae) is a commonly used medicinal plant for gastric and appetite-associated complications in traditional Chinese medicine. The rhizome of has been widely used for the treatment of human complications. Atractylodin has anti-angiogenic, anti-cancer, anti-inflammatory, anti-microbial, anti-pyretic and anti-hypertensive potential in medicine. Nano-formulations of atractylodin were also prepared in the scientific field to enhance its water solubility and efficacy in cholangiocarcinoma.

Methods

Health-beneficial aspects of atractylodin in medicine have been investigated in the present work through collected scientific information on atractylodin from different literature databases. Scientific data on atractylodin has been collected from Google, Science Direct, Scopus, and PubMed. Further, detailed pharmacological activities and analytical aspects of atractylodin were discussed in this paper in order to know its biological potential in medicine. Analytical techniques of atractylodin were also discussed in the present work for separation, isolation, and identification of atractylodin.

Results

Scientific data analysis signified the biological importance of Thunb. and its active phytochemical atractylodin in medicine. Scientific data signified the presence of atractylodin in and . Atractylodin has a significant biological effect on cholangiocarcinoma, hepatocellular carcinoma, breast cancer, lung cancer, cancer anorexia-cachexia syndrome, colitis, rheumatoid arthritis, respiratory complications, GIT complications, hepatic complications, atopic dermatitis, aging process, neurodegenerative disease, calcified aortic valve disease, hypertension, pulmonary fibrosis, body temperature, olfactory neurons, podocyte hypermotility and toxicity. Further, its anti-nociceptive, anti-fibrotic, anti-angiogenic, anti-virulence, anti-bacterial, insecticidal, lipase inhibitory potential, immunomodulatory, and positive inotropic effects were also discussed in the present paper. Analytical techniques for the separation, isolation and identification of atractylodin in different samples were also discussed in the present work.

Conclusion

The present work's scientific data signified the biological importance of atractylodin in medicine.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947265189231129105327
2024-01-25
2025-04-19
Loading full text...

Full text loading...

References

  1. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/1871530323666221122123456 36415094
    [Google Scholar]
  2. PatelD.K. PatelK. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from cortex fraxinus.Curr. Tradit. Med.202395e19092220892110.2174/2215083808666220919114652
    [Google Scholar]
  3. PatelD.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits.Cardiovasc. Hematol. Disord. Drug Targets202121210411410.2174/1871529X21666210812111931 34387174
    [Google Scholar]
  4. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis.Endocr. Metab. Immune Disord. Drug Targets202323327328210.2174/1871530322666220520162251 35619306
    [Google Scholar]
  5. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives. Pharmacol Res-.Mod Chinese Med.2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  6. PatelD.K. Therapeutic effectiveness of magnolin on cancers and other human complications. Pharmacol Res-.Mod Chinese Med20236100203
    [Google Scholar]
  7. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacol Res Mod Chin Med2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  8. ZhangY. ZhuangD. WangH. LiuC. LvG. MengL. Preparation, characterization, and bioactivity evaluation of oligosaccharides from Atractylodes lancea (Thunb.) DC.Carbohydr. Polym.202227711885410.1016/j.carbpol.2021.118854 34893263
    [Google Scholar]
  9. LiuC. SongC. WangY. Deep-fried Atractylodes lancea rhizome alleviates spleen deficiency diarrhea–induced short-chain fatty acid metabolic disorder in mice by remodeling the intestinal flora.J. Ethnopharmacol.202330311596710.1016/j.jep.2022.115967 36442762
    [Google Scholar]
  10. YangJ. WangZ.X. FangL. Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221.J. Ethnopharmacol.202330011568810.1016/j.jep.2022.115688 36067838
    [Google Scholar]
  11. HossenM.J. AminA. FuX.Q. The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition.J. Ethnopharmacol.202127711418310.1016/j.jep.2021.114183 33991638
    [Google Scholar]
  12. ChenT. ZhengX. OuyangL. Six polyacetylenes from Atractylodes macrocephala Koidz and their anti-colon cancer activity.Fitoterapia202316710549010.1016/j.fitote.2023.105490 36996944
    [Google Scholar]
  13. XuK. FengZ.M. YangY.N. JiangJ.S. ZhangP.C. Eight new eudesmane and eremophilane-type sesquiterpenoids from Atractylodes lancea.Fitoterapia201611411512110.1016/j.fitote.2016.08.017 27592419
    [Google Scholar]
  14. KimuraY. SumiyoshiM. Effects of an Atractylodes lancea rhizome extract and a volatile component β-eudesmol on gastrointestinal motility in mice.J. Ethnopharmacol.2012141153053610.1016/j.jep.2012.02.031 22374082
    [Google Scholar]
  15. XuK. FengZ.M. JiangJ.S. YangY.N. ZhangP.C. Sesquiterpenoid and C 14 -polyacetylene glycosides from the rhizomes of Atractylodes lancea.Chin. Chem. Lett.201728359760110.1016/j.cclet.2016.10.036
    [Google Scholar]
  16. KoonrungsesomboonN. Na-BangchangK. KarbwangJ. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC.Asian Pac. J. Trop. Med.20147642142810.1016/S1995‑7645(14)60069‑9 25066389
    [Google Scholar]
  17. ChenL. TangY.L. LiuZ.H. PanY. JiaoR.Q. KongL.D. Atractylodin inhibits fructose-induced human podocyte hypermotility via anti-oxidant to down-regulate TRPC6/p-CaMK4 signaling.Eur. J. Pharmacol.202191317461610.1016/j.ejphar.2021.174616 34780752
    [Google Scholar]
  18. ZhanY. AbeI. NakagawaM. A traditional herbal medicine rikkunshito prevents angiotensin II-Induced atrial fibrosis and fibrillation.J. Cardiol.202076662663510.1016/j.jjcc.2020.07.001 32682626
    [Google Scholar]
  19. MuhamadN. PlengsuriyakarnT. ChittasuphoC. Na-BangchangK. The potential of atractylodin-loaded PLGA nanoparticles as chemotherapeutic for cholangiocarcinoma.Asian Pac. J. Cancer Prev.202021493594110.31557/APJCP.2020.21.4.935 32334453
    [Google Scholar]
  20. ChenY. WuY. WangH. GaoK. A new 9-nor-atractylodin from Atractylodes lancea and the antibacterial activity of the atractylodin derivatives.Fitoterapia201283119920310.1016/j.fitote.2011.10.015 22061661
    [Google Scholar]
  21. TangF. FanK. WangK. BianC. Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways.J. Pharmacol. Sci.2018136420321110.1016/j.jphs.2017.11.010 29551284
    [Google Scholar]
  22. TsheringG. PlengsuriyakarnT. Na-BangchangK. PimtongW. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202123910886910.1016/j.cbpc.2020.108869 32805444
    [Google Scholar]
  23. ChangK.W. ZhangX. LinS.C. Atractylodin suppresses TGF-β-mediated epithelial-mesenchymal transition in alveolar epithelial cells and attenuates bleomycin-induced pulmonary fibrosis in mice.Int. J. Mol. Sci.202122201115210.3390/ijms222011152 34681813
    [Google Scholar]
  24. KandaH. YangY. DuanS. Atractylodin produces antinociceptive effect through a long-lasting TRPA1 channel activation.Int. J. Mol. Sci.2021227361410.3390/ijms22073614 33807167
    [Google Scholar]
  25. Na-BangchangK. KulmaI. PlengsuriyakarnT. Phase I clinical trial to evaluate the safety and pharmacokinetics of capsule formulation of the standardized extract of Atractylodes lancea.J. Tradit. Complement. Med.202111434335510.1016/j.jtcme.2021.02.002 34195029
    [Google Scholar]
  26. TharabenjasinP FerrarisRP ChoowongkomonK β-eudesmol but not atractylodin exerts an inhibitory effect on CFTRmediated chloride transport in human intestinal epithelial cells.Biomed. Pharmacother.202114211203010.1016/j.biopha.2021.112030 34426253
    [Google Scholar]
  27. TsheringG. PimtongW. PlengsuriyakarnT. Na-BangchangK. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124310898010.1016/j.cbpc.2021.108980 33493664
    [Google Scholar]
  28. TsheringG. PimtongW. PlengsuriyakarnT. Na-BangchangK. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos.Sci. Prog.2022105410.1177/00368504221137458 36474426
    [Google Scholar]
  29. LyuZ. JiX. ChenG. AnB. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress.Int. Immunopharmacol.20197234835710.1016/j.intimp.2019.04.005 31030090
    [Google Scholar]
  30. MathemaV.B. ChaijaroenkulW. Na-BangchangK. Cytotoxic activity and molecular targets of atractylodin in cholangiocarcinoma cells.J. Pharm. Pharmacol.201971218519510.1111/jphp.13024 30324612
    [Google Scholar]
  31. ChuangC.H. ChengY.C. LinS.C. Atractylodin suppresses dendritic cell maturation and ameliorates collagen-induced arthritis in a mouse model.J. Agric. Food Chem.201967246773678410.1021/acs.jafc.9b01163 31154759
    [Google Scholar]
  32. HeY. FangD. LiangT. Atractylodin may induce ferroptosis of human hepatocellular carcinoma cells.Ann. Transl. Med.20219201535510.21037/atm‑21‑4386 34790741
    [Google Scholar]
  33. DongY. ZhangX. YaoC. XuR. TianX. Atractylodin attenuates the expression of MUC5AC and extracellular matrix in lipopolysaccharide‐induced airway inflammation by inhibiting the NF‐κB pathway.Environ. Toxicol.20213691911192210.1002/tox.23311 34152691
    [Google Scholar]
  34. HeoG. KimY. KimE.L. Atractylodin ameliorates colitis via PPARα Agonism.Int. J. Mol. Sci.202324180210.3390/ijms24010802 36614242
    [Google Scholar]
  35. BaiY. ZhaoY. XuJ. YuX. HuY. ZhaoZ. Atractylodin induces myosin light chain phosphorylation and promotes gastric emptying through ghrelin receptor.Evid. Based Complement. Alternat. Med.201720171910.1155/2017/2186798 28883883
    [Google Scholar]
  36. KotawongK. ChaijaroenkulW. RoytrakulS. PhaonakropN. Na-BangchangK. Proteomics analysis for identification of potential cell signaling pathways and protein targets of actions of atractylodin and β-eudesmol against cholangiocarcinoma.Asian Pac. J. Cancer Prev.202021362162810.31557/APJCP.2020.21.3.621 32212786
    [Google Scholar]
  37. XuL. ZhouY. XuJ. Anti-inflammatory, antioxidant and anti-virulence roles of atractylodin in attenuating Listeria monocytogenes infection.Front. Immunol.20221397705110.3389/fimmu.2022.977051 36389842
    [Google Scholar]
  38. YangL. JiC. LiY. Natural potent NAAA inhibitor atractylodin counteracts LPS-induced microglial activation.Front. Pharmacol.20201157731910.3389/fphar.2020.577319 33117168
    [Google Scholar]
  39. YuC. XiongY. ChenD. Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats.Korean J. Physiol. Pharmacol.20172111910.4196/kjpp.2017.21.1.1 28066135
    [Google Scholar]
  40. ChaeH.S. KimY-M ChinY-W. Correction: ChaeH.S. Atractylodin inhibits interleukin-6 by blocking NPM-ALK activation and MAPKs in HMC-1. Molecules 2016, 21, 1169.Molecules20162110141210.3390/molecules21101412 27792126
    [Google Scholar]
  41. ZhangT. LiS.M. LiY.N. Atractylodin induces apoptosis and inhibits the migration of A549 lung cancer cells by regulating ROS-mediated signaling pathways.Molecules2022279294610.3390/molecules27092946 35566297
    [Google Scholar]
  42. QuL. LinX. LiuC. Atractylodin attenuates dextran sulfate sodium-induced colitis by alleviating gut microbiota dysbiosis and inhibiting inflammatory response through the MAPK pathway.Front. Pharmacol.20211266537610.3389/fphar.2021.665376 34335244
    [Google Scholar]
  43. KotawongK. ChaijaroenkulW. RoytrakulS. PhaonakropN. Na-BangchangK. Screening of molecular targets of action of atractylodin in cholangiocarcinoma by applying proteomic and metabolomic approaches.Metabolites201991126010.3390/metabo9110260 31683902
    [Google Scholar]
  44. OmarA.I. PlengsuriyakarnT. ChittasuphoC. Na-BangchangK. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma.Clin. Exp. Pharmacol. Physiol.202148331832810.1111/1440‑1681.13433 33125766
    [Google Scholar]
  45. CaiQ. Xiao-WenC. Chen-XiX. Yu-QiangL. Determination and pharmacokinetic comparisons of atractylodin after oral administration of crude and processed Atractylodis rhizoma.Pharmacogn. Mag.20161245808310.4103/0973‑1296.176062 27019565
    [Google Scholar]
  46. CaiQ. LiuY.Z. LiuY-Q. Determination and tissue distribution comparisons of atractylodin after oral administration of crude and processed atractylodes rhizome.Pharmacogn. Mag.2017135141341710.4103/pm.pm_394_16 28839365
    [Google Scholar]
  47. ZhangW. ZhangQ. XuanZ. The protective effect of different polar solvent extracts of Er Miao San on rats with adjuvant arthritis.Evid. Based Complement. Alternat. Med.202020201810.1155/2020/5305278 32148544
    [Google Scholar]
  48. LiZ. SongY. HouW. Atractylodin induces oxidative stress‐mediated apoptosis and autophagy in human breast cancer MCF‐7 cells through inhibition of the P13K/Akt/mTOR pathway.J. Biochem. Mol. Toxicol.2022368e2308110.1002/jbt.23081 35478473
    [Google Scholar]
  49. AcharyaB. ChaijaroenkulW. Na-BangchangK. Atractylodin inhibited the migration and induced autophagy in cholangiocarcinoma cells via PI3K/AKT/mTOR and p38MAPK signalling pathways.J. Pharm. Pharmacol.20217391191120010.1093/jpp/rgab036 33885818
    [Google Scholar]
  50. MartvisetP. ChaijaroenkulW. MuhamadP. Na-BangchangK. Bioactive constituents isolated from Atractylodes lancea (Thunb.) DC. rhizome exhibit synergistic effect against cholangiocarcinoma cell.J. Exp. Pharmacol.201810596410.2147/JEP.S177032 30498376
    [Google Scholar]
  51. KotawongK. ChaijaroenkulW. MuhamadP. Na-BangchangK. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line.J. Pharmacol. Sci.20181362515610.1016/j.jphs.2017.09.033 29525035
    [Google Scholar]
  52. YuB. ZhaoY. TengS. Atractylodin alleviates cancer anorexia-cachexia syndrome by regulating NPY through hypothalamic Sirt1/AMPK axis-induced autophagy.Biochem. Biophys. Res. Commun.202262515416010.1016/j.bbrc.2022.08.011 35963161
    [Google Scholar]
  53. FujitsukaN. AsakawaA. UezonoY. Potentiation of ghrelin signaling attenuates cancer anorexia–cachexia and prolongs survival.Transl. Psychiatry201117e23e310.1038/tp.2011.25 22832525
    [Google Scholar]
  54. ParkB. YouS. ChoW.C.S. ChoiJ.Y. LeeM.S. A systematic review of herbal medicines for the treatment of cancer cachexia in animal models.J. Zhejiang Univ. Sci. B201920192210.1631/jzus.B1800171 30614226
    [Google Scholar]
  55. IshiguroK. WatanabeO. NakamuraM. Inhibition of KDM4A activity as a strategy to suppress interleukin-6 production and attenuate colitis induction.Clin. Immunol.201718012012710.1016/j.clim.2017.05.014 28511912
    [Google Scholar]
  56. LinY.C. YangC.C. LinC.H. HsiaT.C. ChaoW.C. LinC.C. Atractylodin ameliorates ovalbumin induced asthma in a mouse model and exerts immunomodulatory effects on Th2 immunity and dendritic cell function.Mol. Med. Rep.20202264909491810.3892/mmr.2020.11569 33174031
    [Google Scholar]
  57. NakaiY. KidoT. HashimotoK. Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying.J. Ethnopharmacol.2003841515510.1016/S0378‑8741(02)00260‑X 12499077
    [Google Scholar]
  58. IshiiT. OkuyamaT. NoguchiN. NishidonoY. OkumuraT. KaiboriM. TanakaK. TerabayashiS. IkeyaY. NishizawaM. Correction to: Antiinflammatory constituents of Atractylodes chinensis rhizome improve glomerular lesions in immunoglobulin A nephropathy model mice.J. Nat. Med.202074361610.1007/s11418‑020‑01405‑w 32274684
    [Google Scholar]
  59. KulmaI. PanritL. PlengsuriyakarnT. ChaijaroenkulW. WarathumpitakS. Na-BangchangK. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects.BMC Complementary Medicine and Therapies20212116110.1186/s12906‑020‑03199‑6 33579265
    [Google Scholar]
  60. GaoL. ZhangW-H. WangY-W. Positive inotropic effect of atractylodin in normal rats and its underlying mechanism.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih2020365408413 33629552
    [Google Scholar]
  61. GaoL. WangY. ZhangW. Novel in vivo and in vitro mechanisms of positive inotropic effect of atractylodin.Clin. Exp. Pharmacol. Physiol.202148568669610.1111/1440‑1681.13406 32931027
    [Google Scholar]
  62. XiaT. LiangX. LiuC.S. HuY.N. LuoZ.Y. TanX.M. Network pharmacology integrated with transcriptomics analysis reveals ermiao wan alleviates atopic dermatitis via suppressing MAPK and activating the EGFR/AKT signaling.Drug Des. Devel. Ther.2022164325434110.2147/DDDT.S384927 36578822
    [Google Scholar]
  63. NodaT. ShigaH. YamadaK. Effects of tokishakuyakusan on regeneration of murine olfactory neurons In Vivo and In Vitro.Chem. Senses201944532733810.1093/chemse/bjz023 30989168
    [Google Scholar]
  64. FujitsukaN. AsakawaA. MorinagaA. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1.Mol. Psychiatry201621111613162310.1038/mp.2015.220 26830139
    [Google Scholar]
  65. ZhuC. TianL. YangH. ChenP. LiY. LiuY. Mitochondrial outer membrane voltage-dependent anion channel is involved in renal dysfunction in a spontaneously hypertensive rat carrying transfer RNA mutations.Eur. J. Pharmacol.201986517262210.1016/j.ejphar.2019.172622 31618620
    [Google Scholar]
  66. JiaoP. Tseng-CrankJ. CorneliusenB. Lipase inhibition and antiobesity effect of Atractylodes lancea.Planta Med.201480757758210.1055/s‑0034‑1368354 24687739
    [Google Scholar]
  67. JeongY.H. LiW. GoY. OhY.C. Atractylodis rhizoma alba attenuates neuroinflammation in BV2 microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-κB and MAPK.Int. J. Mol. Sci.20192016401510.3390/ijms20164015 31426492
    [Google Scholar]
  68. QuL. WangC. XuH. Atractylodin targets GLA to regulate D‐mannose metabolism to inhibit osteogenic differentiation of human valve interstitial cells and ameliorate aortic valve calcification.Phytother. Res.202337247748910.1002/ptr.7628 36199227
    [Google Scholar]
  69. ShimizuT. TerawakiK. SekiguchiK. Tokishakuyakusan ameliorates lowered body temperature after immersion in cold water through the early recovery of blood flow in rats.J. Ethnopharmacol.202228511489610.1016/j.jep.2021.114896 34896207
    [Google Scholar]
  70. ChenH.P. ZhengL.S. YangK. Insecticidal and repellant activities of polyacetylenes and lactones derived from Atractylodes lancea rhizomes.Chem. Biodivers.201512459359810.1002/cbdv.201400161 25879503
    [Google Scholar]
  71. KitagawaH. MunekageM. MatsumotoT. Pharmacokinetic profiles of active ingredients and its metabolites derived from rikkunshito, a ghrelin enhancer, in healthy japanese volunteers: A cross-over, randomized study.PLoS One2015107e013315910.1371/journal.pone.0133159 26186592
    [Google Scholar]
  72. NahataM. MizuharaY. SadakaneC. WatanabeJ. FujitsukaN. HattoriT. Influence of food on the gastric motor effect of the Kampo medicine rikkunshito in rat.Neurogastroenterol. Motil.2018302e1317710.1111/nmo.13177 28776825
    [Google Scholar]
  73. MuhamadN. PlengsuriyakarnT. Na-BangchangK. Atractylodes lancea for cholangiocarcinoma: Modulatory effects on CYP1A2 and CYP3A1 and pharmacokinetics in rats and biodistribution in mice.PLoS One20221711e027761410.1371/journal.pone.0277614 36374864
    [Google Scholar]
  74. ShangX. MiaoX. YangF. The anti-diarrheal activity of the non-toxic dihuang powder in mice.Front. Pharmacol.20189103710.3389/fphar.2018.01037 30271346
    [Google Scholar]
  75. ReschM. HeilmannJ. SteigelA. BauerR. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity.Planta Med.200167543744210.1055/s‑2001‑15817 11488458
    [Google Scholar]
  76. LeiL. KeC. XiaoK. Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202126212011910.1016/j.saa.2021.120119 34243140
    [Google Scholar]
  77. ShoudongZ. HuashengP. LanpingG. Regionalization of Chinese material medical quality based on maximum entropy model: A case study of Atractylodes lancea.Sci. Rep.2017714241710.1038/srep42417 28205539
    [Google Scholar]
  78. TaoJ. PuX. JiangS. Effect of endophytic fungal elicitors on growth and atractylodin accumulation of cell suspension cultures of Atractylodes lancea.Zhongguo Zhongyao Zazhi20113612731 21473147
    [Google Scholar]
  79. TsusakaT. MakinoB. OhsawaR. EzuraH. Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea.PLoS One2019145e021752210.1371/journal.pone.0217522 31136627
    [Google Scholar]
  80. ZhaoJ. SunC. ShiF. Comparative transcriptome analysis reveals sesquiterpenoid biosynthesis among 1-, 2- and 3-year old Atractylodes chinensis.BMC Plant Biol.202121135410.1186/s12870‑021‑03131‑1 34315414
    [Google Scholar]
  81. LeiZ. Simultaneous determination of atractylone, hinesol, β-eudesmol, atrctylodin in Atractylodes lancea and hierarchical cluster analysis.China J Chinese Matera Medica201035
    [Google Scholar]
  82. ZhaoY-Y. ZhangJ-Y. ZhengK-Y. Chemical pattern recognition of Atractylodes chinensis from different producing areas and establishment of quantitative analysis of multi-components by single marker (QAMS) method for four components.Zhongguo Zhongyao Zazhi2022471643954402 36046868
    [Google Scholar]
  83. ChoH.D. KimU. SuhJ.H. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis.J. Sep. Sci.20163971286129410.1002/jssc.201501279 26888213
    [Google Scholar]
  84. ZhangA. LiuM. GuW. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea.BMC Plant Biol.202121129310.1186/s12870‑021‑03048‑9 34171994
    [Google Scholar]
  85. ZhangY. BoC. FanY. Qualitative and quantitative determination of Atractylodes rhizome using ultra‐performance liquid chromatography coupled with linear ion trap–Orbitrap mass spectrometry with data‐dependent processing.Biomed. Chromatogr.2019333e444310.1002/bmc.4443 30467875
    [Google Scholar]
  86. XiaY.G. YangB.Y. WangQ.H. LiangJ. WangD. KuangH.X. Species classification and quality assessment of cangzhu (atractylodis rhizoma) by high-performance liquid chromatography and chemometric methods.J. Anal. Methods Chem.201320131710.1155/2013/497532 23984190
    [Google Scholar]
  87. GuoL.P. LiuJ.Y. JiL. HuangL.Q. The naphtha composing characteristics of geoherbs of Atractylodes lancea.Zhongguo Zhongyao Zazhi20022711814819 12776582
    [Google Scholar]
  88. TakedaO. MikiE. TerabayashiS. A comparative study on essential oil components of wild and cultivated Atractylodes lancea and A. chinensis.Planta Med.199662544444910.1055/s‑2006‑957936 17252479
    [Google Scholar]
  89. HiraokaN. TomitaY. Botanical and chemical evaluation of Atractylodes lancea plants propagated in vitro and by division of the rhizome.Plant Cell Rep.19909633233410.1007/BF00232863 24226945
    [Google Scholar]
  90. ZhangY. MikiS. ChenM.L. Effects of lime on seedling growth, yield and volatile constituents of Atractylodes lancea.Zhong Yao Cai2015383429432 26495637
    [Google Scholar]
  91. KohjyoumaM. NakajimaS. NameraA. ShimizuR. MizukamiH. KohdaH. Random amplified polymorphic DNA analysis and variation of essential oil components of Atractylodes plants.Biol. Pharm. Bull.199720550250610.1248/bpb.20.502 9178929
    [Google Scholar]
  92. ChenY. ChouG. WangZ. Simultaneous determination of polyacetylene components in Cangzhu by reversed-phase high performance liquid chromatography.Se Pu20072518487 17432582
    [Google Scholar]
  93. HiraokaN. Atractylodes lancea autotetraploids induced by colchicine treatment of shoot cultures.Biol. Pharm. Bull.199821547948310.1248/bpb.21.479 9635504
    [Google Scholar]
  94. PatelK. KumarV. VermaA. RahmanM. PatelD.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery.Recent Patents Anti-Infect. Drug Disc.201914171510.2174/1574891X13666180913154355 30210007
    [Google Scholar]
  95. PatelK. GadewarM. TahilyaniV. PatelD.K. A review on pharmacological and analytical aspects of diosmetin: A concise report.Chin. J. Integr. Med.2013191079280010.1007/s11655‑013‑1595‑3 24092244
    [Google Scholar]
  96. PatelD.K. Biological importance of a biflavonoid ‘Bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/1871526522666220321152036 35319397
    [Google Scholar]
  97. PatelD.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders.Curr. Bioact. Compd.2022183e24082119580410.2174/1573407217666210824125427
    [Google Scholar]
  98. PatelK. PatelD.K. Health benefits of ipecac and cephaeline: their potential in health promotion and disease prevention.Curr. Bioact. Compd.202117320621310.2174/1573407216999200609130841
    [Google Scholar]
  99. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x 25501296
    [Google Scholar]
  100. PatelD.K. Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymethoxylated flavonoid in medicine from natural sources.Pharmacol Res Mod Chin Med2022410015510.1016/j.prmcm.2022.100155
    [Google Scholar]
  101. PatelD.K. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol Res-.Mod Chinese Med20225100176
    [Google Scholar]
  102. PatelD.K. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications. Pharmacol Res-.Mod Chinese Med.20225100185
    [Google Scholar]
  103. PatelD.K. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects.Pharmacol Res Mod Chin Med2023610021210.1016/j.prmcm.2022.100212
    [Google Scholar]
  104. GiriS. SahuR. PaulP. NandiG. DuaT.K. An updated review on Eupatorium adenophorum Spreng. [Ageratina adenophora (Spreng.)]: Traditional uses, phytochemistry, pharmacological activities and toxicity.Pharmacol Res Mod Chin Med2022210006810.1016/j.prmcm.2022.100068
    [Google Scholar]
  105. LiL. ZhengR. SunR. Multicomponent self-assembly based on bioactive molecules of traditional Chinese medicine (TCM). Pharmacol Res-.Mod Chinese Med20224100158
    [Google Scholar]
  106. KhazdairM.R. GholamnezhadZ. RezaeeR. BoskabadyM.H. Immuno-modulatory and anti-inflammatory effects of Thymus vulgaris, Zataria multiflora, and Portulaca oleracea and their constituents.Pharmacol. Res.20211100010
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947265189231129105327
Loading
/content/journals/cctr/10.2174/0115733947265189231129105327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): analytical; Atractylodes lancea; Atractylodin; cancer; medicine; pharmacological
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test