Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Colorectal cancer (CRC) is a commonly diagnosed cancer responsible for numerous deaths worldwide. In recent decades, technological advances implicated in considering the molecular pathways underlying CRC pathogenesis. Several investigations have identified various mechanisms involved in CRC and have paved the way for new therapeutics and early diagnosis. Gut microbiome play a crucial role in intestinal inflammation and can be associated with colitis colorectal cancer. In this review, we narrated the role of the microbiome population and their metabolome profile as a new screening method for early detection of CRC.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947270529231116114913
2024-01-17
2025-01-19
Loading full text...

Full text loading...

References

  1. SobhaniI. RotkopfH. KhazaieK. Bacteria-related changes in host DNA methylation and the risk for CRC.Gut Microbes2020121180089810.1080/19490976.2020.180089832931352
    [Google Scholar]
  2. DolatkhahR. SomiM.H. BonyadiM.J. Asvadi KermaniI. FarassatiF. DastgiriS. Colorectal cancer in Iran: Molecular epidemiology and screening strategies.J. Cancer Epidemiol.2015201511010.1155/2015/64302025685149
    [Google Scholar]
  3. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  4. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.8107231616522
    [Google Scholar]
  5. DörrNM BartelsM MorgulMH Current treatment of colorectal liver metastasis as a chronic disease.Anticancer Res20204011710.21873/anticanres.1392131892548
    [Google Scholar]
  6. NordlingerB. SorbyeH. GlimeliusB. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): Long-term results of a randomised, controlled, phase 3 trial.Lancet Oncol.201314121208121510.1016/S1470‑2045(13)70447‑924120480
    [Google Scholar]
  7. PetrelliF. TomaselloG. BorgonovoK. Prognostic survival associated with left-sided vs right-sided colon cancer.JAMA Oncol.20173221121910.1001/jamaoncol.2016.422727787550
    [Google Scholar]
  8. SamadderN.J. Riegert-JohnsonD. BoardmanL. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome.JAMA Oncol.20217223023710.1001/jamaoncol.2020.625233126242
    [Google Scholar]
  9. YurgelunM.B. KulkeM.H. FuchsC.S. Cancer susceptibility gene mutations in individuals with colorectal cancer.J. Clin. Oncol.201735101086109510.1200/JCO.2016.71.001228135145
    [Google Scholar]
  10. YangJ. McDowellA. KimE.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis.Exp. Mol. Med.2019511011510.1038/s12276‑019‑0313‑431582724
    [Google Scholar]
  11. TemrazS. NassarF. NasrR. CharafeddineM. MukherjiD. ShamseddineA. Gut microbiome: A promising biomarker for immunotherapy in colorectal cancer.Int. J. Mol. Sci.20192017415510.3390/ijms2017415531450712
    [Google Scholar]
  12. WongS.H. YuJ. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications.Nat. Rev. Gastroenterol. Hepatol.2019161169070410.1038/s41575‑019‑0209‑831554963
    [Google Scholar]
  13. BalchenV. SimonK. Colorectal cancer development and advances in screening.Clin. Interv. Aging20161196797610.2147/CIA.S10928527486317
    [Google Scholar]
  14. NikolouzakisT. VassilopoulouL. FragkiadakiP. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review).Oncol. Rep.20183962455247210.3892/or.2018.633029565457
    [Google Scholar]
  15. FayazfarS. ZaliH. Arefi OskouieA. Asadzadeh AghdaeiH. Rezaei TaviraniM. Nazemalhosseini MojaradE. Early diagnosis of colorectal cancer via plasma proteomic analysis of CRC and advanced adenomatous polyp.Gastroenterol. Hepatol. Bed Bench201912432833931749922
    [Google Scholar]
  16. VillégerR. LopèsA. VeziantJ. Microbial markers in colorectal cancer detection and/or prognosis.World J. Gastroenterol.201824222327234710.3748/wjg.v24.i22.232729904241
    [Google Scholar]
  17. TanX. MaoL. HuangC. Comprehensive analysis of lncRNA-miRNA-mRNA regulatory networks for microbiota-mediated colorectal cancer associated with immune cell infiltration.Bioengineered20211213410342510.1080/21655979.2021.194061434227920
    [Google Scholar]
  18. YeY. LiuY. ChengK. WuZ. ZhangP. ZhangX. Effects of intestinal flora on irritable bowel syndrome and therapeutic significance of polysaccharides.Front. Nutr.20229981045310.3389/fnut.2022.81045335634403
    [Google Scholar]
  19. LiJ. ZhangA. WuF. WangX. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and future prospects.Front. Oncol.2022121184155210.3389/fonc.2022.84155235223525
    [Google Scholar]
  20. SeelyK.D. MorganA.D. HagensteinL.D. FloreyG.M. SmallJ.M. Bacterial involvement in progression and metastasis of colorectal neoplasia.Cancers2022144101910.3390/cancers1404101935205767
    [Google Scholar]
  21. TjalsmaH. BoleijA. MarchesiJ.R. DutilhB.E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects.Nat. Rev. Microbiol.201210857558210.1038/nrmicro281922728587
    [Google Scholar]
  22. HanS. ZhuangJ. WuY. WuW. YangX. Progress in research on colorectal cancer-related microorganisms and metabolites.Cancer Manag. Res.2020128703872010.2147/CMAR.S26894333061569
    [Google Scholar]
  23. KoulourisA. TsagkarisC. MessaritakisI. Resectable colorectal cancer: Current perceptions on the correlation of recurrence risk, microbiota and detection of genetic mutations in liquid biopsies.Cancers20211314352210.3390/cancers1314352234298740
    [Google Scholar]
  24. OlovoC.V. HuangX. ZhengX. XuM. Faecal microbial biomarkers in early diagnosis of colorectal cancer.J. Cell. Mol. Med.20212523107831079710.1111/jcmm.1701034750964
    [Google Scholar]
  25. ChenG. The role of the gut microbiome in colorectal cancer.Clin. Colon Rectal Surg.201831319219810.1055/s‑0037‑160223929720905
    [Google Scholar]
  26. RebersekM. Gut microbiome and its role in colorectal cancer.BMC Cancer2021211132510.1186/s12885‑021‑09054‑234895176
    [Google Scholar]
  27. HuangR. HeK. DuanX. XiaoJ. WangH. XiangG. Changes of intestinal microflora in colorectal cancer patients after surgical resection and chemotherapy.Comput. Math. Methods Med.2022202211610.1155/2022/194084635251295
    [Google Scholar]
  28. RuanW. EngevikM.A. SpinlerJ.K. VersalovicJ. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration.Dig. Dis. Sci.202065369570510.1007/s10620‑020‑06118‑432067143
    [Google Scholar]
  29. GillS.R. PopM. DeBoyR.T. Metagenomic analysis of the human distal gut microbiome.Science2006312577813551359
    [Google Scholar]
  30. SommerF. BäckhedF. The gut microbiota-masters of host development and physiology.Nat. Rev. Microbiol.201311422723810.1038/nrmicro297423435359
    [Google Scholar]
  31. GarudN.R. GoodB.H. HallatschekO. PollardK.S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts.PLoS Biol.2019171e300010210.1371/journal.pbio.300010230673701
    [Google Scholar]
  32. HeeneyD.D. GareauM.G. MarcoM.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride?Curr. Opin. Biotechnol.2018494914014710.1016/j.copbio.2017.08.00428866243
    [Google Scholar]
  33. Martinez-MedinaM. Special Issue: Pathogenic Escherichia coli: Infections and therapies.Antibiotics202110211210.3390/antibiotics1002011233504016
    [Google Scholar]
  34. KaikiY. KitagawaH. TaderaK. Laboratory identification and clinical characteristics of Streptococcus bovis/Streptococcus equinus complex bacteremia: a retrospective, multicenter study in Hiroshima, Japan.BMC Infect. Dis.2021211119210.1186/s12879‑021‑06880‑434836500
    [Google Scholar]
  35. CorredoiraJ. GrauI. Garcia-RodriguezJ.F. Species and biotypes of Streptococcus bovis causing infective endocarditis.Enfermedades infecciosas y microbiologia clinica202341421522010.1016/j.eimce.2021.08.01736610830
    [Google Scholar]
  36. MandalP. Molecular mechanistic pathway of colorectal carcinogenesis associated with intestinal microbiota.Anaerobe201849637010.1016/j.anaerobe.2017.12.00829277623
    [Google Scholar]
  37. CastellarinM. WarrenR.L. FreemanJ.D. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma.Genome Res.201222229930610.1101/gr.126516.11122009989
    [Google Scholar]
  38. KangY. FengD. LawH.K. Compositional alterations of gut microbiota in children with primary nephrotic syndrome after initial therapy.BMC Nephrol.201920143410.1186/s12882‑019‑1615‑430606155
    [Google Scholar]
  39. Montalban-ArquesA. ScharlM. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy.EBioMedicine20194864865510.1016/j.ebiom.2019.09.05031631043
    [Google Scholar]
  40. ChengY. LingZ. LiL. The intestinal microbiota and colorectal cancer.Front. Immunol.20201161505610.3389/fimmu.2020.61505633329610
    [Google Scholar]
  41. MartinezJ.E. KahanaD.D. GhumanS. Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal microbiome.Front. Endocrinol.20211266706610.3389/fendo.2021.66706634168615
    [Google Scholar]
  42. BelizárioJE FaintuchJ Microbiome and gut dysbiosis.Experientia Suppl201810910945947610.1007/978‑3‑319‑74932‑7_1330535609
    [Google Scholar]
  43. GagnièreJ. RaischJ. VeziantJ. Gut microbiota imbalance and colorectal cancer.World J. Gastroenterol.201622250151810.3748/wjg.v22.i2.50126811603
    [Google Scholar]
  44. RivièreA. SelakM. LantinD. LeroyF. De VuystL. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut.Front. Microbiol.2016797910.3389/fmicb.2016.0097927446020
    [Google Scholar]
  45. EckburgP.B. BikE.M. BernsteinC.N. Diversity of the human intestinal microbial flora.Science2005308572816351638
    [Google Scholar]
  46. ChattopadhyayI. DharR. PethusamyK. Exploring the role of gut microbiome in colon cancer.Appl. Biochem. Biotechnol.202119361780179910.1007/s12010‑021‑03498‑933492552
    [Google Scholar]
  47. YachidaS. MizutaniS. ShiromaH. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer.Nat. Med.201925696897610.1038/s41591‑019‑0458‑731171880
    [Google Scholar]
  48. OsmanM.A. NeohH. Ab MutalibN.S. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer.Sci. Rep.2021111292510.1038/s41598‑021‑82465‑033536501
    [Google Scholar]
  49. SunY. FanX. ZhaoJ. Development of colorectal cancer detection and prediction based on gut microbiome big-data.Medicine in Microecology20221210005310.1016/j.medmic.2022.100053
    [Google Scholar]
  50. WuY. JiaoN. ZhuR. Identification of microbial markers across populations in early detection of colorectal cancer.Nat. Commun.2021121306310.1038/s41467‑021‑23265‑y34031391
    [Google Scholar]
  51. ZhangS. CaiS. MaY. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions.J. Cancer2018991652165910.7150/jca.2404829760804
    [Google Scholar]
  52. FlemerB. LynchD.B. BrownJ.M.R. Tumour-associated and non-tumour-associated microbiota in colorectal cancer.Gut201766463364310.1136/gutjnl‑2015‑30959526992426
    [Google Scholar]
  53. BoleijA. HechenbleiknerE.M. GoodwinA.C. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients.Clin. Infect. Dis.201560220821510.1093/cid/ciu78725305284
    [Google Scholar]
  54. ZhangH. ChangY. ZhengQ. ZhangR. HuC. JiaW. Altered intestinal microbiota associated with colorectal cancer.Front. Med.201913446147010.1007/s11684‑019‑0695‑731250341
    [Google Scholar]
  55. ZellerG. TapJ. VoigtA.Y. Potential of fecal microbiota for early‐stage detection of colorectal cancer.Mol. Syst. Biol.2014101176610.15252/msb.2014564525432777
    [Google Scholar]
  56. FangC.Y. ChenJ.S. HsuB.M. HussainB. RathodJ. LeeK.H. Colorectal cancer stage-specific fecal bacterial community fingerprinting of the taiwanese population and underpinning of potential taxonomic biomarkers.Microorganisms202198154810.3390/microorganisms908154834442626
    [Google Scholar]
  57. BrennanC.A. GarrettW.S. Gut microbiota, inflammation, and colorectal cancer.Annu. Rev. Microbiol.201670139541110.1146/annurev‑micro‑102215‑09551327607555
    [Google Scholar]
  58. Ulger ToprakN. YagciA. GulluogluB.M. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer.Clin. Microbiol. Infect.200612878278610.1111/j.1469‑0691.2006.01494.x16842574
    [Google Scholar]
  59. BrennanC.A. GarrettW.S. Fusobacterium nucleatum-symbiont, opportunist and oncobacterium.Nat. Rev. Microbiol.201917315616610.1038/s41579‑018‑0129‑630546113
    [Google Scholar]
  60. KowalikJ. Faecal tests in the early detection of colorectal cancer.Prz. Gastroenterol.202015320020610.5114/pg.2020.9854133005264
    [Google Scholar]
  61. GuoS. LiL. XuB. A simple and novel fecal biomarker for colorectal Cancer: Ratio of Fusobacterium Nucleatum to probiotics populations, based on their antagonistic effect.Clin. Chem.20186491327133710.1373/clinchem.2018.28972829914865
    [Google Scholar]
  62. SongM. ChanA.T. SunJ. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer.Gastroenterology2020158232234010.1053/j.gastro.2019.06.04831586566
    [Google Scholar]
  63. NoshoK. SukawaY. AdachiY. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.World J. Gastroenterol.201622255756610.3748/wjg.v22.i2.55726811607
    [Google Scholar]
  64. MimaK. SukawaY. NishiharaR. Fusobacterium nucleatum and T cells in colorectal carcinoma.JAMA Oncol.20151565366110.1001/jamaoncol.2015.137726181352
    [Google Scholar]
  65. ItoM. KannoS. NoshoK. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway.Int. J. Cancer201513761258126810.1002/ijc.2948825703934
    [Google Scholar]
  66. TilgH. AdolphT.E. GernerR.R. MoschenA.R. The intestinal microbiota in colorectal cancer.Cancer Cell201833695496410.1016/j.ccell.2018.03.00429657127
    [Google Scholar]
  67. Pleguezuelos-ManzanoC. PuschhofJ. Rosendahl HuberA. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli.Nature2020580780226927310.1038/s41586‑020‑2080‑832106218
    [Google Scholar]
  68. de AlmeidaC.V. TaddeiA. AmedeiA. The controversial role of Enterococcus faecalis in colorectal cancer.Therap. Adv. Gastroenterol.20181110.1177/175628481878360630013618
    [Google Scholar]
  69. HajishengallisG. ChavakisT. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol.202121742644010.1038/s41577‑020‑00488‑633510490
    [Google Scholar]
  70. OkumuraS. KonishiY. NarukawaM. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion.Nat. Commun.2021121567410.1038/s41467‑021‑25965‑x34584098
    [Google Scholar]
  71. WangX. JiaY. WenL. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 inflammasome.Cancer Res.202181102745275910.1158/0008‑5472.CAN‑20‑382734003774
    [Google Scholar]
  72. KönönenE WadeWG Actinomyces and related organisms in human infections.Clin. Microbiol. Rev.201528241944210.1128/CMR.00100‑1425788515
    [Google Scholar]
  73. BoleijA. TjalsmaH. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease.Lancet Infect. Dis.201313871972410.1016/S1473‑3099(13)70107‑523831427
    [Google Scholar]
  74. KleinR.S. CatalanoM.T. EdbergS.C. CaseyJ.I. SteigbigelN.H. Streptococcus bovis septicemia and carcinoma of the colon.Ann. Intern. Med.197991456056210.7326/0003‑4819‑91‑4‑560484953
    [Google Scholar]
  75. RezasoltaniS. SharafkhahM. Asadzadeh AghdaeiH. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer.J. Microbiol. Methods2018155828810.1016/j.mimet.2018.11.00730439465
    [Google Scholar]
  76. DahmusJ.D. KotlerD.L. KastenbergD.M. KistlerC.A. The gut microbiome and colorectal cancer: A review of bacterial pathogenesis.J. Gastrointest. Oncol.20189476977710.21037/jgo.2018.04.0730151274
    [Google Scholar]
  77. HoangT. KimM. ParkJ.W. JeongS.Y. LeeJ. ShinA. Dysbiotic microbiome variation in colorectal cancer patients is linked to lifestyles and metabolic diseases.BMC Microbiol.20232313310.1186/s12866‑023‑02771‑736709262
    [Google Scholar]
  78. WuY. ZhuangJ. ZhangQ. Aging characteristics of colorectal cancer based on gut microbiota.Cancer Med.20231217178221783410.1002/cam4.641437548332
    [Google Scholar]
  79. RoystonK.J. AdedokunB. OlopadeO.I. Race, the microbiome and colorectal cancer.World J. Gastrointest. Oncol.2019111077378710.4251/wjgo.v11.i10.77331662819
    [Google Scholar]
  80. IadseeN. ChuaypenN. TechawiwattanaboonT. Identification of a novel gut microbiota signature associated with colorectal cancer in Thai population.Sci. Rep.2023131670210.1038/s41598‑023‑33794‑937095272
    [Google Scholar]
  81. BalamuruganR. RajendiranE. GeorgeS. SamuelG.V. RamakrishnaB.S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer.J. Gastroenterol. Hepatol.2008238pt11298130310.1111/j.1440‑1746.2008.05490.x18624900
    [Google Scholar]
  82. WangT. CaiG. QiuY. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers.ISME J.20126232032910.1038/ismej.2011.10921850056
    [Google Scholar]
  83. SobhaniI. TapJ. Roudot-ThoravalF. Microbial dysbiosis in colorectal cancer (CRC) patients.PLoS One201161e1639310.1371/journal.pone.001639321297998
    [Google Scholar]
  84. ChenW. LiuF. LingZ. TongX. XiangC. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer.PLoS One201276e3974310.1371/journal.pone.003974322761885
    [Google Scholar]
  85. AhnJ. SinhaR. PeiZ. Human gut microbiome and risk for colorectal cancer.J. Natl. Cancer Inst.2013105241907191110.1093/jnci/djt30024316595
    [Google Scholar]
  86. WuN. YangX. ZhangR. Dysbiosis signature of fecal microbiota in colorectal cancer patients.Microb. Ecol.201366246247010.1007/s00248‑013‑0245‑923733170
    [Google Scholar]
  87. MarchesiJ.R. Human distal gut microbiome.Environ. Microbiol.201113123088310210.1111/j.1462‑2920.2011.02574.x21906225
    [Google Scholar]
  88. KosticA.D. GeversD. PedamalluC.S. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma.Genome Res.201222229229810.1101/gr.126573.11122009990
    [Google Scholar]
  89. FengQ. LiangS. JiaH. Gut microbiome development along the colorectal adenoma–carcinoma sequence.Nat. Commun.201561652810.1038/ncomms752825758642
    [Google Scholar]
  90. SalahshouriP. Emadi-BaygiM. JaliliM. KhanF.M. WolkenhauerO. Salehzadeh-YazdiA. A metabolic model of intestinal secretions: the link between human microbiota and colorectal cancer progression.Metabolites202111745610.3390/metabo1107045634357350
    [Google Scholar]
  91. NishiumiS. KobayashiT. IkedaA. A novel serum metabolomics-based diagnostic approach for colorectal cancer.PLoS One201277e4045910.1371/journal.pone.004045922792336
    [Google Scholar]
  92. WangH. WangL. ZhangH. 1H NMR-based metabolic profiling of human rectal cancer tissue.Mol. Cancer201312112110.1186/1476‑4598‑12‑12124138801
    [Google Scholar]
  93. UchiyamaK. YagiN. MizushimaK. Serum metabolomics analysis for early detection of colorectal cancer.J. Gastroenterol.201752667769410.1007/s00535‑016‑1261‑627650200
    [Google Scholar]
  94. TianY. XuT. HuangJ. Tissue metabonomic phenotyping for diagnosis and prognosis of human colorectal cancer.Sci. Rep.2016612079010.1038/srep2079026876567
    [Google Scholar]
  95. WilliamsM.D. ZhangX. ParkJ.J. Characterizing metabolic changes in human colorectal cancer.Anal. Bioanal. Chem.2015407164581459510.1007/s00216‑015‑8662‑x25943258
    [Google Scholar]
  96. LinY. MaC. LiuC. NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer.Oncotarget2016720294542946410.18632/oncotarget.876227107423
    [Google Scholar]
  97. VahabiF. SadeghiS. ArjmandM. Staging of colorectal cancer using serum metabolomics with 1HNMR Spectroscopy.Iran. J. Basic Med. Sci.201720783584028852450
    [Google Scholar]
  98. TriantafillidisJ.K. VagianosC. MalgarinosG. Colonoscopy in colorectal cancer screening: Current aspects.Indian J. Surg. Oncol.20156323725010.1007/s13193‑015‑0410‑327217671
    [Google Scholar]
  99. LinJ.S. PerdueL.A. HenriksonN.B. BeanS.I. BlasiP.R. Screening for colorectal cancer.JAMA2021325191978199810.1001/jama.2021.441734003220
    [Google Scholar]
  100. JahnB. SroczynskiG. BundoM. Effectiveness, benefit harm and cost effectiveness of colorectal cancer screening in Austria.BMC Gastroenterol.201919120910.1186/s12876‑019‑1121‑y31805871
    [Google Scholar]
  101. LoktionovA. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins?World J. Gastrointest. Oncol.202012212414810.4251/wjgo.v12.i2.12432104546
    [Google Scholar]
  102. HelsingenLM KalagerM Colorectal cancer screening - approach, evidence, and future directions.NEJM Evidence202211EVIDra2100035
    [Google Scholar]
  103. ShaukatA. LevinT.R. Current and future colorectal cancer screening strategies.Nat. Rev. Gastroenterol. Hepatol.202219852153110.1038/s41575‑022‑00612‑y35505243
    [Google Scholar]
  104. StockenhuberK. EastJ.E. Colorectal cancer: Prevention and early diagnosis.Medicine201947739539910.1016/j.mpmed.2019.04.001
    [Google Scholar]
  105. MousavinezhadM. MajdzadehR. Akbari SariA. DelavariA. MohtashamF. The effectiveness of FOBT vs. FIT: A meta-analysis on colorectal cancer screening test.Med. J. Islam. Repub. Iran20163036627493910
    [Google Scholar]
  106. MoleG. WithingtonJ. LoganR. From FOBt to FIT: making it work for patients and populations.Clin. Med.201919319619910.7861/clinmedicine.19‑3‑196
    [Google Scholar]
  107. NiederreiterM. NiederreiterL. SchmidererA. TilgH. DjananiA. Colorectal cancer screening and prevention—pros and cons.Mag. Eur. Med. Oncol.201912323924310.1007/s12254‑019‑00520‑z
    [Google Scholar]
  108. MalagónM Ramió-PujolS SerranoM New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population.PLoS One20201512e024315810.1371/journal.pone.024315833259546
    [Google Scholar]
  109. NiedermaierT. BalavarcaY. BrennerH. Stage-specific sensitivity of fecal immunochemical tests for detecting colorectal cancer: Systematic review and meta-analysis.Am. J. Gastroenterol.20201151566910.14309/ajg.000000000000046531850933
    [Google Scholar]
  110. HernandezV. CubiellaJ. Gonzalez-MaoM.C. Fecal immunochemical test accuracy in average-risk colorectal cancer screening.World J. Gastroenterol.20142041038104710.3748/wjg.v20.i4.103824574776
    [Google Scholar]
  111. NaberS.K. KnudsenA.B. ZauberA.G. Cost-effectiveness of a multitarget stool DNA test for colorectal cancer screening of Medicare beneficiaries.PLoS One2019149e022023410.1371/journal.pone.022023431483796
    [Google Scholar]
  112. AhluwaliaA KearsA LamH WrightJ BloomfieldC JonesM. S3537 modernizing colorectal cancer screening with cologuard.Official journal of the American College of Gastroenterology | ACG2021116S145310.14309/01.ajg.0000787680.88302.8e
    [Google Scholar]
  113. LambY.N. DhillonS. Epi proColon® 2.0 CE: A blood-based screening test for colorectal cancer.Mol. Diagn. Ther.201721222523210.1007/s40291‑017‑0259‑y28155091
    [Google Scholar]
  114. BeringJ KahnA RodriguezE GinosB RamirezFC GuruduSR Outcomes of cologuard Screening at an Academic medical center: 1-year results: 230.Official journal of the American College of Gastroenterology-ACG2017112S1234
    [Google Scholar]
  115. BaxterN.T. KoumpourasC.C. RogersM.A.M. RuffinM.T.IV SchlossP.D. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model.Microbiome2016415910.1186/s40168‑016‑0205‑y27842559
    [Google Scholar]
  116. MaX. ZhouZ. ZhangX. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice.Cell Biol. Toxicol.202036550951510.1007/s10565‑020‑09518‑432172331
    [Google Scholar]
  117. WangC. YangS. GaoL. WangL. CaoL. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice.Food Funct.2018952695270410.1039/C7FO01886J29756138
    [Google Scholar]
  118. LiR. ZhouR. WangH. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer.Cell Death Differ.201926112447246310.1038/s41418‑019‑0312‑y30850734
    [Google Scholar]
  119. ZhaoY. WangC. GoelA. Role of gut microbiota in epigenetic regulation of colorectal Cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849010.1016/j.bbcan.2020.18849033321173
    [Google Scholar]
  120. EklöfV Löfgren-BurströmA ZingmarkC Cancerassociated fecal microbial markers in colorectal cancer detection.Int J Cancer20171411225283610.1002/ijc.3101128833079
    [Google Scholar]
  121. MimaK. NishiharaR. QianZ.R. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis.Gut201665121973198010.1136/gutjnl‑2015‑31010126311717
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947270529231116114913
Loading
/content/journals/cctr/10.2174/0115733947270529231116114913
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Colorectal cancer; diagnosis; gut; metabolite; microbiota; screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test