Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Breast cancer poses a significant global health challenge, and if current trends persist, the burden of breast cancer is projected to escalate, yielding over 3 million new cases and 1 million fatalities annually by the year 2040. Breast cancer is a highly heterogeneous disease, presenting a spectrum of subtypes, each characterized by unique clinical behaviors and responses to treatments. Understanding these breast cancer subtypes is of paramount importance in the fields of oncology and personalized medicine. In addition to conventional breast cancer treatments, such as surgery, chemotherapy, radiotherapy, hormonal therapy, and immunotherapy, recent scientific advancements have introduced a range of genetic engineering tools with noteworthy potential. Zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and small interfering RNA (siRNA) have emerged as promising components of breast cancer treatment. These tools offer encouraging applications due to their precision in targeting and manipulating genes. This review presents a comprehensive exploration of the various subtypes of breast cancer, along with an examination of the current promising genetic engineering tools in treating breast cancer. It sheds light on their roles in the evolving landscape of breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947278339231121105838
2024-01-22
2025-01-19
Loading full text...

Full text loading...

References

  1. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  2. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review.Cancers20211317428710.3390/cancers1317428734503097
    [Google Scholar]
  3. AlawamiH.A. Al-FarajZ.H. Al DuhilebM.A. AlOmranH.A. El SayedA.A. Unusual collision tumor with infiltrating ductal carcinoma and breast skin squamous cell carcinoma: A case report and literature review.Int. J. Surg. Case Rep.20217816717110.1016/j.ijscr.2020.12.01033360037
    [Google Scholar]
  4. KooM.M. von WagnerC. AbelG.A. McPhailS. RubinG.P. LyratzopoulosG. Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national audit of cancer diagnosis.Cancer Epidemiol.20174814014610.1016/j.canep.2017.04.01028549339
    [Google Scholar]
  5. ArnoldM. MorganE. RumgayH. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  6. YeF. DewanjeeS. LiY. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y37415164
    [Google Scholar]
  7. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑036344672
    [Google Scholar]
  8. TambeV. PatelS. ShardA. Dendronized polymeric biomaterial for loading, stabilization, and targeted cytosolic delivery of microRNA in cancer cells.ACS Appl. Bio Mater.2022594128415310.1021/acsabm.2c00179
    [Google Scholar]
  9. SharmaG.N. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912622247839
    [Google Scholar]
  10. JemalA. SiegelR. XuJ. WardE. Cancer Statistics, 2010.CA Cancer J. Clin.201060527730010.3322/caac.2007320610543
    [Google Scholar]
  11. TanK.F. AdamF. HussinH. Mohd MujarN.M. A comparison of breast cancer survival across different age groups: A multicentric database study in Penang, Malaysia.Epidemiol. Health202143e202103810.4178/epih.e202103834044478
    [Google Scholar]
  12. JenkinsS. KachurM.E. RechacheK. WellsJ.M. LipkowitzS. Rare breast cancer subtypes.Curr. Oncol. Rep.20212355410.1007/s11912‑021‑01048‑433755810
    [Google Scholar]
  13. SokolovaA. JohnstoneK.J. McCart ReedA.E. SimpsonP.T. LakhaniS.R. Hereditary breast cancer: Syndromes, tumour pathology and molecular testing.Histopathology2023821708210.1111/his.1480836468211
    [Google Scholar]
  14. CosarR. SutN. TopalogluS. Classifying invasive lobular carcinoma as special type breast cancer may be reducing its treatment success: A comparison of survival among invasive lobular carcinoma, invasive ductal carcinoma, and no-lobular special type breast cancer.PLoS One2023187e028344510.1371/journal.pone.028344537428725
    [Google Scholar]
  15. ChristgenM. CserniG. FlorisG. Lobular breast cancer: Histomorphology and different concepts of a special spectrum of tumors.Cancers20211315369510.3390/cancers1315369534359596
    [Google Scholar]
  16. OliveiraT.M.G. EliasJ.Jr MeloA.F. Evolving concepts in breast lobular neoplasia and invasive lobular carcinoma, and their impact on imaging methods.Insights Imaging20145218319410.1007/s13244‑014‑0324‑624633840
    [Google Scholar]
  17. DossusL. BenusiglioP.R. Lobular breast cancer: Incidence and genetic and non-genetic risk factors.Breast Cancer Res.20151713710.1186/s13058‑015‑0546‑725848941
    [Google Scholar]
  18. MorrisG.J. NaiduS. TophamA.K. Differences in breast carcinoma characteristics in newly diagnosed African–American and Caucasian patients.Cancer2007110487688410.1002/cncr.2283617620276
    [Google Scholar]
  19. DentR. TrudeauM. PritchardK.I. Triple-negative breast cancer: Clinical features and patterns of recurrence.Clin. Cancer Res.200713154429443410.1158/1078‑0432.CCR‑06‑304517671126
    [Google Scholar]
  20. LinN.U. ClausE. SohlJ. RazzakA.R. ArnaoutA. WinerE.P. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer.Cancer2008113102638264510.1002/cncr.2393018833576
    [Google Scholar]
  21. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  22. GluzO. LiedtkeC. GottschalkN. PusztaiL. NitzU. HarbeckN. Triple-negative breast cancer—current status and future directions.Ann. Oncol.200920121913192710.1093/annonc/mdp49219901010
    [Google Scholar]
  23. ZhangL. FangC. XuX. LiA. CaiQ. LongX. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: A meta-analysis.BioMed Res. Int.2015201511210.1155/2015/35748525695063
    [Google Scholar]
  24. ChaudharyL.N. WilkinsonK.H. KongA. Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy?Surg. Oncol. Clin. N. Am.201827114115310.1016/j.soc.2017.08.00429132557
    [Google Scholar]
  25. ChenH. WuJ. ZhangZ. Association between BRCA status and triple-negative breast cancer: A meta-analysis.Front. Pharmacol.2018990910.3389/fphar.2018.0090930186165
    [Google Scholar]
  26. DawoodS. CristofanilliM. IBC as a rapidly spreading systemic disease: Clinical and targeted approaches using the neoadjuvant model.J. Natl. Cancer Inst. Monogr.2015201551565910.1093/jncimonographs/lgv01726063888
    [Google Scholar]
  27. HaK.Y. GlassS.B. LaurieL. Inflammatory breast carcinoma.Proc. Bayl. Univ. Med. Cent.201326214915110.1080/08998280.2013.1192894023543972
    [Google Scholar]
  28. KushwahaA.C. WhitmanG.J. StellingC.B. CristofanilliM. BuzdarA.U. Primary inflammatory carcinoma of the breast: Retrospective review of mammographic findings.AJR Am. J. Roentgenol.2000174253553810.2214/ajr.174.2.174053510658737
    [Google Scholar]
  29. van GolenK.L. CristofanilliM. The third international inflammatory breast cancer conference.Breast Cancer Res.201315631810.1186/bcr357124188125
    [Google Scholar]
  30. AtkinsonR.L. El-ZeinR. ValeroV. Epidemiological risk factors associated with inflammatory breast cancer subtypes.Cancer Causes Control201627335936610.1007/s10552‑015‑0712‑326797453
    [Google Scholar]
  31. RanaH.Q. SaccaR. DroganC. Prevalence of germline variants in inflammatory breast cancer.Cancer2019125132194220210.1002/cncr.3206230933323
    [Google Scholar]
  32. SolimanA.S. SchairerC. Considerations in setting up and conducting epidemiologic studies of cancer in middle‐ and low‐income countries: the experience of a case–control study of inflammatory breast cancer in North Africa in the past 10 years.Cancer Med.20121333834910.1002/cam4.3623342283
    [Google Scholar]
  33. van GolenK. Joglekar-JavadekarM. BradfieldP. MurphyT. Dickson-WitmerD. van GolenK.L. Inflammatory breast cancer: A panoramic overview.J. Rare Dis. Res. Treat.201832374310.29245/2572‑9411/2018/2.1150
    [Google Scholar]
  34. KonduriS. SinghM. BobustucG. RovinR. KassamA. Epidemiology of male breast cancer.Breast20205481410.1016/j.breast.2020.08.01032866903
    [Google Scholar]
  35. YalazaM. İnanA. BozerM. Male breast cancer.J. Breast Health20161211810.5152/tjbh.2015.271128331724
    [Google Scholar]
  36. BevierM. SundquistK. HemminkiK. Risk of breast cancer in families of multiple affected women and men.Breast Cancer Res. Treat.2012132272372810.1007/s10549‑011‑1915‑222179927
    [Google Scholar]
  37. MassarwehS.A. SledgeG.W. MillerD.P. McCulloughD. PetkovV.I. ShakS. Molecular characterization and mortality from breast cancer in men.J. Clin. Oncol.201836141396140410.1200/JCO.2017.76.886129584547
    [Google Scholar]
  38. Leon-FerreR.A. GiridharK.V. HiekenT.J. A contemporary review of male breast cancer: Current evidence and unanswered questions.Cancer Metastasis Rev.201837459961410.1007/s10555‑018‑9761‑x30232577
    [Google Scholar]
  39. MadeiraM. MattarA. PassosR.J.B. A case report of male breast cancer in a very young patient: What is changing?World J. Surg. Oncol.2011911610.1186/1477‑7819‑9‑1621291532
    [Google Scholar]
  40. RudlowskiC. Male breast cancer.Breast Care200833610.1159/00013682520824037
    [Google Scholar]
  41. CutuliB. Le-NirC.C.S. SerinD. Male breast cancer. Evolution of treatment and prognostic factors. Analysis of 489 cases.Crit. Rev. Oncol. Hematol.201073324625410.1016/j.critrevonc.2009.04.00219442535
    [Google Scholar]
  42. HultbornR. HansonC. KöpfI. VerbienéI. WarnhammarE. WeimarckA. Prevalence of Klinefelter’s syndrome in male breast cancer patients.Anticancer Res.1997176D429342979494523
    [Google Scholar]
  43. DimitrakakisC. BondyC. Androgens and the breast.Breast Cancer Res.200911521210.1186/bcr241319889198
    [Google Scholar]
  44. ZhengG. LeoneJ.P. Male breast cancer: An updated review of epidemiology, clinicopathology, and treatment.J. Oncol.2022202211110.1155/2022/173404935656339
    [Google Scholar]
  45. MakkiJ. Diversity of breast carcinoma: Histological subtypes and clinical relevance.Clin Med Insights Pathol20158CPath.S3156310.4137/CPath.S3156326740749
    [Google Scholar]
  46. GiannakeasV. SopikV. NarodS.A. Association of a diagnosis of ductal carcinoma in situ with death from breast cancer.JAMA Netw. Open202039e201712410.1001/jamanetworkopen.2020.1712432936299
    [Google Scholar]
  47. van SeijenM. LipsE.H. ThompsonA.M. Ductal carcinoma in situ: To treat or not to treat, that is the question.Br. J. Cancer2019121428529210.1038/s41416‑019‑0478‑631285590
    [Google Scholar]
  48. AllredD.C. Ductal carcinoma in situ: Terminology, classification, and natural history.J. Natl. Cancer Inst. Monogr.201020104113413810.1093/jncimonographs/lgq03520956817
    [Google Scholar]
  49. VirnigB.A. WangS.Y. ShamilyanT. KaneR.L. TuttleT.M. Ductal carcinoma in situ: Risk factors and impact of screening.J. Natl. Cancer Inst. Monogr.201020104111311610.1093/jncimonographs/lgq02420956813
    [Google Scholar]
  50. LiC.I. DalingJ.R. MaloneK.E. Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001.Cancer Epidemiol. Biomarkers Prev.20051441008101110.1158/1055‑9965.EPI‑04‑084915824180
    [Google Scholar]
  51. WohlfahrtJ. RankF. KromanN. MelbyeM. A comparison of reproductive risk factors for CIS lesions and invasive breast cancer.Int. J. Cancer2004108575075310.1002/ijc.1158814696102
    [Google Scholar]
  52. GillJ.K. MaskarinecG. PaganoI. KolonelL.N. The association of mammographic density with ductal carcinoma in situ of the breast: The Multiethnic Cohort.Breast Cancer Res.200683R3010.1186/bcr150716796758
    [Google Scholar]
  53. KomenakaI.K. DitkoffB.A. JosephK.A. The development of interval breast malignancies in patients withBRCA mutations.Cancer2004100102079208310.1002/cncr.2022115139048
    [Google Scholar]
  54. LoganG.J. DabbsD.J. LucasP.C. Molecular drivers of lobular carcinoma in situ.Breast Cancer Res.20151717610.1186/s13058‑015‑0580‑526041550
    [Google Scholar]
  55. DegnimA.C. KingT.A. Surgical management of high-risk breast lesions.Surg. Clin. North Am.201393232934010.1016/j.suc.2012.12.00523464689
    [Google Scholar]
  56. ToT. WallC. BainesC.J. MillerA.B. Is carcinoma in situ a precursor lesion of invasive breast cancer?Int. J. Cancer201413571646165210.1002/ijc.2880324615647
    [Google Scholar]
  57. WenH.Y. BrogiE. Lobular carcinoma in situ.Surg. Pathol. Clin.201811112314510.1016/j.path.2017.09.00929413653
    [Google Scholar]
  58. EmensL.A. Breast cancer immunotherapy: Facts and hopes.Clin. Cancer Res.201824351152010.1158/1078‑0432.CCR‑16‑300128801472
    [Google Scholar]
  59. LiH. YangY. HongW. HuangM. WuM. ZhaoX. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects.Signal Transduct. Target. Ther.202051110.1038/s41392‑019‑0089‑y32296011
    [Google Scholar]
  60. PuriaR. SahiS. NainV. HER2+ breast cancer therapy: by CPP-ZFN mediated targeting of mTOR?Technol. Cancer Res. Treat.201211217518010.7785/tcrt.2012.50024722335412
    [Google Scholar]
  61. AhmedS. WangA. CeliusT. MatthewsJ. Zinc finger nuclease-mediated knockout of AHR or ARNT in human breast cancer cells abolishes basal and ligand-dependent regulation of CYP1B1 and differentially affects estrogen receptor α transactivation.Toxicol. Sci.201413818910310.1093/toxsci/kft27424299737
    [Google Scholar]
  62. González CastroN.G. BjelicJ. MalhotraG. HuangC. AlsaffarS.H. Comparison of the feasibility, efficiency, and safety of genome editing technologies.Int. J. Mol. Sci.202122191035510.3390/ijms22191035534638696
    [Google Scholar]
  63. CellectisCellectis presents preclinical data on TALEN®-edited MUC1 CAR T-cells to enhance efficacy in targeting triple negative breast cancer at the American Association for Cancer Research (AACR) Annual Meeting.Available from: https://www.cellectis.com/en/investors/scientific-presentations/ (Accessed Aug 19, 2023).
  64. YangM. ZengC. LiP. Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells.OncoTargets Ther.2019123849385810.2147/OTT.S19566131190884
    [Google Scholar]
  65. WangY. ZhangT. KwiatkowskiN. CDK7-dependent transcriptional addiction in triple-negative breast cancer.Cell2015163117418610.1016/j.cell.2015.08.06326406377
    [Google Scholar]
  66. Gonzalez-SalinasF. RojoR. Martinez-AmadorC. Herrera-GamboaJ. TrevinoV. Transcriptomic and cellular analyses of CRISPR/] Cas9-mediated edition of FASN show inhibition of aggressive characteristics in breast cancer cells.Biochem. Biophys. Res. Commun.2020529232132710.1016/j.bbrc.2020.05.17232703430
    [Google Scholar]
  67. DekkersJ.F. WhittleJ.R. VaillantF. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids.J. Natl. Cancer Inst.2020112554054410.1093/jnci/djz19631589320
    [Google Scholar]
  68. PadayacheeJ. SinghM. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials.Nanobiomedicine2020710.1177/184954352098319633488814
    [Google Scholar]
  69. LiuY. ZhuY.H. MaoC.Q. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles.J. Control. Release201419211412110.1016/j.jconrel.2014.07.00125016158
    [Google Scholar]
  70. HamurcuZ. AshourA. KahramanN. OzpolatB. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells.Oncotarget2016713166191663510.18632/oncotarget.767226918606
    [Google Scholar]
  71. KrenB.T. UngerG.M. AbedinM.J. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.Breast Cancer Res.20151711910.1186/s13058‑015‑0524‑025837326
    [Google Scholar]
  72. MorryJ. NgamcherdtrakulW. GuS. Targeted treatment of metastasis breast cancer by PLK1 siRNA delivered by an antioxidant nanoparticle platform.Mol. Cancer Ther.201716476377210.1158/1535‑7163.MCT‑16‑064428138033
    [Google Scholar]
  73. NachreinerI. HussainA.F. WullnerU. Elimination of HER3-expressing breast cancer cells using aptamer-siRNA chimeras.Exp. Ther. Med.20191842401241210.3892/etm.2019.775331555351
    [Google Scholar]
  74. ThielK.W. HernandezL.I. DassieJ.P. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers.Nucleic Acids Res.201240136319633710.1093/nar/gks29422467215
    [Google Scholar]
  75. ZhaoY. LiuT. ArdanaA. Investigation of a dual siRNA/chemotherapy delivery system for breast cancer therapy.ACS Omega2022720171191712710.1021/acsomega.2c0062035647423
    [Google Scholar]
  76. KarnV. SandhyaS. HsuW. CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope.Cancer Cell Int.202222123410.1186/s12935‑022‑02654‑335879772
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947278339231121105838
Loading

  • Article Type:
    Review Article
Keyword(s): Breast cancer subtypes; CRISPR-Cas9; genetic engineering tools; siRNA; TALENs; ZFNs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test