Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Leukaemia, lymphoma, and myeloma are among the serious and frequently fatal conditions that impact thousands of people each year. Genetics, environmental factors, and medical problems can all affect the risk of developing blood cancer, however, the precise causes are still not entirely known. Fatigue, unexpected weight loss, and frequent infections are examples of common blood cancer symptoms. In the course of the diagnosis process, blood tests, imaging tests, and bone marrow biopsies are frequently combined. Blood cancer therapies include chemotherapy, radiation therapy, stem cell transplant, targeted therapy, and immunotherapy. Supportive care is also important for managing symptoms and improving quality of life. Ongoing research is exploring new treatments and therapies for blood cancer, as well as ways to improve supportive care and personalize treatment plans. Blood cancer patients and their families have severe emotional and psychological effects that must not be ignored. For improving outcomes and raising the general standard of living for people affected by this condition, it is essential to address these needs.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947263279231114111550
2024-01-16
2025-01-19
Loading full text...

Full text loading...

References

  1. LidderP.G. SandersG. WhiteheadE. Pre-operative oral iron supplementation reduces blood transfusion in colorectal surgery - a prospective, randomised, controlled trial.Ann. R. Coll. Surg. Engl.200789441842110.1308/003588407X18336417535624
    [Google Scholar]
  2. DietrichS. OleśM. LuJ. Drug-perturbation-based stratification of blood cancer.J. Clin. Invest.2017128142744510.1172/JCI9380129227286
    [Google Scholar]
  3. MelchiondaF. SpreaficoF. CiceriS. A novel WT1 mutation in familial wilms tumor.Pediatr. Blood Cancer20136081388138910.1002/pbc.2453923554000
    [Google Scholar]
  4. MohtyB. MohtyM. Long-term complications and side effects after allogeneic hematopoietic stem cell transplantation: An update.Blood Cancer J.201114e1610.1038/bcj.2011.1422829137
    [Google Scholar]
  5. HewitsonP. GlasziouP. IrwigL. TowlerB. WatsonE. Screening for colorectal cancer using the faecal occult blood test, Hemoccult.Cochrane Database Syst. Rev.200720071CD001216
    [Google Scholar]
  6. CoombsC.C. TavakkoliM. TallmanM.S. Acute promyelocytic leukemia: Where did we start, where are we now, and the future.Blood Cancer J.201554e30410.1038/bcj.2015.2525885425
    [Google Scholar]
  7. CencicR. RobertF. Galicia-VázquezG. Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A.Blood Cancer J.201337e12810.1038/bcj.2013.2523872707
    [Google Scholar]
  8. MadananM. VenugopalA. VelayudhanN.C. Applying an optimal feature ranking and selection algorithm and random forest classifier algorithm along with k-fold cross validation for classification of blood cancer cells.Eur. J. Mol. Clin. Med.2020711774789
    [Google Scholar]
  9. TagdeA. SinghH. KangM.H. ReynoldsC.P. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma.Blood Cancer J.201447e22910.1038/bcj.2014.4525036800
    [Google Scholar]
  10. Costa-SilvaT.A. CostaI.M. BiasotoH.P. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer.Blood Rev.20204310065110.1016/j.blre.2020.10065132014342
    [Google Scholar]
  11. LandgrenO. GraubardB.I. KumarS. Prevalence of myeloma precursor state monoclonal gammopathy of undetermined significance in 12372 individuals 10–49 years old: A population-based study from the National Health and Nutrition Examination Survey.Blood Cancer J.2017710e61810.1038/bcj.2017.9729053158
    [Google Scholar]
  12. HouH-A. ChouW-C. KuoY-Y. TP53 mutations in de novo acute myeloid leukemia patients: Longitudinal follow-ups show the mutation is stable during disease evolution.Blood Cancer J.201557e33110.1038/bcj.2015.5926230955
    [Google Scholar]
  13. TrudelS. LendvaiN. PopatR. Antibody–drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study.Blood Cancer J.2019943710.1038/s41408‑019‑0196‑630894515
    [Google Scholar]
  14. HakomoriS. Antigen structure and genetic basis of histo-blood groups A, B and O: Their changes associated with human cancer.Biochim. Biophys. Acta, Gen. Subj.19991473124726610.1016/S0304‑4165(99)00183‑X10580143
    [Google Scholar]
  15. BoschF.X. RibesJ. DíazM. ClériesR. Primary liver cancer: Worldwide incidence and trends.Gastroenterology2004127S5S5S1610.1053/j.gastro.2004.09.01115508102
    [Google Scholar]
  16. Al HamedR. BazarbachiA.H. MalardF. HarousseauJ.L. MohtyM. Current status of autologous stem cell transplantation for multiple myeloma.Blood Cancer J.2019944410.1038/s41408‑019‑0205‑930962422
    [Google Scholar]
  17. KongY. ZhangJ. ClaxtonD.F. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation.Blood Cancer J.201557e33010.1038/bcj.2015.5826230954
    [Google Scholar]
  18. DosaniT. CarlstenM. MaricI. LandgrenO. The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies.Blood Cancer J.201554e30610.1038/bcj.2015.3225885426
    [Google Scholar]
  19. GonsalvesW.I. LeungN. RajkumarS.V. Improvement in renal function and its impact on survival in patients with newly diagnosed multiple myeloma.Blood Cancer J.201553e29610.1038/bcj.2015.2025794132
    [Google Scholar]
  20. ChengS.C. QuintinJ. CramerR.A. ShepardsonK.M. SaeedS. KumarV. MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.Science201434562041250684
    [Google Scholar]
  21. MeenaghanT DowlingM KellyM. Acute leukaemia: Making sense of a complex blood cancer.Br J Nurs201221276-78-83
    [Google Scholar]
  22. HasselbalchH.C. SkovV. KjærL. SørensenT.L. EllervikC. WieneckeT. Myeloproliferative blood cancers as a human neuroinflammation model for development of Alzheimer’s disease: evidences and perspectives.J. Neuroinflammation202017124810.1186/s12974‑020‑01877‑332829706
    [Google Scholar]
  23. GrimmR.H.Jr NeatonJ.D. LudwigW. Prognostic importance of the white blood cell count for coronary, cancer, and all-cause mortality.JAMA1985254141932193710.1001/jama.1985.033601400900314046122
    [Google Scholar]
  24. GileJ. RuanG. AbeykoonJ. McMahonM.M. WitzigT. Magnesium: The overlooked electrolyte in blood cancers?Blood Rev.20204410067610.1016/j.blre.2020.10067632229066
    [Google Scholar]
  25. Cunha JúniorA.D. PericoleF.V. CarvalheiraJ.B.C. Metformin and blood cancers.Clinics201873S1e412s10.6061/clinics/2018/e412s30208162
    [Google Scholar]
  26. CerquozziS. BarracoD. LashoT. FinkeC. HansonC.A. KetterlingR.P. Risk factors for arterial versus venous thrombosis in polycythemia vera: A single center experience in 587 patients/692/499/692/699/1541/1990/2331 article.Blood Cancer J.2017712662
    [Google Scholar]
  27. PeischS.F. Van BlariganE.L. ChanJ.M. StampferM.J. KenfieldS.A. Prostate cancer progression and mortality: A review of diet and lifestyle factors.World J. Urol.201735686787410.1007/s00345‑016‑1914‑327518576
    [Google Scholar]
  28. DelebarreM. DesseinR. LagréeM. Differential risk of severe infection in febrile neutropenia among children with blood cancer or solid tumor.J. Infect.20197929510010.1016/j.jinf.2019.06.00831228471
    [Google Scholar]
  29. MatthewsD.C. Inherited disorders of platelet function.Pediatr. Clin. North Am.20136061475148810.1016/j.pcl.2013.08.00424237983
    [Google Scholar]
  30. YingL. HofsethL.J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer.Cancer Res.20076741407141010.1158/0008‑5472.CAN‑06‑214917308075
    [Google Scholar]
  31. RafeiH. DiNardoC.D. Hereditary myeloid malignancies.Best Pract. Res. Clin. Haematol.201932216317610.1016/j.beha.2019.05.00131203998
    [Google Scholar]
  32. KeelS.B. ScottA. BonillaM.S. HoP.A. GulsunerS. PritchardC.C. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients.Haematologica201610111134310.3324/haematol.2016.149476
    [Google Scholar]
  33. WlodarskiM.W. HirabayashiS. PastorV. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents.Blood2016127111387139710.1182/blood‑2015‑09‑66993726702063
    [Google Scholar]
  34. WenJ. RuschM. BradyS.W. The landscape of coding RNA editing events in pediatric cancer.BMC Cancer2021211123310.1186/s12885‑021‑08956‑534789196
    [Google Scholar]
  35. BuonocoreF. KühnenP. SuntharalinghamJ.P. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans.J. Clin. Invest.201712751700171310.1172/JCI9191328346228
    [Google Scholar]
  36. ChurpekJ.E. GodleyL.A. How I diagnose and manage individuals at risk for inherited myeloid malignancies.Blood2016128141800181310.1182/blood‑2016‑05‑67024027471235
    [Google Scholar]
  37. PolprasertC. SchulzeI. SekeresM.A. Inherited and somatic defects in DDX41 in myeloid neoplasms.Cancer Cell201527565867010.1016/j.ccell.2015.03.01725920683
    [Google Scholar]
  38. MangaonkarA.A. PatnaikM.M. Hereditary predisposition to hematopoietic neoplasms.Mayo Clin. Proc.20209571482149810.1016/j.mayocp.2019.12.01332571604
    [Google Scholar]
  39. GillP.S. HarringtonW.Jr KaplanM.H. Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine.N. Engl. J. Med.1995332261744174810.1056/NEJM1995062933226037760890
    [Google Scholar]
  40. YangM. A current global view of environmental and occupational cancers.J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev.201129322324910.1080/10590501.2011.601848
    [Google Scholar]
  41. JeeS.H. ParkJ.Y. KimH.S. LeeT.Y. SametJ.M. White blood cell count and risk for all-cause, cardiovascular, and cancer mortality in a cohort of Koreans.Am. J. Epidemiol.2005162111062106910.1093/aje/kwi32616221804
    [Google Scholar]
  42. TerposE. ChristoulasD. KastritisE. High levels of periostin correlate with increased fracture rate, diffuse MRI pattern, abnormal bone remodeling and advanced disease stage in patients with newly diagnosed symptomatic multiple myeloma.Blood Cancer J.2016610e48210.1038/bcj.2016.9027716740
    [Google Scholar]
  43. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers1309202533922197
    [Google Scholar]
  44. BreenS. KofoedS. RitchieD. Remote real-time monitoring for chemotherapy side-effects in patients with blood cancers.Collegian201724654154910.1016/j.colegn.2016.10.009
    [Google Scholar]
  45. Hippisley-CoxJ. CouplandC. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm.Br. J. Gen. Pract.201363606e1e1010.3399/bjgp13X66072423336443
    [Google Scholar]
  46. Hippisley-CoxJ. CouplandC. Symptoms and risk factors to identify women with suspected cancer in primary care: derivation and validation of an algorithm.Br. J. Gen. Pract.201363606e11e2110.3399/bjgp13X66073323336450
    [Google Scholar]
  47. AryalM. VykhodtsevaN. ZhangY.Z. ParkJ. McDannoldN. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood–tumor and blood–brain barriers improve outcomes in a rat glioma model.J. Control. Release20131691-210311110.1016/j.jconrel.2013.04.00723603615
    [Google Scholar]
  48. KrukemeyerM.G. KrennV. JakobsM. WagnerW. Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver--magnetic nanoparticles in cancer treatment.J. Surg. Res.20121751354310.1016/j.jss.2011.01.06021470623
    [Google Scholar]
  49. GonçalvesM.C. de OliveiraC.R.G.C.M. SandesA.F. Core needle biopsy in lymphoma diagnosis.Am. J. Surg. Pathol.202347111112310.1097/PAS.000000000000199136395467
    [Google Scholar]
  50. CarraraS. RahalD. KhalafK. Diagnostic accuracy and safety of EUS-guided end-cutting fine-needle biopsy needles for tissue sampling of abdominal and mediastinal lymphadenopathies: A prospective multicenter series.Gastrointest. Endosc.202398219119810.1016/j.gie.2023.03.01836990125
    [Google Scholar]
  51. GuanC. WuM. YeJ. Macroscopic on site quality evaluation of biopsy specimens to improve the diagnostic accuracy of endoscopic ultrasound guided fine needle aspiration using a 22 gauge needle for solid lesions: A single center retrospective study.Exp. Ther. Med.202326133810.3892/etm.2023.1203737383379
    [Google Scholar]
  52. GómezG.E. CanoC.R. BurgosJ. ProsTAV, a novel blood‐based test for biopsy decision management in significant prostate cancer.Prostate202383141323133110.1002/pros.2459437409738
    [Google Scholar]
  53. EstevaM. LeivaA. RamosM. Factors related with symptom duration until diagnosis and treatment of symptomatic colorectal cancer.BMC Cancer20131318710.1186/1471‑2407‑13‑8723432789
    [Google Scholar]
  54. HamannP.R. HinmanL.M. HollanderI. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia.Bioconjug. Chem.2002131475810.1021/bc010021y11792178
    [Google Scholar]
  55. HoldenriederS. PagliaroL. MorgensternD. DayyaniF. Clinically meaningful use of blood tumor markers in oncology.BioMed Res. Int.20162016979526910.1155/2016/9795269
    [Google Scholar]
  56. RianB. RukerJ.D. OsheM. AlpazT. EstaE.J.R. EngI.P. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N. Engl. J. Med.20013441410311037
    [Google Scholar]
  57. SarithaM. PrakashB.B. SukeshK. ShrinivasB. Detection of blood cancer in microscopic images of human blood samples: A review.International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT201659660010.1109/ICEEOT.2016.7754751
    [Google Scholar]
  58. MelchiondaF. OncologyP. SpreaficoF. UnitP.O. Hemato-oncologyP. CiceriS. Letter to the editor a novel WT1 Mutation in FLamilial wilms tumor.Pediatr. Blood Cancer2013February1388138910.1002/pbc.2453923554000
    [Google Scholar]
  59. WataseC. ShiinoS. ShimoiT. Breast cancer brain metastasis—overview of disease state, treatment options and future perspectives.Cancers2021135107810.3390/cancers1305107833802424
    [Google Scholar]
  60. AdamsD.M. RicciK.W. Vascular anomalies.Hematol. Oncol. Clin. North Am.201933345547010.1016/j.hoc.2019.01.01131030813
    [Google Scholar]
  61. TanL.L. LyonA.R. Role of biomarkers in prediction of cardiotoxicity during cancer treatment.Curr. Treat. Options Cardiovasc. Med.20182075510.1007/s11936‑018‑0641‑z29923056
    [Google Scholar]
  62. NaeemN. ReedM.D. CregerR.J. YoungnerS.J. LazarusH.M. Transfer of the hematopoietic stem cell transplant patient to the intensive care unit: Does it really matter?Bone Marrow Transplant.200537119133
    [Google Scholar]
  63. GüneşM. KılıçR. PatıroğluT. EzerU. KürekçiA. Evaluation of transplanted stem cell dynamic variables in the bone marrow of children with malignancies.J. Biomed. Allied Res.20235119
    [Google Scholar]
  64. GrulkeN. AlbaniC. BailerH. Quality of life in patients before and after haematopoietic stem cell transplantation measured with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Core Questionnaire QLQ-C30.Bone Marrow Transplant.201147473482
    [Google Scholar]
  65. RedaelliA. StephensJ.M. BrandtS. BottemanM.F. PashosC.L. Short- and long-term effects of acute myeloid leukemia on patient health-related quality of life.Cancer Treat. Rev.200430110311710.1016/S0305‑7372(03)00142‑714766128
    [Google Scholar]
  66. HaydenP.J. KeoghF. ConghaileM.N. CarrollM. CrowleyM. FitzsimonN. A single-centre assessment of long-term quality-of-life status after sibling allogeneic stem cell transplantation for chronic myeloid leukaemia in first chronic phase.Bone Marrow Transplant.200434654555610.1038/sj.bmt.1704638
    [Google Scholar]
  67. WorelN. BienerD. KalhsP. MitterbauerM. KeilF. SchulenburgA. Long-term outcome and quality of life of patients who are alive and in complete remission more than two years after allogeneic and syngeneic stem cell transplantation.Bone Marrow Transplant.200230961962610.1038/sj.bmt.1703677
    [Google Scholar]
  68. DeiningerM.W.N. DrukerB.J. Specific targeted therapy of chronic myelogenous leukemia with imatinib.Pharmacol. Rev.200355340142310.1124/pr.55.3.412869662
    [Google Scholar]
  69. MojtahediH. YazdanpanahN. RezaeiN. Chronic myeloid leukemia stem cells: Targeting therapeutic implications.Stem Cell Res. Ther.202112160310.1186/s13287‑021‑02659‑134922630
    [Google Scholar]
  70. AbboudC. BermanE. CohenA. CortesJ. DeAngeloD. DeiningerM. The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: From the perspective of a large group of CML experts.Blood2013121224439444210.1182/blood‑2013‑03‑49000323620577
    [Google Scholar]
  71. MolldremJ.J. LeeP.P. WangC. FelioK. KantarjianH.M. ChamplinR.E. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia.Nat. Med.2000691018102310.1038/79526
    [Google Scholar]
  72. IgneyF.H. KrammerP.H. Immune escape of tumors: Apoptosis resistance and tumor counterattack.J. Leukoc. Biol.200271690792010.1189/jlb.71.6.90712050175
    [Google Scholar]
  73. MesserschmidtJ.L. PrendergastG.C. MesserschmidtG.L. How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: Helping nonimmunologists decipher recent advances.Oncologist201621223324310.1634/theoncologist.2015‑028226834161
    [Google Scholar]
  74. KyriakidisI. VasileiouE. RossigC. RoilidesE. GrollA.H. TragiannidisA. Invasive fungal diseases in children with hematological malignancies treated with therapies that target cell surface antigens: Monoclonal antibodies, immune checkpoint inhibitors and CAR T-cell therapies.J. Fungi202173186
    [Google Scholar]
  75. KhalilD.N. SmithE.L. BrentjensR.J. WolchokJ.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy.Nat. Rev. Clin. Oncol.2016135273290
    [Google Scholar]
  76. HanD. XuZ. ZhuangY. YeZ. QianQ. Current progress in CAR-T cell therapy for hematological malignancies.J. Cancer2021122326
    [Google Scholar]
  77. RileyR.S. DayE.S. Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201794e144910.1002/wnan.144928160445
    [Google Scholar]
  78. McQuadeJ.L. DanielC.R. HessK.R. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis.Lancet Oncol.201819331032210.1016/S1470‑2045(18)30078‑029449192
    [Google Scholar]
  79. GaoZ. HuangS. WangS. TangD. XuW. ZengR. Efficacy and safety of immunochemotherapy, immunotherapy, chemotherapy, and targeted therapy as first-line treatment for advanced and metastatic esophageal cancer: A systematic review and network meta-analysis.Lancet Reg. Health West. Pac.20233810084110.1016/j.lanwpc.2023.100841
    [Google Scholar]
  80. BoonsE. NogueiraT.C. DierckxT. XPO1 inhibitors represent a novel therapeutic option in Adult T-cell Leukemia, triggering p53-mediated caspase-dependent apoptosis.Blood Cancer J.20211122710.1038/s41408‑021‑00409‑333563902
    [Google Scholar]
  81. HallekM. ChesonB.D. CatovskyD. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines.Blood2008111125446545610.1182/blood‑2007‑06‑09390618216293
    [Google Scholar]
  82. MadedduC. GramignanoG. AstaraG. Pathogenesis and treatment options of cancer related anemia: Perspective for a targeted mechanism-based approach.Front. Physiol.20189SEP129410.3389/fphys.2018.0129430294279
    [Google Scholar]
  83. NeumannM. HeeschS. GökbugetN. Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations.Blood Cancer J.201221e5510.1038/bcj.2011.4922829239
    [Google Scholar]
  84. OlsonK. HansonJ. MichaudM. A phase II trial of reiki for the management of pain in advanced cancer patients.J. Pain Symptom Manage.200326599099710.1016/S0885‑3924(03)00334‑814585550
    [Google Scholar]
  85. O’LearyM. KrailoM. AndersonJ.R. ReamanG.H. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s Oncology Group.Semin. Oncol.200835548449310.1053/j.seminoncol.2008.07.00818929147
    [Google Scholar]
  86. SuoY. GuZ. WeiX. Advances of in vivo flow cytometry on cancer studies.Cytometry A2020971152310.1002/cyto.a.2385131273910
    [Google Scholar]
  87. MeiZ. ShiL. WangB. YangJ. XiaoZ. DuP. Prognostic role of pretreatment blood neutrophil-to-lymphocyte ratio in advanced cancer survivors: A systematic review and meta-analysis of 66 cohort studies.Cancer Treat. Rev.201758113
    [Google Scholar]
  88. SpinettaJ.J. JankovicM. MaseraG. Optimal care for the child with cancer: A summary statement from the SIOP working committee on psychosocial issues in pediatric oncology.Pediatr. Blood Cancer200952790490710.1002/pbc.2186319142992
    [Google Scholar]
  89. LiC.P. ChaoY. ChiK.H. Concurrent chemoradiotherapy treatment of locally advanced pancreatic cancer: Gemcitabine versus 5-fluorouracil, a randomized controlled study.Int. J. Radiat. Oncol. Biol. Phys.20035719810410.1016/S0360‑3016(03)00435‑812909221
    [Google Scholar]
  90. MaseraG. JankovicM. Deasy-SpinettaP. SIOP working committee on psychosocial issues in pediatric oncology: Guidelines for school/education.Med. Pediatr. Oncol.199525642943010.1002/mpo.29502506027565303
    [Google Scholar]
  91. LechG. SłotwińskiR. SłodkowskiM. KrasnodębskiI.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances.World J. Gastroenterol.20162251745175510.3748/wjg.v22.i5.174526855534
    [Google Scholar]
  92. HenckelC. RevetteA. HuntingtonS.F. TulskyJ.A. AbelG.A. OdejideO.O. Perspectives regarding hospice services and transfusion access: Focus groups with blood cancer patients and bereaved caregivers.J. Pain Symptom Manage.202059611951203.e410.1016/j.jpainsymman.2019.12.37331926969
    [Google Scholar]
  93. JankovicM SpinettaJJ MaseraG BarrRD Non-conventional therapies in childhood cancer: guidelines for distinguishing non-harmful from harmful therapies: A report of the SIOP Working Committee on Psychosocial Issues in Pediatric Oncology Klin Padiatr20042163194197
    [Google Scholar]
  94. KimNK ParkYS HeoDS KimHJ KangWK SuhCI M.D., Si Young Kim, M.D., Keun Chil Park, M.D., Yoon.24
    [Google Scholar]
  95. YuanM. HuangL.L. ChenJ.H. WuJ. XuQ. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer.Signal Transduct. Target. Ther.20194111410.1038/s41392‑019‑0099‑9
    [Google Scholar]
  96. Borrescio-HigaF. ValdésN. The psychosocial burden of families with childhood blood cancer.Int. J. Environ. Res. Public Health202219159910.3390/ijerph1901059935010854
    [Google Scholar]
  97. GlimeliusB. GarmoH. BerglundÅ. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer.Pharmacogenomics J.2011111617110.1038/tpj.2010.1020177420
    [Google Scholar]
  98. GiantonioB.J. LevyD.E. O’DwyerP.J. MeropolN.J. CatalanoP.J. BensonA.B.III A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: Results from the eastern cooperative oncology group study E2200.Ann. Oncol.20061791399140310.1093/annonc/mdl16116873427
    [Google Scholar]
  99. BestM.G. SolN. KooiI. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics.Cancer Cell201528566667610.1016/j.ccell.2015.09.01826525104
    [Google Scholar]
  100. XiangJ. LvB. FanS. ZhangZ. YangH. Deltex E3 Ubiquitin Ligase 3L confers radioresistance in prostate cancer via Akt pathway.Trop. J. Pharm. Res.202019713971402
    [Google Scholar]
  101. DulosJ. CarvenG.J. van BoxtelS.J. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer.J. Immunother.201235216917810.1097/CJI.0b013e318247a4e722306905
    [Google Scholar]
  102. De VitaF. OrdituraM. MatanoE. A phase II study of biweekly oxaliplatin plus infusional 5-fluorouracil and folinic acid (FOLFOX-4) as first-line treatment of advanced gastric cancer patients.Br. J. Cancer20059291644164910.1038/sj.bjc.660257315856038
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947263279231114111550
Loading
/content/journals/cctr/10.2174/0115733947263279231114111550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test