Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

This article highlights the therapeutic use of electrospun biopolymers in cancer treatment. An overview of cancer and electrospun is presented at the beginning. The reasons for electrospinning, the elements that influence electrospinning, and the most recent breakthroughs in the utilization of electrospun nanofibers in cancer research are then explored. The insertion of drugs, managing emission kinetics, alignment and proper arrangement of nano range fibers, and the production of 3D nanofibers are all discussed as essential characteristics of electrospun nanofibers that are extremely important for cancer research.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947262161231011112548
2024-01-23
2025-05-13
Loading full text...

Full text loading...

References

  1. ChandraprasadM.S. DeyA. SwamyM.K. Introduction to cancer and treatment approaches.In: Paclitaxel.Elsevier202212710.1016/B978‑0‑323‑90951‑8.00010‑2
    [Google Scholar]
  2. ClappR.W. JacobsM.M. LoechlerE.L. Environmental and occupational causes of cancer: new evidence 2005-2007.Rev. Environ. Health200823113810.1515/REVEH.2008.23.1.1 18557596
    [Google Scholar]
  3. AmesB.N. GoldL.S. WillettW.C. The causes and prevention of cancer.Proc. Natl. Acad. Sci. USA199592125258526510.1073/pnas.92.12.5258 7777494
    [Google Scholar]
  4. KeyT.J. SchatzkinA. WillettW.C. AllenN.E. SpencerE.A. TravisR.C. Diet, nutrition and the prevention of cancer.Public Health Nutr.200471a18720010.1079/PHN2003588 14972060
    [Google Scholar]
  5. PonderB.A.J. Cancer genetics.Nature2001411683533634110.1038/35077207 11357140
    [Google Scholar]
  6. VogelsteinB. KinzlerK.W. Cancer genes and the pathways they control.Nat. Med.200410878979910.1038/nm1087 15286780
    [Google Scholar]
  7. LawrenceM.S. StojanovP. PolakP. Mutational heterogeneity in cancer and the search for new cancer-associated genes.Nature2013499745721421810.1038/nature12213 23770567
    [Google Scholar]
  8. LillieA.K. Exploring cancer genetics and care of the family: an evolving challenge for palliative care.Int. J. Palliat. Nurs.2006122707410.12968/ijpn.2006.12.2.20533 16603995
    [Google Scholar]
  9. BrennerH. Long-term survival rates of cancer patients achieved by the end of the 20th century: a period analysis.Lancet200236093401131113510.1016/S0140‑6736(02)11199‑8 12387961
    [Google Scholar]
  10. TaiakinaD. PraA.D. BristowR.G. Intratumoral hypoxia as the genesis of genetic instability and clinical prognosis in prostate cancer.Adv. Exp. Med. Biol.201477218920410.1007/978‑1‑4614‑5915‑6_9
    [Google Scholar]
  11. ParadkarP.H. JoshiJ.V. MertiaP.N. AgasheS.V. VaidyaR.A. Role of cytokines in genesis, progression and prognosis of cervical cancer.Asian Pac. J. Cancer Prev.20141593851386410.7314/APJCP.2014.15.9.3851 24935564
    [Google Scholar]
  12. NicholsonJ.M. CiminiD. Cancer karyotypes: survival of the fittest.Front. Oncol.2013314810.3389/fonc.2013.00148 23760367
    [Google Scholar]
  13. ZhangQ. ZhangQ. CongH. ZhangX. The ectopic expression of BRCA1 is associated with genesis, progression, and prognosis of breast cancer in young patients.Diagn. Pathol.20127118110.1186/1746‑1596‑7‑181 23276146
    [Google Scholar]
  14. Peshes-YelozN. UngarL. WohlA. Role of klotho protein in tumor genesis, cancer progression, and prognosis in patients with high-grade glioma.World Neurosurg.2019130e324e33210.1016/j.wneu.2019.06.082 31228703
    [Google Scholar]
  15. WangJ. LiW. WangY. The H6D genetic variation of GDF15 is associated with genesis, progress and prognosis in colorectal cancer.Pathol. Res. Pract.20152111184585010.1016/j.prp.2015.08.004 26365480
    [Google Scholar]
  16. SunY. ChengS. LuW. WangY. ZhangP. YaoQ. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization.RSC Advances2019944257122572910.1039/C9RA05012D 35530076
    [Google Scholar]
  17. BhardwajN. KunduS.C. Electrospinning: A fascinating fiber fabrication technique.Biotechnol. Adv.201028332534710.1016/j.biotechadv.2010.01.004 20100560
    [Google Scholar]
  18. ShahriarS. MondalJ. HasanM. RevuriV. LeeD. LeeY.K. Electrospinning nanofibers for therapeutics delivery.Nanomaterials (Basel)20199453210.3390/nano9040532 30987129
    [Google Scholar]
  19. WangC. ChengY.W. HsuC.H. ChienH.S. TsouS.Y. How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?a brief discussion of solution electrospinning process.J. Polym. Res.201118111112310.1007/s10965‑010‑9397‑1
    [Google Scholar]
  20. De VriezeS. Van CampT. NelvigA. HagströmB. WestbroekP. De ClerckK. The effect of temperature and humidity on electrospinning.J. Mater. Sci.20094451357136210.1007/s10853‑008‑3010‑6
    [Google Scholar]
  21. HaoM.F. LiuY. HeX.T. DingY.M. YangW.M. Factors influencing diameter of polypropylene fiber in melt electrospinning.Adv. Mater Res.201122112913410.4028/www.scientific.net/AMR.221.129
    [Google Scholar]
  22. SuY. LuB. XieY. Temperature effect on electrospinning of nanobelts: the case of hafnium oxide.Nanotechnology2011222828560910.1088/0957‑4484/22/28/285609 21659687
    [Google Scholar]
  23. MedeirosE.S. MattosoL.H.C. ItoE.N. Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils.J. Biobased Mater. Bioenergy20082323124210.1166/jbmb.2008.411
    [Google Scholar]
  24. ChanthakulchanA. KoomsapP. ParkhiA.A. SupapholP. Environmental effects in fibre fabrication using electrospinning-based rapid prototyping.Virtual Phys. Prototyp.201510422723710.1080/17452759.2015.1112411
    [Google Scholar]
  25. ThomaC.R. ZimmermannM. AgarkovaI. KelmJ.M. KrekW. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.Adv. Drug Deliv. Rev.201469-70294110.1016/j.addr.2014.03.001 24636868
    [Google Scholar]
  26. KievitF.M. FlorczykS.J. LeungM.C. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds.Biomaterials201435339137914310.1016/j.biomaterials.2014.07.037 25109438
    [Google Scholar]
  27. RanganathS.H. WangC.H. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma.Biomaterials200829202996300310.1016/j.biomaterials.2008.04.002 18423584
    [Google Scholar]
  28. HutmacherD.W. Biomaterials offer cancer research the third dimension.Nat. Mater.201092909310.1038/nmat2619 20094076
    [Google Scholar]
  29. BrancoM.C. SiganoD.M. SchneiderJ.P. Materials from peptide assembly: towards the treatment of cancer and transmittable disease.Curr. Opin. Chem. Biol.201115342743410.1016/j.cbpa.2011.03.021 21507707
    [Google Scholar]
  30. KievitF.M. WangF.Y. FangC. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro.J. Control. Release20111521768310.1016/j.jconrel.2011.01.024 21277920
    [Google Scholar]
  31. HindererS. LaylandS.L. Schenke-LaylandK. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy.Adv. Drug Deliv. Rev.20169726026910.1016/j.addr.2015.11.019 26658243
    [Google Scholar]
  32. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.200254563165110.1016/S0169‑409X(02)00044‑3 12204596
    [Google Scholar]
  33. TaH.T. DassC.R. DunstanD.E. Injectable chitosan hydrogels for localised cancer therapy.J. Control. Release2008126320521610.1016/j.jconrel.2007.11.018 18258328
    [Google Scholar]
  34. RamachandranR. JunnuthulaV.R. GowdG.S. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma.Sci. Rep.2017714327110.1038/srep43271 28262735
    [Google Scholar]
  35. BagóJ.R. PegnaG.J. OkolieO. Mohiti-AsliM. LoboaE.G. HingtgenS.D. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma.Biomaterials20169011612510.1016/j.biomaterials.2016.03.008 27016620
    [Google Scholar]
  36. WeiJ. LuoX. ChenM. LuJ. LiX. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin.Acta Biomater.20152318920010.1016/j.actbio.2015.05.020 26013039
    [Google Scholar]
  37. MaP.X. ZhangR. Synthetic nano-scale fibrous extracellular matrix.J. Biomed. Mater. Res.1999461607210.1002/(SICI)1097‑4636(199907)46:1<60:AID‑JBM7>3.0.CO;2‑H 10357136
    [Google Scholar]
  38. AnisieiA. OanceaF. MarinL. Electrospinning of chitosan-based nanofibers: from design to prospective applications.Rev. Chem. Eng.2023391317010.1515/revce‑2021‑0003
    [Google Scholar]
  39. VenugopalJ. RamakrishnaS. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration.Tissue Eng.2005115-684785410.1089/ten.2005.11.847 15998224
    [Google Scholar]
  40. PillayV. DottC. ChoonaraY.E. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications.J. Nanomater.2013201312210.1155/2013/789289
    [Google Scholar]
  41. KimW.J. KwonY.J. ChoC.H. YeS.K. KimK.O. Insulin smart drug delivery nanoparticles of aminophenylboronic acid–POSS molecule at neutral pH.Sci. Rep.20211112189410.1038/s41598‑021‑01216‑3 34750459
    [Google Scholar]
  42. LiD. XiaY. Electrospinning of nanofibers: Reinventing the wheel?Adv. Mater.200416141151117010.1002/adma.200400719
    [Google Scholar]
  43. ProcessE. An Introduction to Electrospinning and Nanofibers.WORLD SCIENTIFIC200590154
    [Google Scholar]
  44. YeK. KuangH. YouZ. MorsiY. MoX. Electrospun nanofibers for tissue engineering with drug loading and release.Pharmaceutics201911418210.3390/pharmaceutics11040182 30991742
    [Google Scholar]
  45. JunI. HanH.S. EdwardsJ. JeonH. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication.Int. J. Mol. Sci.201819374510.3390/ijms19030745 29509688
    [Google Scholar]
  46. ZhuX. CuiW. LiX. JinY. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering.Biomacromolecules2008971795180110.1021/bm800476u 18578495
    [Google Scholar]
  47. LuoH. JieT. ZhengL. HuangC. ChenG. CuiW. Electrospun nanofibers for cancer therapy.Adv. Exp. Med. Biol.2021129516319010.1007/978‑3‑030‑58174‑9_8
    [Google Scholar]
  48. KenawyE.R. BowlinG.L. MansfieldK. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend.J. Control. Release2002811-2576410.1016/S0168‑3659(02)00041‑X 11992678
    [Google Scholar]
  49. YoheS.T. HerreraV.L.M. ColsonY.L. GrinstaffM.W. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells.J. Control. Release201216219210110.1016/j.jconrel.2012.05.047 22684120
    [Google Scholar]
  50. ZongS. WangX. YangY. The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice.Eur. J. Pharm. Biopharm.20159312713510.1016/j.ejpb.2015.03.029 25843238
    [Google Scholar]
  51. ToshkovaR. ManolovaN. GardevaE. Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor.Int. J. Pharm.20104001-222123310.1016/j.ijpharm.2010.08.039 20816737
    [Google Scholar]
  52. WeiJ. HuJ. LiM. ChenY. ChenY. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment.RSC Advances2014453280112801910.1039/C4RA03722G
    [Google Scholar]
  53. XieJ. WangC.H. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro.Pharm. Res.20062381817182610.1007/s11095‑006‑9036‑z 16841195
    [Google Scholar]
  54. XuX. ChenX. WangZ. JingX. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity.Eur. J. Pharm. Biopharm.2009721182510.1016/j.ejpb.2008.10.015 19027067
    [Google Scholar]
  55. LuoX. XieC. WangH. LiuC. YanS. LiX. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation.Int. J. Pharm.20124251-2192810.1016/j.ijpharm.2012.01.012 22265915
    [Google Scholar]
  56. LuoX. ZhangH. ChenM. WeiJ. ZhangY. LiX. Antimetastasis and antitumor efficacy promoted by sequential release of vascular disrupting and chemotherapeutic agents from electrospun fibers.Int. J. Pharm.20144751-243844910.1016/j.ijpharm.2014.09.006 25218185
    [Google Scholar]
  57. ChenP. WuQ.S. DingY.P. ChuM. HuangZ.M. HuW. A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro.Eur. J. Pharm. Biopharm.201076341342010.1016/j.ejpb.2010.09.005 20854905
    [Google Scholar]
  58. XuX. ChenX. XuX. BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells.J. Control. Release2006114330731610.1016/j.jconrel.2006.05.031 16891029
    [Google Scholar]
  59. ShaoS. LiL. YangG. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers.Int. J. Pharm.2011421231032010.1016/j.ijpharm.2011.09.033 21983092
    [Google Scholar]
  60. GuoG. FuS. ZhouL. Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells.Nanoscale2011393825383210.1039/c1nr10484e 21847493
    [Google Scholar]
  61. SongM. GuoD. PanC. The application of poly(N -isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug.Nanotechnology2008191616510210.1088/0957‑4484/19/16/165102 21825633
    [Google Scholar]
  62. LvG. HeF. WangX. Novel nanocomposite of nano fe(3)o(4) and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells.Langmuir20082452151215610.1021/la702845s 18193905
    [Google Scholar]
  63. LeiC. CuiY. ZhengL. Kah-Hoe ChowP. WangC.H. Development of a gene/drug dual delivery system for brain tumor therapy: Potent inhibition via RNA interference and synergistic effects.Biomaterials201334307483749410.1016/j.biomaterials.2013.06.010 23820014
    [Google Scholar]
  64. OkadaT. NiiyamaE. UtoK. AoyagiT. EbaraM. Inactivated sendai virus (HVJ-E) immobilized electrospun nanofiber for cancer therapy.Materials (Basel)2015911210.3390/ma9010012 28787810
    [Google Scholar]
  65. LinT.C. LinF.H. LinJ.C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells.Acta Biomater.2012872704271110.1016/j.actbio.2012.03.045 22484694
    [Google Scholar]
  66. ZengJ. YangL. LiangQ. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation.J. Control. Release20051051-2435110.1016/j.jconrel.2005.02.024 15908033
    [Google Scholar]
  67. KimK. LuuY.K. ChangC. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds.J. Control. Release2004981475610.1016/j.jconrel.2004.04.009 15245888
    [Google Scholar]
  68. SultanovaZ. KaleliG. KabayG. MutluM. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers.Int. J. Pharm.20165051-213313810.1016/j.ijpharm.2016.03.032 27012983
    [Google Scholar]
  69. QiH. HuP. XuJ. WangA. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment.Biomacromolecules2006782327233010.1021/bm060264z 16903678
    [Google Scholar]
  70. HanD. StecklA.J. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules.ACS Appl. Mater. Interfaces20135168241824510.1021/am402376c 23924226
    [Google Scholar]
  71. SongB. WuC. ChangJ. Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles.Acta Biomater.2012851901190710.1016/j.actbio.2012.01.020 22326789
    [Google Scholar]
  72. XieJ. MacEwanM.R. LiX. Sakiyama-ElbertS.E. XiaY. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties.ACS Nano2009351151115910.1021/nn900070z 19397333
    [Google Scholar]
  73. XieJ. LiuW. MacEwanM.R. BridgmanP.C. XiaY. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate.ACS Nano2014821878188510.1021/nn406363j 24444076
    [Google Scholar]
  74. XieJ. MacEwanM.R. WillerthS.M. Conductive core-sheath nanofibers and their potential application in neural tissue engineering.Adv. Funct. Mater.200919142312231810.1002/adfm.200801904 19830261
    [Google Scholar]
  75. LiX. XieJ. LipnerJ. YuanX. ThomopoulosS. XiaY. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site.Nano Lett.2009972763276810.1021/nl901582f 19537737
    [Google Scholar]
  76. PengQ. SunX.Y. SpagnolaJ.C. HydeG.K. SpontakR.J. ParsonsG.N. Atomic layer deposition on electrospun polymer fibers as a direct route to AL2O3 microtubes with precise wall thickness control.Nano Lett.20077371972210.1021/nl062948i 17279801
    [Google Scholar]
  77. LiX. XieJ. YuanX. XiaY. Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.Langmuir20082424141451415010.1021/la802984a 19053657
    [Google Scholar]
  78. AhmedI. LiuH.Y. MamiyaP.C. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro.J. Biomed. Mater. Res. A200676A485186010.1002/jbm.a.30587
    [Google Scholar]
  79. YooH.S. KimT.G. ParkT.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery.Adv. Drug Deliv. Rev.200961121033104210.1016/j.addr.2009.07.007 19643152
    [Google Scholar]
  80. YangG.Z. LiJ.J. YuD.G. HeM.F. YangJ.H. WilliamsG.R. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning.Acta Biomater.20175323324110.1016/j.actbio.2017.01.069 28137657
    [Google Scholar]
  81. LiX. SuY. LiuS. TanL. MoX. RamakrishnaS. Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning.Colloids Surf. B Biointerfaces201075241842410.1016/j.colsurfb.2009.09.014 19836931
    [Google Scholar]
  82. ZhangY.Z. WangX. FengY. LiJ. LimC.T. RamakrishnaS. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release.Biomacromolecules2006741049105710.1021/bm050743i 16602720
    [Google Scholar]
  83. SuY. SuQ. LiuW. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering.Acta Biomater.20128276377110.1016/j.actbio.2011.11.002 22100346
    [Google Scholar]
  84. LiuW. NiC. ChaseD.B. RaboltJ.F. Preparation of multilayer biodegradable nanofibers by triaxial electrospinning.ACS Macro Lett.20132646646810.1021/mz4000688 35581798
    [Google Scholar]
  85. FaldeE.J. FreedmanJ.D. HerreraV.L.M. YoheS.T. ColsonY.L. GrinstaffM.W. Layered superhydrophobic meshes for controlled drug release.J. Control. Release2015214232910.1016/j.jconrel.2015.06.042 26160309
    [Google Scholar]
  86. OkudaT. TominagaK. KidoakiS. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes.J. Control. Release2010143225826410.1016/j.jconrel.2009.12.029 20074599
    [Google Scholar]
  87. ZhangZ. LiuS. QiY. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery.J. Control. Release201623512513310.1016/j.jconrel.2016.05.046 27221069
    [Google Scholar]
  88. HuX. LiuS. ZhouG. HuangY. XieZ. JingX. Electrospinning of polymeric nanofibers for drug delivery applications.J. Control. Release2014185122110.1016/j.jconrel.2014.04.018 24768792
    [Google Scholar]
  89. YoheS.T. ColsonY.L. GrinstaffM.W. Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates.J. Am. Chem. Soc.201213442016201910.1021/ja211148a 22279966
    [Google Scholar]
  90. JiW. YangF. van den BeuckenJ.J.J.P. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning.Acta Biomater.20106114199420710.1016/j.actbio.2010.05.025 20594971
    [Google Scholar]
  91. HanD. YuX. ChaiQ. AyresN. StecklA.J. Stimuli-responsive self-immolative polymer nanofiber membranes formed by coaxial electrospinning.ACS Appl. Mater. Interfaces2017913118581186510.1021/acsami.6b16501 28263054
    [Google Scholar]
  92. VerreckG. ChunI. RosenblattJ. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer.J. Control. Release200392334936010.1016/S0168‑3659(03)00342‑0 14568415
    [Google Scholar]
  93. XueJ. HeM. LiuH. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.Biomaterials201435349395940510.1016/j.biomaterials.2014.07.060 25134855
    [Google Scholar]
  94. CuiW. LiX. ZhuX. YuG. ZhouS. WengJ. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation.Biomacromolecules2006751623162910.1021/bm060057z 16677047
    [Google Scholar]
  95. YuD.G. LiX.Y. WangX. YangJ.H. BlighS.W.A. WilliamsG.R. Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems.ACS Appl. Mater. Interfaces2015733188911889710.1021/acsami.5b06007 26244640
    [Google Scholar]
  96. ViryL. MoultonS.E. RomeoT. Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs.J. Mater. Chem.201222221134710.1039/c2jm31069d
    [Google Scholar]
  97. DiasJ.R. GranjaP.L. BártoloP.J. Advances in electrospun skin substitutes.Prog. Mater. Sci.20168431433410.1016/j.pmatsci.2016.09.006
    [Google Scholar]
  98. MaB. XieJ. JiangJ. WuJ. Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration.Biomaterials201435263064110.1016/j.biomaterials.2013.09.111 24144904
    [Google Scholar]
  99. XieJ. MacEwanM.R. RayW.Z. LiuW. SieweD.Y. XiaY. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications.ACS Nano2010495027503610.1021/nn101554u 20695478
    [Google Scholar]
  100. NelsonM.T. ShortA. ColeS.L. Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber ‘cell highways’.BMC Cancer201414182510.1186/1471‑2407‑14‑825 25385001
    [Google Scholar]
  101. Agudelo-GarciaP.A. De JesusJ.K. WilliamsS.P. Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling.Neoplasia2011139831IN2210.1593/neo.11612 21969816
    [Google Scholar]
  102. Rnjak-KovacinaJ. WeissA.S. Increasing the pore size of electrospun scaffolds.Tissue Eng. Part B Rev.201117536537210.1089/ten.teb.2011.0235 21815802
    [Google Scholar]
  103. JainV. JainS. MahajanS.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.Curr. Drug Deliv.201512217719110.2174/1567201811666140822112516 25146439
    [Google Scholar]
  104. ParkS.H. KimT.G. KimH.C. YangD.Y. ParkT.G. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.Acta Biomater.2008451198120710.1016/j.actbio.2008.03.019 18458008
    [Google Scholar]
  105. LuoY. SmithJ.V. Studies on molecular mechanisms of Ginkgo biloba extract.Appl. Microbiol. Biotechnol.200464446547210.1007/s00253‑003‑1527‑9 14740187
    [Google Scholar]
  106. RujitanarojP. WangY.C. WangJ. ChewS.Y. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications.Biomaterials201132255915592310.1016/j.biomaterials.2011.04.065 21596430
    [Google Scholar]
  107. AboodyK.S. NajbauerJ. DanksM.K. Stem and progenitor cell-mediated tumor selective gene therapy.Gene Ther.2008151073975210.1038/gt.2008.41 18369324
    [Google Scholar]
  108. PaulK.B. SinghV. VanjariS.R.K. SinghS.G. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.Biosens. Bioelectron.20178814415210.1016/j.bios.2016.07.114 27520500
    [Google Scholar]
  109. HanS.W. KohW.G. Hydrogel-framed nanofiber matrix integrated with a microfluidic device for fluorescence detection of matrix metalloproteinases-9.Anal. Chem.201688126247625310.1021/acs.analchem.5b04867 27214657
    [Google Scholar]
  110. BatesR. EdwardsN.S. YatesJ.D. Spheroids and cell survival.Crit. Rev. Oncol. Hematol.2000362-3617410.1016/S1040‑8428(00)00077‑9 11033297
    [Google Scholar]
  111. ChenS. BodaS.K. BatraS.K. LiX. XieJ. Emerging roles of electrospun nanofibers in cancer research.Adv. Healthc. Mater.201876170102410.1002/adhm.201701024 29210522
    [Google Scholar]
  112. AliM.A. MondalK. JiaoY. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers.ACS Appl. Mater. Interfaces2016832205702058210.1021/acsami.6b05648 27442623
    [Google Scholar]
  113. AliM.A. MondalK. SinghC. Dhar MalhotraB. SharmaA. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics.Nanoscale20157167234724510.1039/C5NR00194C 25811908
    [Google Scholar]
  114. SharmaA.K. TiwariA.K. DixitA.R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review.J. Clean. Prod.201612711810.1016/j.jclepro.2016.03.146
    [Google Scholar]
  115. XueR. BeheraP. XuJ. ViapianoM.S. LannuttiJ.J. Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors.Sens. Actuators B Chem.201419269770710.1016/j.snb.2013.10.084 25006274
    [Google Scholar]
  116. HuangP. LiZ. LinJ. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy.Biomaterials201132133447345810.1016/j.biomaterials.2011.01.032 21303717
    [Google Scholar]
  117. HouZ. LiC. MaP. Up-conversion luminescent and porous NaYF4:Yb3+, Er3+@SiO2 nanocomposite fibers for anti-cancer drug delivery and cell imaging.Adv. Funct. Mater.201222132713272210.1002/adfm.201200082
    [Google Scholar]
  118. PlaksV KoopmanCD WerbZ Circulating tumor cells.Science (80-)201334161511186118810.1126/science.1235226
    [Google Scholar]
  119. GeigerT.R. PeeperD.S. Metastasis mechanisms.Biochim. Biophys. Acta200917962293308 19683560
    [Google Scholar]
  120. HouS. ZhaoL. ShenQ. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells.Angew. Chem. Int. Ed.201352123379338310.1002/anie.201208452 23436302
    [Google Scholar]
  121. XuX. Farach-CarsonM.C. JiaX. Three-dimensional in vitro tumor models for cancer research and drug evaluation.Biotechnol. Adv.20143271256126810.1016/j.biotechadv.2014.07.009 25116894
    [Google Scholar]
  122. FidlerI.J. The organ microenvironment and cancer metastasis.Differentiation2002709-1049850510.1046/j.1432‑0436.2002.700904.x 12492492
    [Google Scholar]
  123. JaaloukD.E. LammerdingJ. Mechanotransduction gone awry.Nat. Rev. Mol. Cell Biol.2009101637310.1038/nrm2597 19197333
    [Google Scholar]
  124. SiY. YuJ. TangX. GeJ. DingB. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.Nat. Commun.201451580210.1038/ncomms6802 25512095
    [Google Scholar]
  125. WeigeltB. PeterseJ.L. van’t VeerL.J. Breast cancer metastasis: markers and models.Nat. Rev. Cancer20055859160210.1038/nrc1670 16056258
    [Google Scholar]
  126. ZhangJ.H. TangJ. WangJ. Over-expression of bone sialoprotein enhances bone metastasis of human breast cancer cells in a mouse model.Int. J. Oncol.20032341043104810.3892/ijo.23.4.1043 12963984
    [Google Scholar]
  127. ChenZ. ChenZ. ZhangA. HuJ. WangX. YangZ. Electrospun nanofibers for cancer diagnosis and therapy.Biomater. Sci.20164692293210.1039/C6BM00070C 27048889
    [Google Scholar]
  128. ChewS. WenY. DzenisY. LeongK. The role of electrospinning in the emerging field of nanomedicine.Curr. Pharm. Des.200612364751477010.2174/138161206779026326 17168776
    [Google Scholar]
  129. LiuX. XuH. ZhangM. YuD.G. Electrospun medicated nanofibers for wound healing: Review.Membranes (Basel)2021111077010.3390/membranes11100770 34677536
    [Google Scholar]
  130. BabalooH. VojoudiE. Application of electrospun nanofiber as drug delivery systems: A review.Pharm. Nanotechnol.2023111102410.2174/2211738510666220928161957 36173055
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947262161231011112548
Loading
/content/journals/cctr/10.2174/0115733947262161231011112548
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; cancer therapy; electrospinning; electrospun; gene; nanofibers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test