Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Breast cancer is an aggressive disease with a significant morbidity and death rate among women worldwide. Despite the progress of diagnostic and therapy options for breast cancer in recent years, the prognosis and survival rates of breast cancer patients remain unsatisfactory. The aberrant growth and spread of tumor cells are the leading cause of death in these patients. More profound knowledge of molecular biology underlying breast cancer and a more accurate stratification are still necessary for more precise therapy. Further understanding of the disease's molecular mechanism and genetic aberrations may allow for the identification of more accurate prognostic and diagnostic markers and more effective treatments. Tumor protein D52 (TPD52) is an oncogene whose overexpression has been found in breast cancer. Overexpression of TPD52 has been linked to specific molecular subtypes of breast cancer, including luminal B and ERBB2-positive tumors. Besides, non-coding RNAs (ncRNAs) were found to play a significant role in breast cancer progression. ncRNAs play regulatory roles in cell behaviors, cancer pathogenesis, radiotherapy, and resistance to chemotherapy. Multiple ncRNAs could modulate the expression of TPD52 and regulate breast cancer cell proliferation, invasion, and metastasis. In this review, we summarized the functions of TPD52 in breast cancer cells.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947264751231123160934
2024-01-22
2024-11-22
Loading full text...

Full text loading...

References

  1. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  2. TarighatiE. KeivanH. MahaniH. A review of prognostic and predictive biomarkers in breast cancer.Clin. Exp. Med.202323111635031885
    [Google Scholar]
  3. GiaquintoA.N. SungH. MillerK.D. Breast cancer statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  4. LiangY. ZhangH. SongX. YangQ. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. In: Seminars in cancer biology.Elsevier2020142710.1016/j.semcancer.2019.08.012
    [Google Scholar]
  5. KrugK. JaehnigE.J. SatpathyS. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy.Cell2020183514361456.e3110.1016/j.cell.2020.10.03633212010
    [Google Scholar]
  6. BaslanT. KendallJ. VolyanskyyK. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing.eLife20209e5148010.7554/eLife.5148032401198
    [Google Scholar]
  7. PanX. HuX. ZhangY.H. Identification of the copy number variant biomarkers for breast cancer subtypes.Mol. Genet. Genomics201929419511010.1007/s00438‑018‑1488‑430203254
    [Google Scholar]
  8. DasariC. ReddyK.R.K. NataniS. MurthyT.R.L. BhukyaS. UmmanniR. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration.Biochim. Biophys. Acta Mol. Cell Res.2019186681298130910.1016/j.bbamcr.2019.04.00730981892
    [Google Scholar]
  9. HanG. FanM. ZhangX. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression.Biochem. Biophys. Res. Commun.2015456380480910.1016/j.bbrc.2014.12.02625511701
    [Google Scholar]
  10. RenJ. ChenY. KongW. LiY. LuF. Tumor protein D52 promotes breast cancer proliferation and migration via the long non-coding RNA NEAT1/microRNA-218-5p axis.Ann. Transl. Med.2021912100810.21037/atm‑21‑266834277808
    [Google Scholar]
  11. FuM. ChenC.W. YangL.Q. MicroRNA 103a 3p promotes metastasis by targeting TPD52 in salivary adenoid cystic carcinoma.Int. J. Oncol.202057257458610.3892/ijo.2020.506932467999
    [Google Scholar]
  12. LarocqueG. MooreD.J. SittewelleM. Intracellular nanovesicles mediate α5β1 integrin trafficking during cell migration.J. Cell Biol.202122010e20200902810.1083/jcb.20200902834287617
    [Google Scholar]
  13. LarocqueG. RoyleS.J. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond.Cell. Mol. Life Sci.202279633510.1007/s00018‑022‑04371‑635657500
    [Google Scholar]
  14. LarocqueG. La-BordeP.J. ClarkeN.I. CarterN.J. RoyleS.J. Tumor protein D54 defines a new class of intracellular transport vesicles.J. Cell Biol.20202191e20181204410.1083/jcb.20181204431672706
    [Google Scholar]
  15. GuadagnoN.A. ProgidaC. Rab GTPases: Switching to human diseases.Cells20198890910.3390/cells808090931426400
    [Google Scholar]
  16. PylypenkoO. HammichH. YuI.M. HoudusseA. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity.Small GTPases201891-2224810.1080/21541248.2017.133619128632484
    [Google Scholar]
  17. Wandinger-NessA. ZerialM. Rab proteins and the compartmentalization of the endosomal system.Cold Spring Harb. Perspect. Biol.2014611a02261610.1101/cshperspect.a02261625341920
    [Google Scholar]
  18. ChenY. FrostS. KhushiM. Delayed recruiting of TPD52 to lipid droplets – evidence for a “second wave” of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment.Sci. Rep.201991979010.1038/s41598‑019‑46156‑131278300
    [Google Scholar]
  19. ChenY. FrostS. ByrneJ.A. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein.Adipocyte20165332633210.1080/21623945.2016.114883527617178
    [Google Scholar]
  20. KamiliA RoslanN FrostS TPD52 expression increases neutral lipid storage within cultured cells.J Cell Sci201512817jcs.16769210.1242/jcs.16769226183179
    [Google Scholar]
  21. KotapalliS.S. DasariC. DuscharlaD. Kami ReddyK.R. KasulaM. UmmanniR. All‐trans‐retinoic acid stimulates overexpression of tumor protein D52 (TPD52, Isoform 3) and neuronal differentiation of IMR‐32 cells.J. Cell. Biochem.2017118124358436910.1002/jcb.2609028436114
    [Google Scholar]
  22. ByrneJ.A. FrostS. ChenY. BrightR.K. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene?Tumour Biol.20143587369738210.1007/s13277‑014‑2006‑x24798974
    [Google Scholar]
  23. TennstedtP. BölchC. StrobelG. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR.Int. J. Oncol.201444260961510.3892/ijo.2013.220024317684
    [Google Scholar]
  24. WangZ. LiY. FanL. Silencing of TPD52 inhibits proliferation, migration, invasion but induces apoptosis of pancreatic cancer cells by deactivating Akt pathway.Neoplasma202067227728510.4149/neo_2019_190404N29531847526
    [Google Scholar]
  25. LiJ. LiY. LiuH. LiuY. CuiB. The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis.PLoS One2017125e017851510.1371/journal.pone.017851528562687
    [Google Scholar]
  26. WangY. ChenC.L. PanQ.Z. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma.Oncotarget2016756323633410.18632/oncotarget.631926575170
    [Google Scholar]
  27. LiuS. XiX. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis.Biochem. Biophys. Res. Commun.202053341088109410.1016/j.bbrc.2020.09.07433036757
    [Google Scholar]
  28. ZhangH. LiM. ZhangJ. ShenY. GuiQ. Exosomal circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 axis.Drug Des. Devel. Ther.2021151835184910.2147/DDDT.S30037633976535
    [Google Scholar]
  29. LuW. WanX. TaoL. WanJ. Long non-coding RNA HULC promotes cervical cancer cell proliferation, migration and invasion via miR-218/TPD52 axis.OncoTargets Ther.2020131109111810.2147/OTT.S23291432103980
    [Google Scholar]
  30. YinW. ShiL. MaoY. MicroRNA-449b-5p suppresses cell proliferation, migration and invasion by targeting TPD52 in nasopharyngeal carcinoma.J. Biochem.2019166543344010.1093/jb/mvz05731350893
    [Google Scholar]
  31. YangM. WangX. JiaJ. Tumor protein D52-like 2 contributes to proliferation of breast cancer cells.Cancer Biother. Radiopharm.20153011710.1089/cbr.2014.172325629696
    [Google Scholar]
  32. MalekniaM. ValizadehA. PezeshkiS.M.S. SakiN. Immunomodulation in leukemia: Cellular aspects of anti-leukemic properties.Clin. Transl. Oncol.202022111010.1007/s12094‑019‑02132‑931127471
    [Google Scholar]
  33. AureM.R. SteinfeldI. BaumbuschL.O. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data.PLoS One201381e5301410.1371/journal.pone.005301423382830
    [Google Scholar]
  34. ZhaoZ. LiuH. HouJ. Tumor Protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway.Oncol. Res.201725577377910.3727/096504016X1477488968728027983909
    [Google Scholar]
  35. MaC. ShiX. GuoW. NiuJ. WangG. miR-107 enhances the sensitivity of breast cancer cells to paclitaxel.Open Med.201914145646610.1515/med‑2019‑004931206033
    [Google Scholar]
  36. LiG. YaoL. ZhangJ. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52.Tumour Biol.20163767481749110.1007/s13277‑015‑4623‑426678891
    [Google Scholar]
  37. ZhangE. HanL. YinD. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma.Nucleic Acids Res.20174563086310110.1093/nar/gkw124727956498
    [Google Scholar]
  38. BhanA. SoleimaniM. MandalS.S. Long Noncoding RNA and Cancer: A New Paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  39. LiuL. ZhangY. LuJ. The roles of long noncoding RNAs in breast cancer metastasis.Cell Death Dis.202011974910.1038/s41419‑020‑02954‑432929060
    [Google Scholar]
  40. XuW.W. JinJ. WuX. RenQ.L. FarzanehM. MALAT1-related signaling pathways in colorectal cancer.Cancer Cell Int.202222112610.1186/s12935‑022‑02540‑y35305641
    [Google Scholar]
  41. MalihS. SaidijamM. MalihN. A brief review on long noncoding RNAs: A new paradigm in breast cancer pathogenesis, diagnosis and therapy.Tumour Biol.20163721479148510.1007/s13277‑015‑4572‑y26662315
    [Google Scholar]
  42. RitterA. HirschfeldM. BernerK. Circulating non coding RNA biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?Int. J. Oncol.2020561476831789396
    [Google Scholar]
  43. VolovatS.R. VolovatC. HordilaI. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review.Front. Oncol.20201052685010.3389/fonc.2020.52685033330019
    [Google Scholar]
  44. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: From microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky114130423142
    [Google Scholar]
  45. ZhangZ. WangJ. GaoR. Downregulation of MicroRNA-449 promotes migration and invasion of breast cancer cells by targeting tumor protein D52 (TPD52).Oncol. Res.201725575376110.3727/096504016X1477234232061727983918
    [Google Scholar]
  46. XuY. LiuM. MicroRNA-1323 downregulation promotes migration and invasion of breast cancer cells by targeting tumour protein D52.J. Biochem.20201681839110.1093/jb/mvaa03532211853
    [Google Scholar]
  47. WangY. FangJ. GuF. MiR-125b-5p/TPD52 axis affects proliferation, migration and invasion of breast cancer cells.Mol. Biotechnol.20226491003101210.1007/s12033‑022‑00475‑335320453
    [Google Scholar]
  48. BartonicekN. MaagJ.L.V. DingerM.E. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements.Mol. Cancer20161514310.1186/s12943‑016‑0530‑627233618
    [Google Scholar]
  49. ChiH.C. TsaiC.Y. TsaiM.M. YehC.T. LinK.H. Roles of Long Noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells.Int. J. Mol. Sci.2017189190310.3390/ijms1809190328872613
    [Google Scholar]
  50. ShiR WuP LiuM ChenB CongL Knockdown of lncRNA PCAT6 Enhances Radiosensitivity in Triple-Negative Breast Cancer Cells by Regulating miR-185-5p/TPD52 Axis.OncoTargets Ther2020133025303710.2147/OTT.S23755932308433
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947264751231123160934
Loading
/content/journals/cctr/10.2174/0115733947264751231123160934
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Breast cancer; non-coding RNAs; progression; resistance; targeted therapy; TPD52
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test