Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer therapy has evolved beyond targeting malignant cells alone, recognizing the pivotal role of the tumor microenvironment (TME) in disease progression. Enzyme micellar systems, a subset of nanomedicine, offer a cutting-edge approach by exploiting the intricate interplay between therapeutic delivery and the TME. Engineered to respond to enzymatic cues, these systems enable targeted drug delivery, controlled release, and modulation of the tumor milieu. This review delves into the cross-talk between enzyme micellar systems and the TME, showcasing their potential as a transformative strategy for tackling cancer. The principles of system design, the dynamic interactions within the TME, and their collective impact on therapeutic outcomes are explored through case studies, challenges, and ethical considerations. By bridging the advances in nanotechnology and the complexities of the TME, enzyme micellar systems emerge as a paradigm shift, redefining the landscape of cancer therapy toward precision and efficacy.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947281902240109095005
2024-02-23
2025-05-06
Loading full text...

Full text loading...

References

  1. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2011109617627 25287120
    [Google Scholar]
  2. LeeE.S. NaK. BaeY.H. Super pH-sensitive multifunctional polymeric micelle.Nano Lett.20055232532910.1021/nl0479987 15794620
    [Google Scholar]
  3. HariS.K. GaubaA. ShrivastavaN. TripathiR.M. JainS.K. PandeyA.K. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system.Drug Deliv. Transl. Res.202313113516310.1007/s13346‑022‑01197‑4 35727533
    [Google Scholar]
  4. KedarU. PhutaneP. ShidhayeS. KadamV. Advances in polymeric micelles for drug delivery and tumor targeting.Nanomedicine20106671472910.1016/j.nano.2010.05.005 20542144
    [Google Scholar]
  5. DattaniS. LiX. LampaC. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery.Int. J. Pharm.202363112246410.1016/j.ijpharm.2022.122464 36464111
    [Google Scholar]
  6. DuncanR. GasparR. Nanomedicine(s) under the Microscope.Mol. Pharm.2011862101214110.1021/mp200394t 21974749
    [Google Scholar]
  7. MovassaghianS. MerkelO.M. TorchilinV.P. Applications of polymer micelles for imaging and drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157569170710.1002/wnan.1332 25683687
    [Google Scholar]
  8. YuH. ZouY. WangY. HuangX. HuangG. SumerB.D. Overcoming endosomal barrier by amphotericin B-loaded dual pH-sensitive micelles with a surface charge-switch.J. Control. Release20131662186194
    [Google Scholar]
  9. GaoW. ChenY. ZhangY. A multimodal enzyme cancer nanomedicine: triple enzyme-instructed self-assembly for enhanced synergistic cancer therapy.Angew. Chem. Int. Ed. Engl.2012514197569760
    [Google Scholar]
  10. TengC. ZhangB. YuanZ. Fibroblast activation protein-α-adaptive micelles deliver anti-cancer drugs and reprogram stroma fibrosis.Nanoscale20201246237562376710.1039/D0NR04465B 33231238
    [Google Scholar]
  11. DanhierF. DanhierP. De SaedeleerC.J. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors.Int. J. Pharm.2015479239940710.1016/j.ijpharm.2015.01.009 25578367
    [Google Scholar]
  12. MustafaiA. ZubairM. HussainA. UllahA. Recent progress in proteins-based micelles as drug delivery carriers.Polymers202315483610.3390/polym15040836
    [Google Scholar]
  13. ZhangY. ChanJ.M. LiaoG. Enzyme-responsive amphiphilic PEG-dendron hybrids for tumor-triggered targeting.Adv. Mater.2010224651595163 20941798
    [Google Scholar]
  14. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.002 23088862
    [Google Scholar]
  15. HuangB. ZhangF. CaiC. ZhangL. Toward understanding polymeric micelle stability regulated by diverse physico-chemical strategies and their stabilized mechanism.Colloids Surf. A202367413188010.1016/j.colsurfa.2023.131880
    [Google Scholar]
  16. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  17. ChenW. ZhangJ. ShiH. Nanotechnology in the management of breast cancer.J. Nanobiotechnology2019171121 30612562
    [Google Scholar]
  18. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd4333 25287120
    [Google Scholar]
  19. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  20. DanhierF. Le BretonA. PréatV. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis.Mol. Pharm.20129112961297310.1021/mp3002733 22967287
    [Google Scholar]
  21. WilhelmS. TavaresA.J. DaiQ. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  22. RuoslahtiE. BhatiaS.N. SailorM.J. Targeting of drugs and nanoparticles to tumors.J. Cell Biol.2010188675976810.1083/jcb.200910104 20231381
    [Google Scholar]
  23. GaoS. YangD. FangY. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy.Theranostics20199112615110.7150/thno.29431 30662558
    [Google Scholar]
  24. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Overcoming multiple drug resistance in cancer using polymeric micelles.Expert Opin. Drug Deliv.201815111127114210.1080/17425247.2018.1537261 30324813
    [Google Scholar]
  25. ChenC.Y. KimT.H. WuW.C. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors.Biomaterials201334184501450910.1016/j.biomaterials.2013.02.049 23498892
    [Google Scholar]
  26. ZhangL. WangY. ZhangX. WeiX. XiongX. ZhouS. Micelle encapsulation zinc-doped copper oxide nanocomposites reverse Olaparib resistance in ovarian cancer by disrupting homologous recombination repair.Bioeng. Transl. Med.202383e1050710.1002/btm2.10507 37206208
    [Google Scholar]
  27. DesaiN. HasanU. K. J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells.Acta Biomater.202316113610.1016/j.actbio.2023.03.004 36907233
    [Google Scholar]
  28. Burgos-PanaderoR. LucantoniF. Gamero-SandemetrioE. Cruz-MerinoL. ÁlvaroT. NogueraR. The tumour microenvironment as an integrated framework to understand cancer biology.Cancer Lett.201946111212210.1016/j.canlet.2019.07.010 31325528
    [Google Scholar]
  29. CoxM.C. MendesR. HalwachsK.N. DomeniciG. BritoC. BoghaertE.R. Tackling the tumor microenvironment – how can complex tumor models in vitro aid oncology drug development?Expert Opin. Drug Discov.202318775376810.1080/17460441.2023.2216016 37219915
    [Google Scholar]
  30. ShiX. HouM. BaiS. Acid-activatable theranostic unimolecular micelles composed of amphiphilic star-like polymeric prodrug with high drug loading for enhanced cancer therapy.Mol. Pharm.201714114032404110.1021/acs.molpharmaceut.7b00704 28980818
    [Google Scholar]
  31. ZhangY. GuoQ. AnS. ROS-switchable polymeric nanoplatform with stimuli-responsive release for active targeted drug delivery to breast cancer.ACS Appl. Mater. Interfaces2017914122271224010.1021/acsami.6b16815 28350451
    [Google Scholar]
  32. ChenZ. KankalaR.K. LongL. XieS. ChenA. ZouL. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation.Coord. Chem. Rev.202348121505110.1016/j.ccr.2023.215051
    [Google Scholar]
  33. WuQ. HuY. YuB. HuH. XuF-J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy.J. Control. Release2023362194310.1016/j.jconrel.2023.08.019 37579973
    [Google Scholar]
  34. SaP. SahooS.K. DilnawazF. Responsive role of nanomedicine in the tumor microenvironment and cancer drug resistance.Curr. Med. Chem.202330293335335510.2174/0929867329666220922111336 36154585
    [Google Scholar]
  35. GadiV. GuptaD. ShettyS. Emerging potentials of nanotherapeutics in breast cancer microenvironment targeting.OpenNano2022810010110.1016/j.onano.2022.100101
    [Google Scholar]
  36. TanakaH.Y. NakazawaT. EnomotoA. MasamuneA. KanoM.R. Therapeutic strategies to overcome fibrotic barriers to nanomedicine in the pancreatic tumor microenvironment.Cancers (Basel)202315372410.3390/cancers15030724 36765684
    [Google Scholar]
  37. PonomarevA. GilazievaZ. SolovyevaV. AllegrucciC. RizvanovA. Intrinsic and extrinsic factors impacting cancer stemness and tumor progression.Cancers (Basel)202214497010.3390/cancers14040970 35205716
    [Google Scholar]
  38. DingH. ZhangJ. ZhangF. XuY. LiangW. YuY. Nanotechnological approaches for diagnosis and treatment of ovarian cancer: A review of recent trends.Drug Deliv.20222913218323210.1080/10717544.2022.2132032 36259505
    [Google Scholar]
  39. ShahinR.K. ElkadyM.A. AbulsoudA.I. miRNAs orchestration of gallbladder cancer – Particular emphasis on diagnosis, progression and drug resistance.Pathol. Res. Pract.202324815468410.1016/j.prp.2023.154684 37454489
    [Google Scholar]
  40. YanL. LiX. Biodegradable stimuli-responsive polymeric micelles for treatment of malignancy.Curr. Pharm. Biotechnol.201617322723610.2174/138920101703160206142821 26873075
    [Google Scholar]
  41. WangX. PanJ. ShiH. LiangN. SunS. Biotin-modified acid-sensitive micelles for enhancing antitumor effect of paclitaxel.J. Drug Delivery Sci. Technol.20238410453810.1016/j.jddst.2023.104538
    [Google Scholar]
  42. WangT. WangD. YuH. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor.ACS Nano20161033496350810.1021/acsnano.5b07706 26866752
    [Google Scholar]
  43. CaoZ. ZhaoY. SunH. Cross-scale tracing of nanoparticles and tumors at the single-cell level using the whole-lung atlas.Sci. Adv.2023931eadh777910.1126/sciadv.adh7779 37531437
    [Google Scholar]
  44. ChaudharyB. KumarP. AryaP. Recent developments in the study of the microenvironment of cancer and drug delivery.Curr. Drug Metab.202223131027105310.2174/1389200224666230110145513 36627789
    [Google Scholar]
  45. ZhangC. WangX. LiuG. Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy.J. Control. Release202335721022110.1016/j.jconrel.2023.03.042 36972864
    [Google Scholar]
  46. RiazR. AhmadA. Nanoparticles: Emerging diagnostic and therapeutic agents for breast cancer treatment. Breast Cancer: From Bench to Personalized Medicine. Singapore: Springer.Nature Singapore202245347610.1007/978‑981‑19‑0197‑3_19
    [Google Scholar]
  47. WangY. JiaX. AnS. YinW. HuangJ. JiangX. Nanozyme‐based regulation of cellular metabolism and their applications.Adv. Mater.2023230181010.1002/adma.202301810 37017586
    [Google Scholar]
  48. DrakulicD. SchwirtlichM. PetrovicI. Current opportunities for targeting dysregulated neurodevelopmental signaling pathways in glioblastoma.Cells20221116253010.3390/cells11162530 36010607
    [Google Scholar]
  49. JainV. KumarH. JainR. Targeting triple-negative breast cancers using nanomedicine. Targeted Nanomedicine for Breast Cancer Therapy.Academic Press202219925510.1016/B978‑0‑12‑824476‑0.00004‑8
    [Google Scholar]
  50. PednekarK. HeinrichM.A. PrakashJ. Role of Integrins in the Tumor Stroma. PrakashJ. The Tumor Stroma: Biology and Therapeutics.Jenny Stanford Publishing202223328610.1201/9781003224921‑7
    [Google Scholar]
  51. QianJ. GuoY. XuY. WangX. ChenJ. WuX. Combination of micelles and liposomes as a promising drug delivery system: A review.Drug Deliv. Transl. Res.202313112767278910.1007/s13346‑023‑01368‑x 37278964
    [Google Scholar]
  52. NegutI. BitaB. Polymeric micellar systems-a special emphasis on “smart” drug delivery.Pharmaceutics202315397610.3390/pharmaceutics15030976 36986837
    [Google Scholar]
  53. DeminaP.A. KhaydukovK.V. BabayevaG. Upconversion nanoparticles intercalated in large polymer micelles for tumor imaging and chemo/photothermal therapy.Int. J. Mol. Sci.202324131057410.3390/ijms241310574 37445751
    [Google Scholar]
  54. AddisuK.D. LeeW.Y. TsaiH.C. WuS.Y. Fabrication of amino acid conjugated polymeric micelles for controlled anticancer drug delivery using radiation and pH-stimuli-triggering systems.J. Drug Deliv. Sci. Technol.20238010417010.1016/j.jddst.2023.104170
    [Google Scholar]
  55. MengL. LiuF. DuC. Glucosamine-modified reduction-responsive polymeric micelles for liver cancer therapy.Molecules2023289382410.3390/molecules28093824 37175234
    [Google Scholar]
  56. de SantanaW.M. PochapskiD.J. PulcinelliS.H. FontanaC.R. SantilliC.V. Polymeric micelles–mediated photodynamic therapy. Nanomaterials for Photodynamic Therapy.Woodhead Publishing202310513910.1016/B978‑0‑323‑85595‑2.00003‑7
    [Google Scholar]
  57. JinC.E. YoonM.S. JoM.J. Synergistic encapsulation of paclitaxel and sorafenib by methoxy poly (ethylene glycol)-b-poly (caprolactone) polymeric micelles for ovarian cancer therapy.Pharmaceutics2023154120610.3390/pharmaceutics15041206 37111691
    [Google Scholar]
  58. GuoX. XueY. ZhengR. Zwitterionic doxorubicin loaded micelles based on polyethyleneimine for enhanced antitumor therapy in vivo.New J. Chem.20234724116361164210.1039/D3NJ01011B
    [Google Scholar]
  59. GuoC. YuanH. YuY. FRET-based analysis on the structural stability of polymeric micelles: Another key attribute beyond PEG coverage and particle size affecting the blood clearance.J. Control. Release202336073474610.1016/j.jconrel.2023.07.026 37454913
    [Google Scholar]
  60. ShahriariM. ZahiriM. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Enzyme responsive drug delivery systems in cancer treatment.J. Control. Release201930817218910.1016/j.jconrel.2019.07.004 31295542
    [Google Scholar]
  61. UthamanS. HuhK.M. ParkI.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications.Biomater. Res.20182212210.1186/s40824‑018‑0132‑z 30155269
    [Google Scholar]
  62. ZhangL. WangY. ZhangX. WeiX. XiongX. ZhouS. Enzyme and redox dual-triggered intracellular release from actively targeted polymeric micelles.ACS Appl. Mater. Interfaces2017943388339910.1021/acsami.6b14078 28071889
    [Google Scholar]
  63. ChenY. SuM. LiY. Enzymatic PEG-poly (amine-co-disulfide ester) nanoparticles as pH-and redox-responsive drug nanocarriers for efficient antitumor treatment.ACS Appl. Mater. Interfaces2017936305193053510.1021/acsami.7b10148 28819967
    [Google Scholar]
  64. GeZ. LiuS. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.Chem. Soc. Rev.201342177289732510.1039/c3cs60048c 23549663
    [Google Scholar]
  65. BaiS. MaX. ShiX. Smart unimolecular micelle-based polyprodrug with dual-redox stimuli response for tumor microenvironment: Enhanced in vivo delivery efficiency and tumor penetration.ACS Appl. Mater. Interfaces20191139361303614010.1021/acsami.9b13214 31490659
    [Google Scholar]
  66. GongF. YangN. WangX. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics.Nano Today20203210085110.1016/j.nantod.2020.100851
    [Google Scholar]
  67. ZhangQ. Re KoN. Kwon OhJ. Recent advances in stimuli-responsive degradable block copolymer micelles: Synthesis and controlled drug delivery applications.Chem. Commun. (Camb.)201248617542755210.1039/c2cc32408c 22737687
    [Google Scholar]
  68. ThomasR.G. SurendranS.P. JeongY.Y. Tumor microenvironment-stimuli responsive nanoparticles for anticancer therapy.Front. Mol. Biosci.2020761053310.3389/fmolb.2020.610533 33392264
    [Google Scholar]
  69. DongH PangL CongH Shenv YuB. Application and design of esterase-responsive nanoparticles for cancer therapy.Drug Deliv201926141643210.1080/10717544.2019.1588424 30929527
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947281902240109095005
Loading
/content/journals/cctr/10.2174/0115733947281902240109095005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test