Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Environmental pollutants pose a serious risk to human health and are involved in the emergence of many diseases and disorders. In recent years, the research for efficient defence against these pollutants has focused much interest. Natural flavonoid apigenin in various fruits and vegetables has shown great defence against environmental toxins. This review aims to summarize the current knowledge regarding the protective effect of apigenin against environmental pollutants and its underlying mechanisms. The study starts by summarizing the main industrial chemicals, environmental pollutants, water contaminants, and the health hazards they provide. The article discusses apigenin's bioactive attributes and focuses on its anti-inflammatory, detoxifying, and antioxidant activities. Previous studies have shown that apigenin supplementation can reduce oxidative stress, inflammation, DNA damage, and organ toxicity from pollutants. The molecular processes behind apigenin's anti-inflammatory effects are explored, including its interactions with important signaling networks. Additional research is required to assess its ideal dosage, bioavailability, and potential interactions with other drugs. Moreover, more human studies are required to evaluate the long-term advantages and safety of apigenin supplementation as a defence against the harmful health consequences of environmental contaminants.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072296125240221061200
2024-03-05
2025-01-17
Loading full text...

Full text loading...

References

  1. DangY. LiZ. WeiQ. ZhangR. XueH. ZhangY. Protective effect of apigenin on acrylonitrile-induced inflammation and apoptosis in testicular cells via the NF-κB pathway in rats.Inflammation20184141448145910.1007/s10753‑018‑0791‑x 29687413
    [Google Scholar]
  2. CaitoS.W. YuY. AschnerM. Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia.Neurotoxicology2014421710.1016/j.neuro.2014.02.006 24631314
    [Google Scholar]
  3. LiX.J. LiB. HuangJ.S. ShiJ.M. WangP. FanW. ZhouY.L. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.Genet. Mol. Res.20141337747775610.4238/2014.September.26.12 25299088
    [Google Scholar]
  4. AliA.A.M. MansourA.B. AttiaS.A. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus.Environ. Sci. Pollut. Res. Int.20212822275772759210.1007/s11356‑021‑12632‑3 33515148
    [Google Scholar]
  5. WangJ. LiaoY. FanJ. YeT. SunX. DongS. Apigenin inhibits the expression of IL-6, IL-8, and ICAM-1 in DEHP-stimulated human umbilical vein endothelial cells and in vivo.Inflammation20123541466147610.1007/s10753‑012‑9460‑7 22527144
    [Google Scholar]
  6. WangY. ChangW. LiX. JiangZ. ZhouD. FengY. LiB. ChenG. LiN. Apigenin exerts chemopreventive effects on lung injury induced by SiO2 nanoparticles through the activation of Nrf2.J. Nat. Med.202276111913110.1007/s11418‑021‑01561‑7 34480707
    [Google Scholar]
  7. TabrezS. AhmadM. Effect of wastewater intake on antioxidant and marker enzymes of tissue damage in rat tissues: Implications for the use of biochemical markers.Food Chem. Toxicol.200947102465247810.1016/j.fct.2009.07.004 19596398
    [Google Scholar]
  8. LandriganP.J. FullerR. AcostaN.J.R. AdeyiO. ArnoldR. BasuN.N. BaldéA.B. BertolliniR. Bose-O’ReillyS. BouffordJ.I. BreysseP.N. ChilesT. MahidolC. Coll-SeckA.M. CropperM.L. FobilJ. FusterV. GreenstoneM. HainesA. HanrahanD. HunterD. KhareM. KrupnickA. LanphearB. LohaniB. MartinK. MathiasenK.V. McTeerM.A. MurrayC.J.L. NdahimananjaraJ.D. PereraF. PotočnikJ. PrekerA.S. RameshJ. RockströmJ. SalinasC. SamsonL.D. SandilyaK. SlyP.D. SmithK.R. SteinerA. StewartR.B. SukW.A. van SchayckO.C.P. YadamaG.N. YumkellaK. ZhongM. The lancet commission on pollution and health.Lancet20183911011946251210.1016/S0140‑6736(17)32345‑0 29056410
    [Google Scholar]
  9. GaurK. SiddiqueY.H. Effect of apigenin on neurodegenerative diseases.CNS Neurol. Disord. Drug Targets202423446847510.2174/1871527322666230406082625 37038672
    [Google Scholar]
  10. AhmadA. ZafarA. ZargarS. BazgaifanA. WaniT.A. AhmadM. Protective effects of apigenin against edifenphos-induced genotoxicity and cytotoxicity in rat hepatocytes.J. Biomol. Struct. Dyn.202240199306931710.1080/07391102.2021.1926325 33998977
    [Google Scholar]
  11. HillS. What is apigenin Health Benefits and side effects.2022Available from: https://www.lifespan.io/
    [Google Scholar]
  12. TalpadeJ. ShrmanK. SharmaR.K. GuthamV. SinghR.P. MeenaN.S. BisphenolA. An endocrine disruptor.J. Entomol. Zool. Stud.201863262216
    [Google Scholar]
  13. KimS.H. QuocQ.L. ParkH.S. ShinY.S. The effect of apigenin, an aryl hydrocarbon receptor antagonist, in PHTHALATE‐EXACERBATED eosinophilic asthma model.J. Cell. Mol. Med.202327131900191010.1111/jcmm.17804 37315181
    [Google Scholar]
  14. GrześkowiakT. Czarczyńska-GoślińskaB. Zgoła-GrześkowiakA. Current approaches in sample preparation for trace analysis of selected endocrine-disrupting compounds: Focus on polychlorinated biphenyls, alkylphenols, and parabens.Trends Analyt. Chem.20167520922610.1016/j.trac.2015.07.005
    [Google Scholar]
  15. TijaniJ.O. FatobaO.O. BabajideO.O. PetrikL.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review.Environ. Chem. Lett.2016141274910.1007/s10311‑015‑0537‑z
    [Google Scholar]
  16. AsmaM. FouziaT. LazhariT. KhireddineO. Protective effects of apigenin against Bisphenol A-induced testis toxicity in Wistar rats through modulating hepatic biochemical biomarkers and histological changes.Comp. Clin. Pathol.20202951041104910.1007/s00580‑020‑03158‑0
    [Google Scholar]
  17. HanD. YaoY. ChenL. MiaoZ. XuS. Apigenin ameliorates di(2-ethylhexyl) phthalate-induced ferroptosis: The activation of glutathione peroxidase 4 and suppression of iron intake.Food Chem. Toxicol.202216411308910.1016/j.fct.2022.113089 35500696
    [Google Scholar]
  18. KaiserZ.R.M.A. Failing to attain sustainable development in Bangladesh: A potential comprehensive strategy for sustainability.Sustain. Dev.20233143086310110.1002/sd.2571
    [Google Scholar]
  19. KimK.H. KabirE. KabirS. A review on the human health impact of airborne particulate matter.Environ. Int.20157413614310.1016/j.envint.2014.10.005 25454230
    [Google Scholar]
  20. Juda-RezlerK. ReizerM. OudinetJ.P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006.Atmos. Environ.201145366557656610.1016/j.atmosenv.2011.08.020
    [Google Scholar]
  21. Aghaei-ZarchS.M. AlipourfardI. RasoulzadehH. NajafiS. Aghaei-ZarchF. PartovS. MovafaghA. JahanaraA. ToolabiA. SheikhmohammadiA. PourN.N. NeghadS.K. Ashrafi-AsgarabadA. Non-coding RNAs: An emerging player in particulate matter 2.5-mediated toxicity.Int. J. Biol. Macromol.202323512379010.1016/j.ijbiomac.2023.123790 36822288
    [Google Scholar]
  22. HasheminassabS. DaherN. SchauerJ.J. SioutasC. Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin.Atmos. Environ.20137952953910.1016/j.atmosenv.2013.07.040
    [Google Scholar]
  23. AlgefareA. SedkyA.M. AlfwuairesM. Apigenin Ameliorates Lead Acetate induced Hyperlipidemia, Hypothyroidism and Hypogonadism in Male Rats.Research Square202110.21203/rs.3.rs‑600247/v1
    [Google Scholar]
  24. YadavR.K. MehanS. SahuR. KumarS. KhanA. MakeenH.A. Al BrattyM. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats.Hum. Exp. Toxicol.20224110.1177/09603271221084276 35373622
    [Google Scholar]
  25. DownsS.H. SchindlerC. LiuL.J.S. KeidelD. Bayer-OglesbyL. BrutscheM.H. GerbaseM.W. KellerR. KünzliN. LeuenbergerP. Probst-HenschN.M. TschoppJ.M. ZellwegerJ.P. RochatT. SchwartzJ. Ackermann-LiebrichU. Reduced exposure to PM10 and attenuated age-related decline in lung function.N. Engl. J. Med.2007357232338234710.1056/NEJMoa073625 18057336
    [Google Scholar]
  26. MillerK.A. SiscovickD.S. SheppardL. ShepherdK. SullivanJ.H. AndersonG.L. KaufmanJ.D. Long-term exposure to air pollution and incidence of cardiovascular events in women.N. Engl. J. Med.2007356544745810.1056/NEJMoa054409 17267905
    [Google Scholar]
  27. QiangT. XiaY. ZhaoJ. Homogeneous Zr and Ti co-doped SBA-15 with high specific surface area: preparation, characterization and application.J. Leather Sci. Eng.20191111210.1186/s42825‑019‑0004‑x
    [Google Scholar]
  28. PengJ. HeY. ZhouC. SuS. LaiB. The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review.Chin. Chem. Lett.20213251626163610.1016/j.cclet.2020.10.026
    [Google Scholar]
  29. MorabetR. Effects of Outdoor Air Pollution on Human Health.Reference Module in Earth Systems and Environmental Sciences201810.1016/B978‑0‑12‑409548‑9.11012‑7
    [Google Scholar]
  30. ChauhanA.J. KrishnaM.T. FrewA.J. HolgateS.T. Exposure to nitrogen dioxide (NO2) and respiratory disease risk.Rev. Environ. Health1998131-27390 9718623
    [Google Scholar]
  31. WegmannM. FehrenbachA. HeimannS. FehrenbachH. RenzH. GarnH. HerzU. NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57BL/6 mice.Exp. Toxicol. Pathol.200556634135010.1016/j.etp.2004.12.004 15945273
    [Google Scholar]
  32. SinghR. GautamN. MishraA. GuptaR. Heavy metals and living systems: An overview.Indian J. Pharmacol.201143324625310.4103/0253‑7613.81505 21713085
    [Google Scholar]
  33. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m 11410016
    [Google Scholar]
  34. JankovićN. TadićJ. MilovićE. MarkovićZ. JeremićS. PetronijevićJ. JoksimovićN. BorovićT.T. Abbas BukhariS.N. Investigation of the radical scavenging potential of vanillin-based pyrido-dipyrimidines: Experimental and in silico approach.RSC Advances20231322152361524210.1039/D3RA02469E 37213339
    [Google Scholar]
  35. JoksimovićN. PetronijevićJ. MilovićE. JankovićN. KosanićM. PetrovićN. Antioxidant and antimicrobial potential, BSA and DNA binding properties of some 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment.Med. Chem.202218778479010.2174/1573406418666220304230342 35249503
    [Google Scholar]
  36. JankovićN. MuškinjaJ. RatkovićZ. BugarčićZ. RankovićB. KosanićM. StefanovićS. Solvent-free synthesis of novel vanillidene derivatives of Meldrum’s acid: Biological evaluation, DNA and BSA binding study.RSC Advances2016645394523945910.1039/C6RA07711K
    [Google Scholar]
  37. AkbariB. Baghaei-YazdiN. BahmaieM. Mahdavi AbhariF. The role of plant‐derived natural antioxidants in reduction of oxidative stress.Biofactors202248361163310.1002/biof.1831 35229925
    [Google Scholar]
  38. PokornýJ. Are natural antioxidants better – and safer – than synthetic antioxidants?Eur. J. Lipid Sci. Technol.2007109662964210.1002/ejlt.200700064
    [Google Scholar]
  39. NielsenS.E. YoungJ.F. DaneshvarB. LauridsenS.T. KnuthsenP. SandströmB. DragstedL.O. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects.Br. J. Nutr.199981644745510.1017/S000711459900080X 10615220
    [Google Scholar]
  40. AliF. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2014767132010.1016/j.mrgentox.2014.04.006 24755254
    [Google Scholar]
  41. Sánchez-MarzoN. Pérez-SánchezA. Ruiz-TorresV. Martínez-TébarA. CastilloJ. Herranz-LópezM. Barrajón-CatalánE. Antioxidant and photoprotective activity of apigenin and its potassium salt derivative in human keratinocytes and absorption in Caco-2 cell monolayers.Int. J. Mol. Sci.2019209214810.3390/ijms20092148 31052292
    [Google Scholar]
  42. LeeJ.H. ZhouH.Y. ChoS.Y. KimY.S. LeeY.S. JeongC.S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules.Arch. Pharm. Res.200730101318132710.1007/BF02980273 18038911
    [Google Scholar]
  43. AliF. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review.Int. J. Food Prop.20172061197123810.1080/10942912.2016.1207188
    [Google Scholar]
  44. ZhangB. WangJ. ZhaoG. LinM. LangY. ZhangD. FengD. TuC. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway.Cell Stress Chaperones202025227728510.1007/s12192‑020‑01071‑7 31953635
    [Google Scholar]
  45. YangC. SongJ. HwangS. ChoiJ. SongG. LimW. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells.Redox Biol.20214710214410.1016/j.redox.2021.102144 34562873
    [Google Scholar]
  46. AhmadA. ZafarA. AhmadM. Mitigating effects of apigenin on edifenphos-induced oxidative stress, DNA damage and apoptotic cell death in human peripheral blood lymphocytes.Food Chem. Toxicol.201912721822710.1016/j.fct.2019.03.034 30910686
    [Google Scholar]
  47. ChanL.P. ChouT.H. DingH.Y. ChenP.R. ChiangF.Y. KuoP.L. LiangC.H. Apigenin induces apoptosis via tumor necrosis factor receptor-and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin.Biochim. Biophys. Acta, Gen. Subj.20121820710811091
    [Google Scholar]
  48. ChakrabartiM. BanikN.L. RayS.K. Sequential hTERT knockdown and apigenin treatment inhibited invasion and proliferation and induced apoptosis in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cells.J. Mol. Neurosci.201351118719810.1007/s12031‑013‑9975‑x 23417743
    [Google Scholar]
  49. KimS.H. KangJ.G. KimC.S. IhmS.H. ChoiM.G. YooH.J. LeeS.J. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells.Mol. Cell. Endocrinol.20133691-213013910.1016/j.mce.2013.01.012 23376608
    [Google Scholar]
  50. MafuvadzeB. LiangY. Besch-WillifordC. ZhangX. HyderS.M. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors.Horm. Cancer20123416017110.1007/s12672‑012‑0114‑x 22569706
    [Google Scholar]
  51. HasnatM. PervinM. LimJ. LimB. Apigenin attenuates melanoma cell migration by inducing anoikis through integrin and focal adhesion kinase inhibition.Molecules20152012211572116610.3390/molecules201219752 26633318
    [Google Scholar]
  52. HassanS.M. KhalafM.M. SadekS.A. Abo-YoussefA.M. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice.Pharm. Biol.201755176677410.1080/13880209.2016.1275704 28064632
    [Google Scholar]
  53. YangJ. WangX.Y. XueJ. GuZ.L. XieM.L. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity.Food Funct.20134693994310.1039/c3fo60071h 23673978
    [Google Scholar]
  54. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  55. LuanR.L. MengX.X. JiangW. Protective effects of apigenin against paraquat-induced acute lung injury in mice.Inflammation201639275275810.1007/s10753‑015‑0302‑2 26782361
    [Google Scholar]
  56. GeensT. GoeyensL. CovaciA. Are potential sources for human exposure to bisphenol-A overlooked?Int. J. Hyg. Environ. Health2011214533934710.1016/j.ijheh.2011.04.005 21570349
    [Google Scholar]
  57. VandenbergL.N. HauserR. MarcusM. OleaN. WelshonsW.V. Human exposure to bisphenol A (BPA).Reprod. Toxicol.200724213917710.1016/j.reprotox.2007.07.010 17825522
    [Google Scholar]
  58. PereraF. VishnevetskyJ. HerbstmanJ.B. CalafatA.M. XiongW. RauhV. WangS. Prenatal bisphenol a exposure and child behavior in an inner-city cohort.Environ. Health Perspect.201212081190119410.1289/ehp.1104492 22543054
    [Google Scholar]
  59. HongS.B. HongY.C. KimJ.W. ParkE.J. ShinM.S. KimB.N. YooH.J. ChoI.H. BhangS.Y. ChoS.C. Bisphenol A in relation to behavior and learning of school‐age children.J. Child Psychol. Psychiatry201354889089910.1111/jcpp.12050 23445117
    [Google Scholar]
  60. LenieS. CortvrindtR. Eichenlaub-RitterU. SmitzJ. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20086511-2718110.1016/j.mrgentox.2007.10.017 18093867
    [Google Scholar]
  61. MachtingerR. CombellesC.M.H. MissmerS.A. CorreiaK.F. WilliamsP. HauserR. RacowskyC. Bisphenol-A and human oocyte maturation in vitro.Hum. Reprod.201328102735274510.1093/humrep/det312 23904465
    [Google Scholar]
  62. SongH. ZhangT. YangP. LiM. YangY. WangY. DuJ. PanK. ZhangK. Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals.Toxicol. In Vitro201530152152810.1016/j.tiv.2015.09.009 26363202
    [Google Scholar]
  63. BromerJ.G. ZhouY. TaylorM.B. DohertyL. TaylorH.S. Bisphenol‐A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response.FASEB J.20102472273228010.1096/fj.09‑140533 20181937
    [Google Scholar]
  64. DolinoyD.C. HuangD. JirtleR.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development.Proc. Natl. Acad. Sci. USA200710432130561306110.1073/pnas.0703739104 17670942
    [Google Scholar]
  65. MaffiniM.V. RubinB.S. SonnenscheinC. SotoA.M. Endocrine disruptors and reproductive health: The case of bisphenol-A.Mol. Cell. Endocrinol.2006254-25517918610.1016/j.mce.2006.04.033 16781053
    [Google Scholar]
  66. FenichelP. ChevalierN. Brucker-DavisF. BisphenolA. An endocrine and metabolic disruptor.Ann. Endocrinol.201374321122010.1016/j.ando.2013.04.002 23796010
    [Google Scholar]
  67. ChangW.H. HeriantoS. LeeC.C. HungH. ChenH.L. The effects of phthalate ester exposure on human health: A review.Sci. Total Environ.202178614737110.1016/j.scitotenv.2021.147371 33965815
    [Google Scholar]
  68. HarleyK.G. BergerK. RauchS. KogutK. Claus HennB. CalafatA.M. HuenK. EskenaziB. HollandN. Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity.Pediatr. Res.201782340541510.1038/pr.2017.112 28426647
    [Google Scholar]
  69. KimS. EomS. KimH.J. LeeJ.J. ChoiG. ChoiS. KimS. KimS.Y. ChoG. KimY.D. SuhE. KimS.K. KimS. KimG.H. MoonH.B. ParkJ. KimS. ChoiK. EunS.H. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2 years of age- CHECK cohort study.Sci. Total Environ.201862437738410.1016/j.scitotenv.2017.12.058 29258038
    [Google Scholar]
  70. CavalcaA.M.B. AquinoA.M. MoseleF.C. JustulinL.A. DelellaF.K. FlawsJ.A. ScaranoW.R. Effects of a phthalate metabolite mixture on both normal and tumoral human prostate cells.Environ. Toxicol.202237102566257810.1002/tox.23619 35861251
    [Google Scholar]
  71. UradeR. ChouC.K. ChouH.L. ChenB.H. WangT.N. TsaiE.M. HungC.T. WuS.J. ChiuC.C. Phthalate derivative DEHP disturbs the antiproliferative effect of camptothecin in human lung cancer cells by attenuating DNA damage and activating Akt/NF‐κB signaling pathway.Environ. Toxicol.202338233234210.1002/tox.23686 36394428
    [Google Scholar]
  72. ZhangH. ZhaoY. CuiJ.G. LiX.N. LiJ.L. DEHP-induced mitophagy and mitochondrial damage in the heart are associated with dysregulated mitochondrial biogenesis.Food Chem. Toxicol.202216111281810.1016/j.fct.2022.112818 35032567
    [Google Scholar]
  73. RawatP.S. SinghS. MahdiA.A. MehrotraS. Environmental lead exposure and its correlation with intelligence quotient level in children.J. Trace Elem. Med. Biol.20227212698110.1016/j.jtemb.2022.126981 35452890
    [Google Scholar]
  74. RuslanR. AmqamH. YusufW.M. Trimuliati Nani; Arsy, N.I.; Ramadhani, A.R. Serum lead level and academic performance of elementary school children in makassar city.J Public Health Sci202213335036110.26553/jikm.2022.13.2.350‑361
    [Google Scholar]
  75. DuttaS. GorainB. ChoudhuryH. RoychoudhuryS. SenguptaP. Environmental and occupational exposure of metals and female reproductive health.Environ. Sci. Pollut. Res. Int.20222941620676209210.1007/s11356‑021‑16581‑9 34558053
    [Google Scholar]
  76. HuangfuP. AtkinsonR. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis.Environ. Int.202014410599810.1016/j.envint.2020.105998 33032072
    [Google Scholar]
  77. HeM.Z. KinneyP.L. LiT. ChenC. SunQ. BanJ. WangJ. LiuS. GoldsmithJ. KioumourtzoglouM.A. Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China.Environ. Pollut.202026111416510.1016/j.envpol.2020.114165 32097792
    [Google Scholar]
  78. SunM. YuH. ZhangK. ZhangY. YanY. HuangD. WangS. Determination of gaseous sulfur dioxide and its derivatives via fluorescence enhancement based on cyanine dye functionalized carbon nanodots.Anal. Chem.201486199381938510.1021/ac503214v 25242201
    [Google Scholar]
  79. DangY. LiZ. LuoB. PanL. WeiQ. ZhangY. Protective effects of apigenin against acrylonitrile-induced subchronic sperm injury in rats.Food Chem. Toxicol.2017109Pt 151752510.1016/j.fct.2017.09.025 28963002
    [Google Scholar]
  80. KhanT.H. JahangirT. PrasadL. SultanaS. Inhibitory effect of apigenin on benzo(a)pyrene-mediated genotoxicity in Swiss albino mice.J. Pharm. Pharmacol.201058121655166010.1211/jpp.58.12.0013 17331330
    [Google Scholar]
  81. FehaidA. Al-GhamdiM.S. AlzahraniK.J. TheyabA. Al-AmerO.M. Al-ShehriS.S. AlgahtaniM. A. OyouniA. A.; Alnfiai, M.M.; Aly, M.H.; Alsharif, K.F.; Albrakati, A.; Kassab, R.B.; Althagafi, H.A.; Alharthi, F.; Abdel Moneim, A.E.; Lokman, M.S. Apigenin protects from hepatorenal damage caused by lead acetate in rats.J. Biochem. Mol. Toxicol.2023373e2327510.1002/jbt.23275 36550699
    [Google Scholar]
  82. AlfwuairesM. AlgefareA.I. MahmoudO. SedkyA. Protective potential of apigenin against lead acetate induced alterations in cerebellum of rats.Indian J. Anim. Res.202357196101
    [Google Scholar]
  83. AlbrakatiA. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin.Environ. Sci. Pollut. Res. Int.2022309241432415310.1007/s11356‑022‑23954‑1 36334201
    [Google Scholar]
  84. YosryA. Abd-ElaalM. BarakatW. Antiapoptotic effect of apigenin and vitamin E against deltamethrin induced toxicity in rats.Zagazig J. Pharm. Sci.2017262677710.21608/zjps.2017.38144
    [Google Scholar]
  85. WangE. ChenF. HuX. YuanY. Protective effects of apigenin against furan-induced toxicity in mice.Food Funct.2014581804181210.1039/C4FO00038B 24914499
    [Google Scholar]
  86. JainG.C. HemantP. KhajjaB.S. KusumJ. JhalaniS. AgarwalS. SameerS. Modulation of di-(2-ethylhexyl) phthalate induced hepatic toxicity by Apium graveolens L. seeds extract in rats.Afr. J. Biochem. Res.200935222225
    [Google Scholar]
  87. ZhaoF. DangY. ZhangR. JingG. LiangW. XieL. LiZ. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway.Int. Immunopharmacol.20197510569710.1016/j.intimp.2019.105697 31352326
    [Google Scholar]
  88. Sarigul SezenozA. AkkoyunI. HelvaciogluF. HaberalN. DagdevirenA. BacanliD. YilmazG. OtoS. Antiproliferative and mitochondrial protective effects of apigenin in an oxygen-induced retinopathy in vivo mouse model.J. Ocul. Pharmacol. Ther.2021371058059010.1089/jop.2021.0046 34665015
    [Google Scholar]
  89. YuJ. JiangQ. LiuN. FanD. WangM. ZhaoY. Apigenin and apigenin-7, 4′-O-dioctanoate protect against acrolein-aggravated inflammation via inhibiting the activation of NLRP3 inflammasome and HMGB1/MYD88/NF-κB signaling pathway in Human umbilical vein endothelial cells (HUVEC).Food Chem. Toxicol.202216811340010.1016/j.fct.2022.113400 36055550
    [Google Scholar]
  90. ÇetinY.S. AltındağF. BerközM. Protective role of resveratrol and apigenin against toxic effects of bisphenol a in rat salivary gland.Drug Chem. Toxicol.2023461889610.1080/01480545.2021.2011310 34875952
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072296125240221061200
Loading
/content/journals/cbc/10.2174/0115734072296125240221061200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test