Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

The encapsulation technique is an effective method for coating bioactive molecules and protecting them against various technological treatment conditions during production processing.

Objective

The aim of this study was to optimize the encapsulation conditions of phenolic compounds extracted from Malabar nut ( L.) leaves by alginate emulsion-gelation approach using response surface methodology.

Methods

The ionotropic gelation method was used to encapsulate the phenolic compounds of Malabar nut ( L.) leaves. The optimization of this phenolic compounds encapsulation was carried out using response surface methodology through Box˗Behnken design. Four parameters with three levels (-1, 0, +1) were chosen including sodium alginate concentration
(2 - 3 - 4%), calcium chloride concentration (4 - 6 - 8%), plant extract-alginate solution ratio (0.02 - 0.11 - 0.2 mg/ml), and gelation time (5 - 12.5 - 20 min). Total phenolic and flavonoid contents encapsulation efficiency was assessed. Likewise, the antioxidant activity was evaluated using ferric-reducing power (FRP) and free radical scavenging activity (DPPH).

Results

The results of response surface methodology analysis using Box˗Behnken design showed that the optimal encapsulation conditions were 3.11% for alginate concentration, 5.74% for calcium chloride concentration, 0.1 mg/ml for the plant extract-alginate solution ratio, and 10.80 min for gelation time. Under these conditions, the optimum values of total phenolic and flavonoid encapsulation efficiency were 86.17% and 75.69%, respectively, 126.75 mg AAE/100 g for ferric reducing power and 97.29% for DPPH. The experimental and prediction results have expressed a high significant level for all responses.

Conclusion

The method revealed the validity of elaborated models through response surface methodology optimization processes for phenolic antioxidants encapsulation of Malabar nut
( L.) leaves extract.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072297243240304113132
2024-03-12
2025-01-17
Loading full text...

Full text loading...

References

  1. BalkrishnaM.D.N. SantoshM.J.N. AnilM.J.T. HanumantM.A.A. Extraction, pharmacognostic study and antibacterial activity of herbal plant Justicia adhatoda.Int. J. Curr. Sci.2022123
    [Google Scholar]
  2. BasitA. ShutianT. KhanA. KhanS.M. ShahzadR. KhanA. KhanS. KhanM. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in carrageenan and formalin-induced models by targeting oxidative stress.Biomed. Pharmacother.202215311332210.1016/j.biopha.2022.113322 35763968
    [Google Scholar]
  3. JamwalM. RadhaR. PrakashS. SharmaS. PundirA. SinghD. PuriS. Yearly variation in biochemical composition, morphological aspects, and antimicrobial activities of Justicia adhatoda L. Growing wildly in Western Himalayas.J. Appl. Biol. Biotechnol.2022111616510.7324/JABB.2023.110108
    [Google Scholar]
  4. YadavC.K. KcS. ThapaS. KandelK. ShresthaL. PalikheyA. LamsalA. In vitro and in silico analysis of alpha-amylase inhibitory activity of ethanolic extract of Adhatoda vasica leaves.Preprints202310.20944/preprints202307.1457.v1
    [Google Scholar]
  5. IoannouI. ChekirL. GhoulM. Effect of heat treatment and light exposure on the antioxidant activity of flavonoids.Processes202089107810.3390/pr8091078
    [Google Scholar]
  6. JurićS. JurićM. Król-KilińskaŻ. Vlahoviček-KahlinaK. VincekovićM. Dragović-UzelacV. DonsìF. Sources, stability, encapsulation and application of natural pigments in foods.Food Rev. Int.20223881735179010.1080/87559129.2020.1837862
    [Google Scholar]
  7. EssifiK. LakratM. BerraaouanD. FauconnierM.L. El BachiriA. TahaniA. Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design.Polym. Bull.202178105789581410.1007/s00289‑020‑03397‑9
    [Google Scholar]
  8. Khoshdouni FarahaniZ. MousaviM. Seyedain ArdebiliM. BakhodaH. Stability, physicochemical, rheological and sensory properties of beverage containing encapsulated jujube extract with sodium alginate stabilized by sodium alginate and Gellan gum.Food Chemistry Advances2023210019510.1016/j.focha.2023.100195
    [Google Scholar]
  9. Toprakçıİ. TorunM. ŞahinS. Development of an encapsulation method for trapping the active materials from sour cherry biowaste in alginate microcapsules.Foods202212113010.3390/foods12010130 36613344
    [Google Scholar]
  10. RodriguesM.I. IemmaA.F. Experimental design and process optimization.1st edBoca RatonCRC Press2014133610.1201/b17848
    [Google Scholar]
  11. BezerraM.A. SantelliR.E. OliveiraE.P. VillarL.S. EscaleiraL.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry.Talanta200876596597710.1016/j.talanta.2008.05.019 18761143
    [Google Scholar]
  12. YdjeddS. BouricheS. López-NicolásR. Sánchez-MoyaT. Frontela-SasetaC. Ros-BerruezoG. RezguiF. LouailecheH. KatiD.E. Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity.J. Agric. Food Chem.201765482783510.1021/acs.jafc.6b05103 28094929
    [Google Scholar]
  13. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  14. Quettier-DeleuC. GressierB. VasseurJ. DineT. BrunetC. LuyckxM. CazinM. CazinJ.C. BailleulF. TrotinF. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour.J. Ethnopharmacol.2000721-2354210.1016/S0378‑8741(00)00196‑3 10967451
    [Google Scholar]
  15. OyaizuM. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine.Eiyogaku Zasshi198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  16. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  17. SinghS.P. DashA.K. Assessment of flavonoids, phenolic content, antioxidant and antimicrobial activity of methanolic extract of Justicia adhatoda L whole part.J. Pharm. Negat. Results2022131440144910.47750/pnr.2022.13.S10.169
    [Google Scholar]
  18. YadavA. PaulV. YadavN. Antioxidant properties of Moringa (Moringa oleifera), Adusa (Justicia adhatoda), Beetroot (Beta vulgaris L.) and cauliflower (Brassica olerace) leaves.Int. J. Appl. Home Sci.201633&49499
    [Google Scholar]
  19. PaulA.M. NagA. Antioxidant phenolics of Justicia adhatoda L. and Cordia dichotoma frost. Promote thrombolytic activity through binding to a serine protease, tissue plasminogen activator protein.Biomedical and Biotechnology Research Journal (BBRJ)20237460862010.4103/bbrj.bbrj_243_23
    [Google Scholar]
  20. NipunikaM.M. AbeysingheD.C. DharmadasaR.M. Distribution of bioactive compounds and antioxidant capacity of different parts of Justicia adhatoda L. (Acanthaceae).World J. Agric. Res.2022102606310.12691/wjar‑10‑2‑4
    [Google Scholar]
  21. MarlianiN. ArtikaI.M. NurcholisW. Optimization extraction for total phenolic, flavonoid contents, and antioxidant activity with different solvents and UPLC-MS/MS metabolite profiling of Justicia gendarussa Burm.f.Chiang Mai Univ. J.202221310.12982/CMUJNS.2022.046
    [Google Scholar]
  22. GuimarãesT.L.F. da SilvaL.M.R. MunizC.R. VieiraÍ.G.P. de OliveiraL.S. DiasF.G.B. LimaC.B. GonzagaM.L.C. LimaJ.S.S. SabinoL.B.S. de FigueiredoE.A.T. Potential of chambá (Justicia Pectoralis Jacq.) leaves extracts as a source of bioactive compounds and natural antimicrobial agent.Food Chemistry Advances2023310036710.1016/j.focha.2023.100367
    [Google Scholar]
  23. JohnB. ReddyV.R.K. CT, S. Total phenolics and flavonoids in selected justicia species.J. Pharmacogn. Phytochem.2013247273
    [Google Scholar]
  24. Anaya-EsparzaL.M. Ramos-AguirreD. Zamora-GasgaV.M. YahiaE. Montalvo-GonzálezE. Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves.Food Sci. Biotechnol.20182741093110210.1007/s10068‑018‑0350‑0 30263839
    [Google Scholar]
  25. HariV. JothieswariD. MaheswarammaK.S. Total phenolic, flavonoid content, and antioxidant activity of Justicia tranquebariensis l.f. and Cycas beddomei dyer. leaves.Int. J. Pharm. Sci. Drug Res.2022141485310.25004/IJPSDR.2022.140107
    [Google Scholar]
  26. BhattacharyyaS. DasS. BhattacharjeeS. BhattacharyyaS. RaiC. Bacteriostatic activities of antioxidant silver nanoparticles prepared from leaves of Justicia adhatoda and Nyctanthes arbor-tristis.World J. Pharm. Res.201761175376210.20959/wjpr201711‑9556
    [Google Scholar]
  27. MusaM. JanG. JanF.G. HamayunM. IrfanM. RaufA. AlsahammariA. AlharbiM. SuleriaH.A.R. AliN. Pharmacological activities and gas chromatography–mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L.Front. Pharmacol.20221392238810.3389/fphar.2022.922388 36172192
    [Google Scholar]
  28. AhmadB. AhmedA. IrshadG. AslamH. KhaliqueN. Anti-diabetic and anti-oxidative role of a local medicinal plant Justicia adhatoda L in diabetes mellitus.Pak. J. Med. Health Sci.20191319195
    [Google Scholar]
  29. HossainM.A. AkhterS. SohrabM.H. AfrozF. BegumM.N. Roy RonyS. Applying an optimization technique for the extraction of antioxidant components from justicia adhatoda leaves.Eng. Sci.20232491310.30919/es913
    [Google Scholar]
  30. AttanayakeA. JayatilakaK.A.P.W. Evaluation of antioxidant properties of 20 medicinal plant extracts traditionally used in ayurvedic medicine in Sri Lanka.Indian J. Tradit. Knowl.20161515056
    [Google Scholar]
  31. RajA. VennilaL. KrishnanA. SatheeshA. AsaikumarL. SivasangariS. KanimozhiK. Antioxidant activity and FT-IR analysis of methanolic extract of Adhatoda beddomei.Res. j. life sci201953426
    [Google Scholar]
  32. SaranN. AnandharajB. GiridharanB. SakthivelV. In vitro antioxidant potential of Justicia adhatoda leaf extracts against 1,1-diphenyl picryl hydrazyl, hydroxyl, and nitrous oxide free radicals.Drug Invent. Today.20191217361740
    [Google Scholar]
  33. BangdiwalaS.I. Understanding significance and p-values.Nepal J. Epidemiol.20166152252410.3126/nje.v6i1.14732 27152231
    [Google Scholar]
  34. Mohamed AhmedI.A. Al-JuhaimiF. AdisaA.R. AdiamoO.Q. BabikerE.E. OsmanM.A. GassemM.A. GhafoorK. AlqahH.A.S. ElkareemM.A. Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidant activity from Argel (Solenostemma argel Hayne) leaves using response surface methodology (RSM).J. Food Sci. Technol.20205783071308010.1007/s13197‑020‑04340‑6 32624609
    [Google Scholar]
  35. LiuY. ZhouQ. HeY.M. MaX.Y. LiuL.N. KeY.J. Optimization of preparation and properties of Gardenia yellow pigment-loaded alginate beads.Korean J. Chem. Eng.20213881669167510.1007/s11814‑021‑0807‑3
    [Google Scholar]
  36. Toprakçıİ. TorunM. TorunF.B. ŞahinS. Alginate-based hydrogels for trapping the polyphenols of Hibiscus sabdariffa: Use of a statistical experimental design approach; Biomass Convers.Biorefinery202211110.1007/s13399‑022‑03421‑0
    [Google Scholar]
  37. WaniK.M. UppaluriR.V.S. Efficacy of ionic gelation based encapsulation of bioactives from papaya leaf extract: characterization and storage stability; Biomass Convers.Biorefinery202311810.1007/s13399‑023‑03956‑w
    [Google Scholar]
  38. Toprakçıİ. TorunM. ŞahinS. Encapsulation of plum biowaste extract: Design of alginate beads by response surface approach.J. Food Meas. Charact.20231732676268710.1007/s11694‑023‑01826‑7
    [Google Scholar]
  39. MohammadalinejhadS. AlmonaitytėA. JensenI.J. KurekM. LerfallJ. Alginate microbeads incorporated with anthocyanins from purple corn (Zea mays L.) using electrostatic extrusion: Microencapsulation optimization, characterization, and stability studies.Int. J. Biol. Macromol.202324612568410.1016/j.ijbiomac.2023.125684 37406909
    [Google Scholar]
  40. SukriN. PutriT.T.M. Mahani; Nurhadi, B. Characteristics of propolis encapsulated with gelatin and sodium alginate by complex coacervation method.Int. J. Food Prop.202326169670710.1080/10942912.2023.2179635
    [Google Scholar]
  41. CelliG.B. GhanemA. BrooksM.S.L. Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles.J. Berry Res.20166111110.3233/JBR‑150107
    [Google Scholar]
  42. CheboutA. ChaalalM. YdjeddS. Effect of encapsulation conditions on phenolic encapsulation efficiency and antioxidant activity of malabar nut (Justicia adhatoda L.) leaves using alginate emulsion-gelation.Taiwan. J. Agric. Chem. Food Sci.2024In press.
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072297243240304113132
Loading
/content/journals/cbc/10.2174/0115734072297243240304113132
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test