Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

The study addresses the underexplored realm of cytotoxicity evaluation involving binary mixtures of leaf extracts and Titanium nanoparticles (TiONPs). The focus lies on understanding the combined effects of these components on cancer cells (A549, U937, and HeLa).

Methods

cytotoxicity assessments were employed to evaluate the toxicity of leaf extracts, TiONPs, and their combination. The study utilized MTT, NRU, and LDH assays to measure cellular viability. Additionally, reactive oxygen species (ROS) and glutathione levels were assessed alongside the aforementioned assays.

Results

The toxicity percentage exhibited dose-dependent behavior for leaf extracts, TiONPs, and their combination. Interestingly, when leaf extract and TiONPs were combined, the reduction in cell viability was noticeably more than when the exposures were made separately. Moreover, the production of ROS was higher in the combined toxicity scenario, and a more pronounced decrease in glutathione levels was observed compared to individual exposures.

Conclusion

The findings suggest that the combined effects of leaf extract and TiONPs induce greater cytotoxicity compared to their impacts. This underscores the potential for synergistic cytotoxicity in combined exposure scenarios, warranting further exploration of combined effects in future studies.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072294581240311064402
2024-03-19
2025-01-17
Loading full text...

Full text loading...

References

  1. KurianJ.T. ChandranP. SebastianJ.K. Synthesis of inorganic nanoparticles using traditionally used Indian medicinal plants.J. Cluster Sci.20233452229225510.1007/s10876‑022‑02403‑6
    [Google Scholar]
  2. HalderM. JhaS. Medicinal plants and bioactive phytochemical diversity: A fountainhead of potential drugs against human diseases.InMedicinal Plants: Biodiversity, Biotechnology and ConservationSpringer Nature Singapore.Singapore2023399310.1007/978‑981‑19‑9936‑9_2
    [Google Scholar]
  3. CavaleriF. ChattopadhyayS. PalsuleV. KarP.K. ChatterjeeR. Study of drug target identification and associated molecular mechanisms for the therapeutic activity and hair follicle induction of two ashwagandha extracts having differential withanolide constitutions.J. Nutr. Metab.2023202311310.1155/2023/9599744 37808919
    [Google Scholar]
  4. KaikadeA.R. GurunaniS.G. PandelT.W. SherekarS.A. KaikadeP.R. MehareS.R. GunjarkarS.B. ParateM.W. JaiswalS.V. DhawaleY.V. MohareV.N. Phyto-Pharmacognostic review on Passiflora species.Faslnamah-i Giyahan-i Daruyi20231133550
    [Google Scholar]
  5. HarishV. AnsariM.M. TewariD. YadavA.B. SharmaN. BawarigS. García-BetancourtM.L. KaratutluA. BechelanyM. BarhoumA. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review.J. Taiwan Inst. Chem. Eng.202314910501010.1016/j.jtice.2023.105010
    [Google Scholar]
  6. ChaudharyP. AhamadL. ChaudharyA. KumarG. ChenW.J. ChenS. Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants.J. Environ. Chem. Eng.202311210959110.1016/j.jece.2023.109591
    [Google Scholar]
  7. VermaJ. WarsameC. SeenivasagamR.K. KatiyarN.K. AleemE. GoelS. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications.Cancer Metastasis Rev.202342360162710.1007/s10555‑023‑10086‑2 36826760
    [Google Scholar]
  8. MuhammadA. RashidA. AnwarH. KhanF.S. ChikwenduC.J. DestinyE.C. DokuboC.U. IfeanyiA. UcheC.Z. OlisahM.C. EgbunaC. Exploring the frontiers of green nanotechnology: Advancing biomedicine, herbonanoceuticals, environment, and sustainability.Scicom J. Med. Appl. Med. Sci.202321183010.54117/sjmams.v2i1.11
    [Google Scholar]
  9. GhoshD. MajumderS. SharmaP. Anticancerous activity of transition metal oxide nanoparticles.Nanobiomedicine2020107137
    [Google Scholar]
  10. BeheraC. Kaur SandhaK. BanjareN. Kumar ShuklaM. Mudassir AliS. SinghM. GuptaP.N. Biodegradable nanocarrier of gemcitabine and tocopherol succinate synergistically ameliorates anti-proliferative response in MIA PaCa-2 cells.Int. J. Pharm.202464912359910.1016/j.ijpharm.2023.123599 37992978
    [Google Scholar]
  11. TiwariP. YadavK. ShuklaR.P. GautamS. MarwahaD. SharmaM. MishraP.R. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy.J. Control. Release202336329034810.1016/j.jconrel.2023.09.016 37714434
    [Google Scholar]
  12. LeeY. ChoS. ParkK. KimT. KimJ. RyuD.Y. HongJ. Potential lifetime effects caused by cellular uptake of nanoplastics: A review.Environ. Pollut.202332912166810.1016/j.envpol.2023.121668 37087090
    [Google Scholar]
  13. SairamA.B. SanmugamA. PushparajA. Mahesh KumarG. SundarapandianN. BalajiS. NallalM. ParkK.H. Toxicity of polymeric nanodrugs as drug carriers.ACS Chem. Health Saf202330523625010.1021/acs.chas.3c00008
    [Google Scholar]
  14. ThevenotP. ChoJ. WavhalD. NairA. TimmonsR.B. TangL. Surface chemistry influences cancer-killing effect of TiO2 nanoparticles.Nanomedicine in Cancer.Jenny Stanford Publishing201741143910.1201/b22358‑16
    [Google Scholar]
  15. AkterM. SikderM.T. RahmanM.M. UllahA.K.M.A. HossainK.F.B. BanikS. HosokawaT. SaitoT. KurasakiM. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives.J. Adv. Res.2018911610.1016/j.jare.2017.10.008 30046482
    [Google Scholar]
  16. BorenfreundE. PuernerJ.A. Toxicity determined in vitro by morphological alterations and neutral red absorption.Toxicol. Lett.1985242-311912410.1016/0378‑4274(85)90046‑3 3983963
    [Google Scholar]
  17. WangH. JosephJ.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader11mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee by the united states department of agriculture and does not imply its approval to the exclusion of other products that may be suitable.Free Radic. Biol. Med.1999275-661261610.1016/S0891‑5849(99)00107‑0 10490282
    [Google Scholar]
  18. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  19. ManS. GaoW. ZhangY. HuangL. LiuC. Chemical study and medical application of saponins as anti-cancer agents.Fitoterapia201081770371410.1016/j.fitote.2010.06.004 20550961
    [Google Scholar]
  20. Campos-XolalpaN. Alonso-CastroÁ.J. Sánchez-MendozaE. Zavala-SánchezM.Á. Pérez-GutiérrezS. Cytotoxic activity of the chloroform extract and four diterpenes isolated from Salvia ballotiflora.Rev. Bras. Farmacogn.201727330230510.1016/j.bjp.2017.01.007
    [Google Scholar]
  21. LiuM. ChenY.L. KuoY.H. LuM.K. LiaoC.C. Aqueous extract of Sapindusmukorossi induced cell death of A549 cells and exhibited antitumor property in vivo.Sci. Rep.20188115 29311619
    [Google Scholar]
  22. RobinsonJ.P. SuriyaK. SubbaiyaR. PonmuruganP. Antioxidant and cytotoxic activity of Tecoma stans against lung cancer cell line (A549).Braz. J. Pharm. Sci.20175335310.1590/s2175‑97902017000300204
    [Google Scholar]
  23. AmaralR.G. GomesS.V.F. AndradeL.N. dos SantosS.A. SeverinoP. de Albuquerque JúniorR.L.C. SoutoE.B. BrandãoG.C. SantosS.L. DavidJ.M. CarvalhoA.A. Cytotoxic, antitumor and toxicological profile of Passiflora alata leaf extract.Molecules20202520481410.3390/molecules25204814 33092066
    [Google Scholar]
  24. MalekiS.J. CrespoJ.F. CabanillasB. Anti-inflammatory effects of flavonoids.Food Chem.201929912512410.1016/j.foodchem.2019.125124 31288163
    [Google Scholar]
  25. OzarowskiM. PiaseckaA. Paszel-JaworskaA. ChavesD.S.A. RomaniukA. RybczynskaM. GryszczynskaA. SawikowskaA. KachlickiP. MikolajczakP.L. Seremak-MrozikiewiczA. KlejewskiA. ThiemB. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines.Rev. Bras. Farmacogn.201828217919110.1016/j.bjp.2018.01.006
    [Google Scholar]
  26. da SilvaI.C. KaluđerovićG.N. de OliveiraP.F. GuimarãesD.O. QuaresmaC.H. PorzelA. MuzitanoM.F. WessjohannL.A. LealI.C. Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract from Passiflora mucronata.Anticancer. Agents Med. Chem.2018181014051416
    [Google Scholar]
  27. NajimN. RusdiR. HamzahA.S. ShaameriZ. Mat ZainM. KamarulzamanN. Effects of the absorption behaviour of ZnO nanoparticles on cytotoxicity measurements.J. Nanomater.2014201411010.1155/2014/694737
    [Google Scholar]
  28. HeF. YuW. FanX. JinB. <i>In vitro</i> cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines.Trop. J. Pharm. Res.201816122793279910.4314/tjpr.v16i12.2
    [Google Scholar]
  29. KhanM. NaqviA.H. AhmadM. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles.Toxicol. Rep.2015276577410.1016/j.toxrep.2015.02.004 28962412
    [Google Scholar]
  30. GengR. RenY. RaoR. TanX. ZhouH. YangX. LiuW. LuQ. Titanium dioxide nanoparticles induced HeLa cell necrosis under UVA radiation through the ROS-mPTP pathway.Nanomaterials20201010202910.3390/nano10102029 33076304
    [Google Scholar]
  31. JinC.Y. ZhuB.S. WangX.F. LuQ.H. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.Chem. Res. Toxicol.20082191871187710.1021/tx800179f 18680314
    [Google Scholar]
  32. TunçsoyM. Impacts of titanium dioxide nanoparticles on serum parameters and enzyme activities of Clarias gariepinus.Bull. Environ. Contam. Toxicol.2021106462963610.1007/s00128‑020‑03100‑8 33420801
    [Google Scholar]
  33. MajeedM. HakeemK.R. RehmanR.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks.Chemosphere2022288Pt 213252710.1016/j.chemosphere.2021.132527 34637861
    [Google Scholar]
  34. RenY. HeX. YanX. YangY. LiQ. YaoT. LuL. PengL. ZouL. Unravelling the polytoxicology of chlorfenapyr on non-target HepG2 cells: The involvement of mitochondria-mediated programmed cell death and DNA damage.Molecules20222717572210.3390/molecules27175722 36080487
    [Google Scholar]
  35. WenJ. YouK.R. LeeS.Y. SongC.H. KimD.G. Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide.J. Biol. Chem.200227741389543896410.1074/jbc.M203842200 12151389
    [Google Scholar]
  36. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  37. KroemerG. ReedJ.C. Mitochondrial control of cell death.Nat. Med.20006551351910.1038/74994 10802706
    [Google Scholar]
  38. GurrJ.R. WangA.S.S. ChenC.H. JanK.Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.Toxicology20052131-2667310.1016/j.tox.2005.05.007 15970370
    [Google Scholar]
  39. HussainS. BolandS. Baeza-SquibanA. HamelR. ThomassenL.C.J. MartensJ.A. Billon-GallandM.A. Fleury-FeithJ. MoisanF. PaironJ.C. MaranoF. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount.Toxicology20092601-314214910.1016/j.tox.2009.04.001 19464580
    [Google Scholar]
  40. LongT.C. TajubaJ. SamaP. SalehN. SwartzC. ParkerJ. HesterS. LowryG.V. VeronesiB. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro.Environ. Health Perspect.2007115111631163710.1289/ehp.10216 18007996
    [Google Scholar]
  41. ShuklaR.K. SharmaV. PandeyA.K. SinghS. SultanaS. DhawanA. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells.Toxicol. In Vitro201125123124110.1016/j.tiv.2010.11.008 21092754
    [Google Scholar]
  42. BuranratB. BoonthaS. TemkitthawonP. ChomchalaoP. Anticancer activities of Careya arborea Roxb on MCF-7 human breast cancer cells.Biologia202075122359236610.2478/s11756‑020‑00535‑6
    [Google Scholar]
  43. DevasagayamT.P. SainisK.B. Immune system and antioxidants, especially those derived from Indian medicinal plants.Indian J. Exp. Biol.2002406639655 12587713
    [Google Scholar]
  44. OberdörsterG. OberdörsterE. OberdörsterJ. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.Environ. Health Perspect.2005113782383910.1289/ehp.7339 16002369
    [Google Scholar]
  45. MaccarroneM. MelinoG. Finazzi-AgroA. Lipoxygenases and their involvement in programmed cell death.Cell Death Differ.20018776784
    [Google Scholar]
  46. Shirzadi-AhodashtiM. Mortazavi-DerazkolaS. EbrahimzadehM.A. Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines.Surf. Interfaces20202110069710.1016/j.surfin.2020.100697
    [Google Scholar]
  47. SalehD.O. El-NasrN.M.E.A. FayezA.M. AhmedK.A. MohamedR.A. Uro-protective role of chrysin against cyclophosphamide-induced hemorrhagic cystitis in rats involving the turning-off NF-κB/P38-MAPK, NO/PARP-1 and STAT-3 signaling cascades.Chem. Biol. Interact.202338211058510.1016/j.cbi.2023.110585 37263553
    [Google Scholar]
  48. JiangH. ZuoJ. LiB. ChenR. LuoK. XiangX. LuS. HuangC. LiuL. TangJ. GaoF. Drug-induced oxidative stress in cancer treatments: Angel or devil?Redox Biol.20236310275410.1016/j.redox.2023.102754 37224697
    [Google Scholar]
  49. BelfieldS.J. FirmanJ.W. EnochS.J. MaddenJ.C. Erik TollefsenK. CroninM.T.D. A review of quantitative structure-activity relationship modelling approaches to predict the toxicity of mixtures.Comput. Toxicol.20232510025110.1016/j.comtox.2022.100251
    [Google Scholar]
  50. AbushadM. NaseemS. ArshadM. ShafiA. KhanM.Z. AnsariA. ChakradharyV.K. SinghF. HusainS. KhanW. Physical properties and photocatalytic activity of Cr‐doped TiO 2 nanoparticles.J. Microsc.2023291321022810.1111/jmi.13211 37357432
    [Google Scholar]
  51. Ashraful AlamM. Kumar BishwasR. MostofaS. Akter JahanS. Low-temperature synthesis and crystal growth behavior of nanocrystal anatase-TiO2.Mater. Lett.202435413539610.1016/j.matlet.2023.135396
    [Google Scholar]
  52. MohananS. SathishC.I. RamadassK. LiangM. VinuA. Design and synthesis of cabazitaxel loaded core‐shell mesoporous silica nanoparticles with different morphologies for prostate cancer therapy.Small2023230326910.1002/smll.202303269 37386787
    [Google Scholar]
  53. KucheK. YadavV. PatelM. GhadiR. JainS. Exploring sorafenib and simvastatin combination for ferroptosis-induced cancer treatment: cytotoxicity screening, in vivo efficacy, and safety assessment.AAPS PharmSciTech202324718010.1208/s12249‑023‑02639‑z 37697085
    [Google Scholar]
  54. SaraniM. RoostaeeM. Adeli-SardouM. Kalantar-NeyestanakiD. MousaviS.A.A. AmanizadehA. BaraniM. AmirbeigiA. Green synthesis of Ag and Cu-doped Bismuth oxide nanoparticles: Revealing synergistic antimicrobial and selective cytotoxic potentials for biomedical advancements.J. Trace Elem. Med. Biol.20248112732510.1016/j.jtemb.2023.127325 37922658
    [Google Scholar]
  55. LiuH. WangK. HanD. SunW. XuS. Co-exposure of avermectin and imidacloprid induces DNA damage, pyroptosis, and immune dysfunction in epithelioma papulosum cyprini cells via ROS-mediated Keap1/Nrf2/TXNIP axis.Fish Shellfish Immunol.202314010898510.1016/j.fsi.2023.108985 37536468
    [Google Scholar]
  56. LiaoL.S. ChenY. HouC. LiuY.H. SuG.F. LiangH. ChenZ.F. Potent Zinc(II)-based immunogenic cell death inducer triggered by ROS-mediated ERS and mitochondrial Ca 2+ overload.J. Med. Chem.20236615104971050910.1021/acs.jmedchem.3c00603 37498080
    [Google Scholar]
  57. JinH. WangL. BernardsR. Rational combinations of targeted cancer therapies: Background, advances and challenges.Nat. Rev. Drug Discov.202322321323410.1038/s41573‑022‑00615‑z 36509911
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072294581240311064402
Loading
/content/journals/cbc/10.2174/0115734072294581240311064402
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): A549; HeLa cells; Passiflora caerulea; reactive oxygen species; titanium nanoparticles; U937
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test