Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

The constant increase in global onion production escalates the 
generation of onion peel waste. For instance, globally, >50 lakh tons of onion waste are generated annually.

Methods

Its objectionable odor precludes its use in agriculture or disposal as landfilling presents environmental issues. Previous studies show that two major flavonoids, quercetin and its
glycosides (spiraeoside), have been identified in abundance in onion waste. By utilizing the
spiraeoside (quercetin-4ʹ-glucoside), a rapid synthesis of pachypodol (quercetin-3,3′,7-trimethyl ether, and a rare flavonol), an essential Ayurvedic product, has been developed and achieved. Pachypodol and analogs were studied for their ability to inhibit matrix metalloproteinase-2 and 
-9 (MMP-2 & 9) activity. Amongst the compounds tested, pachypodol significantly inhibited MMP-2 activity.

Results

docking studies suggest that, unlike most known MMP inhibitors, pachypodol interacts selectively with MMP-2 through the residues Ile222, Tyr223, and Thr227 in a zinc-independent manner.

Conclusion

The experimental studies also prove that pachypodol inhibits the MMP-2 enzyme in a zinc-independent way.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072293689240219110806
2024-03-01
2025-01-17
Loading full text...

Full text loading...

References

  1. Osojnik ČrnivecI.G. SkrtM. ŠeremetD. SternišaM. FarčnikD. ŠtrumbeljE. PoljanšekA. CebinN. PogačnikL. Smole MožinaS. HumarM. KomesD. Poklar UlrihN. Waste streams in onion production: Bioactive compounds, quercetin and use of antimicrobial and antioxidative properties.Waste Manag.202112647648610.1016/j.wasman.2021.03.033 33838387
    [Google Scholar]
  2. ManojK. MrunalD. A review on bioactive compounds and biomedical activities.Biomed. Pharmacother.2022146112498
    [Google Scholar]
  3. SalunkheS. ChaudharyB.U. TewariS. MeshramR. KaleR.D. Utilization of agricultural waste as an alternative for packaging films.Ind. Crops Prod.202218811568510.1016/j.indcrop.2022.115685
    [Google Scholar]
  4. SutanuM. DeepaH.D. NamrtaS. SachinK. MunniG. Agricultural Waste: Its Impact on Environment and Management Approaches.Emerging Eco-friendly Green Technologies for Wastewater Treatment2020329351
    [Google Scholar]
  5. CelanoR. DocimoT. PiccinelliA.L. GazzerroP. TucciM. Di SanzoR. CarabettaS. CamponeL. RussoM. RastrelliL. Onion peel: Turning a food waste into a resource.Antioxidants202110230410.3390/antiox10020304 33669451
    [Google Scholar]
  6. MondalN.K. GhoshP. SenK. MondalA. DebnathP. Efficacy of onion peel towards removal of nitrate from aqueous solution and field samples.Environ. Nanotechnol. Monit. Manag.20191110022210.1016/j.enmm.2019.100222
    [Google Scholar]
  7. SegundoR.F. De La Cruz-NoriegaM. Milly OtinianoN. BenitesS.M. EsparzaM. Nazario-NavedaR. Use of Onion Waste as Fuel for the Generation of Bioelectricity.Molecules202227362510.3390/molecules27030625 35163889
    [Google Scholar]
  8. KumarM. BarbhaiM.D. HasanM. DhumalS. SinghS. PandiselvamR. RaisN. NattaS. SenapathyM. SinhaN. AmarowiczR. Onion (Allium cepa L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient.J. Food Sci.202287104289431110.1111/1750‑3841.16297 36101019
    [Google Scholar]
  9. MourtzinosI. ProdromidisP. GrigorakisS. MakrisD.P. BiliaderisC.G. MoschakisT. Natural food colorants derived from onion wastes: Application in a yoghurt product.Electrophoresis201839151975198310.1002/elps.201800073
    [Google Scholar]
  10. MonaV. SarojS. JeetS. NeelamM.R. Phytochemical screening of onion skin (Allium cepa) dye extract.J. Pharmacogn. Phytochem.2018714141417
    [Google Scholar]
  11. NedungadiD. BinoyA. PanduranganN. NairB.G. MishraN. Proteasomal dysfunction and ER stress triggers 2′‐hydroxy‐retrochalcone‐induced paraptosis in cancer cells.Cell Biol. Int.202145116417610.1002/cbin.11480 33049087
    [Google Scholar]
  12. AthiraO. JyotsnaN. RodneyM.H. ChinchuB. PanduranganN. RebuK.V. Anacardic acid inhibits the catalytic activity of MMP-2 and MMP-9.Mol. Pharmacol.201282614622
    [Google Scholar]
  13. AmruthaK. NanjanP. ShajiS.K. SunilkumarD. SubhalakshmiK. RajakrishnaL. BanerjiA. Discovery of lesser known flavones as inhibitors of NF-κB signaling in MDA-MB-231 breast cancer cells-A SAR study.Bioorg. Med. Chem. Lett.201424194735474210.1016/j.bmcl.2014.07.093 25190466
    [Google Scholar]
  14. NanjanP. NambiarJ. NairB.G. BanerjiA. Synthesis and discovery of (I-3,II-3)-biacacetin as a novel non-zinc binding inhibitor of MMP-2 and MMP-9.Bioorg. Med. Chem.201523133781378710.1016/j.bmc.2015.03.084 25907368
    [Google Scholar]
  15. H, J.; Omanakuttan, A.; Pandurangan, N.; S Vargis, V.; Maneesh, M.; G Nair, B.; B Kumar, G. Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa.Appl. Microbiol. Biotechnol.201610083681369210.1007/s00253‑016‑7313‑2 26821927
    [Google Scholar]
  16. KalyanavenkataramanS. NanjanP. BanerjiA. NairB.G. KumarG.B. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor.Bioorg. Chem.201666727910.1016/j.bioorg.2016.03.009 27038848
    [Google Scholar]
  17. KhareC.P. Ayurvedic Pharmacopoeia Plant Drugs: Expanded Therapeutics.CRC Press201510.1201/b19002
    [Google Scholar]
  18. AliH.A. ChowdhuryA.K.A. RahmanA.K.M. BorkowskiT. NaharL. SarkerS.D. Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of Caco2 colon cancer cell line in vitro.Phytother. Res.200822121684168710.1002/ptr.2539 18570232
    [Google Scholar]
  19. MoonH. KimM.J. SonH.J. KweonH.J. KimJ.T. KimY. ShimJ. SuhB.C. RhyuM.R. Five hTRPA1 Agonists found in indigenous Korean mint, Agastache rugosa.PLoS One2015105e012706010.1371/journal.pone.0127060 25978436
    [Google Scholar]
  20. IshitsukaH. OhsawaC. OhiwaT. UmedaI. SuharaY. Antipicornavirus flavone Ro 09-0179.Antimicrob. Agents Chemother.198222461161610.1128/AAC.22.4.611 6295260
    [Google Scholar]
  21. RyuB. KimH.M. LeeJ.S. LeeC.K. SezirahigaJ. WooJ.H. ChoiJ.H. JangD.S. New flavonol glucuronides from the flower buds of syzygium aromaticum (Clove).J. Agric. Food Chem.201664153048305310.1021/acs.jafc.6b00337 27045836
    [Google Scholar]
  22. EswaraiahM.C. SatyanarayanaT. Evaluation of short-term myelotoxicity study in dietary reduced rats.J. Pharm. Res. Heal. Care201022331
    [Google Scholar]
  23. González-VázquezR. King DíazB. AguilarM.I. DiegoN. Lotina-HennsenB. Pachypodol from Croton ciliatoglanduliferus Ort. as water-splitting enzyme inhibitor on thylakoids.J. Agric. Food Chem.20065441217122110.1021/jf051897s 16478239
    [Google Scholar]
  24. ÇitoğluG.S. SeverB. AntusS. Baitz-GácsE. AltanlarN. Antifungal diterpenoids and flavonoids from Ballota inaequidens.Pharm. Biol.200542865966310.1080/13880200490902626
    [Google Scholar]
  25. HuongD.T. LuongD.V. ThaoT.T.P. SungT.V. A new flavone and cytotoxic activity of flavonoid constituents isolated from Miliusa balansae (Annonaceae).ChemInform20053650chin.20055019210.1002/chin.200550192 16124409
    [Google Scholar]
  26. BouktaibM. LebrunS. AtmaniA. RolandoC. Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions.Tetrahedron20025850100011000910.1016/S0040‑4020(02)01306‑6
    [Google Scholar]
  27. PanduranganN. BoseC. MeppoyilamS. KalathilV.C. MuraliA. PrameelaA.R. Synthesis, bioactivities and in-silico docking studies of azaleatin-A quercetin partial methyl ether: SAR study.Curr. Bioact. Compd.201915110310810.2174/1573407214666171226155509
    [Google Scholar]
  28. SuhH.J. LeeJ.M. ChoJ.S. KimY.S. ChungS.H. Radical scavenging compounds in onion skin.Food Res. Int.1999321065966410.1016/S0963‑9969(99)00141‑6
    [Google Scholar]
  29. BenítezV. MolláE. Martín-CabrejasM.A. AguileraY. López-AndréuF.J. CoolsK. TerryL.A. EstebanR.M. Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds.Plant Foods Hum. Nutr.2011661485710.1007/s11130‑011‑0212‑x 21318305
    [Google Scholar]
  30. GuerreroM.F. PueblaP. CarrónR. MartínM.L. RománL.S. Quercetin 3,7-dimethyl ether: A vasorelaxant flavonoid isolated from Croton schiedeanus Schlecht.J. Pharm. Pharmacol.201054101373137810.1211/002235702760345455 12396299
    [Google Scholar]
  31. TuG. XuW. HuangH. LiS. Progress in the development of matrix metalloproteinase inhibitors.Curr. Med. Chem.200815141388139510.2174/092986708784567680 18537616
    [Google Scholar]
  32. JacobsenJ.A. Major JourdenJ.L. MillerM.T. CohenS.M. To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition.Biochim. Biophys. Acta Mol. Cell Res.201018031729410.1016/j.bbamcr.2009.08.006 19712708
    [Google Scholar]
  33. FieldsG.B. New strategies for targeting matrix metalloproteinases.Matrix Biol.201544-4623924610.1016/j.matbio.2015.01.002 25595836
    [Google Scholar]
  34. Di PizioA. LaghezzaA. TortorellaP. AgamennoneM. Probing the S1′ site for the identification of non-zinc-binding MMP-2 inhibitors.ChemMedChem2013891475-1482, 1421.10.1002/cmdc.201300186 23873724
    [Google Scholar]
  35. KumarG.B. NairB.G. PerryJ.J.P. MartinD.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases.MedChemComm201910122024203710.1039/C9MD00165D
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072293689240219110806
Loading
/content/journals/cbc/10.2174/0115734072293689240219110806
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test