Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

By condensing 2-aminothiazole and phenacyl bromide, a novel
catalyst-free synthetic approach for the synthesis of imidazo[2,1-b]thiazole derivatives has been
developed.

Methods

In this work, aloe vera/water (3:2) is used as a reusable, environmentally benign, green-promoting media to synthesize desired products. This method enables the synthesis of a diverse range of aryl-substituted imidazo[2,1-b]thiazoles.

Results

This solvent system demonstrates remarkable efficiency and offers numerous advantages, including shorter reaction times, the absence of side product formation, cost-effectiveness, excellent atom efficiency, straightforward operation, and high yields.

Conclusion

We successfully developed a green protocol for the environmentally benign synthesis of imidazo[2,1-b]thiazole derivatives using aloe vera water as green-promoting media.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072278083240214060120
2024-02-22
2025-06-26
Loading full text...

Full text loading...

References

  1. (a GreigI.R. TozerM.J. WrightP.T. Synthesis of cyclic sulfonamides through intramolecular diels-alder reactions.Org. Lett.20013336937110.1021/ol006863e 11428016
    [Google Scholar]
  2. (b KatritzkyA.R. WuJ. RachwalS. RachwalB. MacomberD.W. SmithT.P. Preparation of 6-, 7- and 8-membered sultams by friedel-crafts cyclization of ω-phenylalkanesulfamoyl chlorides.Org. Prep. Proced. Int.199224446346710.1080/00304949209356228
    [Google Scholar]
  3. (c HulténJ. BonhamN.M. NillrothU. HanssonT. ZuccarelloG. BouzideA. ÅqvistJ. ClassonB. DanielsonU.H. KarlénA. KvarnströmI. SamuelssonB. HallbergA. Cyclic HIV-1 protease inhibitors derived from mannitol: Synthesis, inhibitory potencies, and computational predictions of binding affinities.J. Med. Chem.199740688589710.1021/jm960728j 9083477
    [Google Scholar]
  4. (a McReynoldsM.D. DoughertyJ.M. HansonP.R. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis.Chem. Rev.200410452239225810.1021/cr020109k 15137790
    [Google Scholar]
  5. (b CremlynR.J. An Introduction to Organosulfur Chemistry.ChichesterJohn Wiley and Sons1996
    [Google Scholar]
  6. Al-TelT.H. Al-QawasmehR.A. ZaarourR. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs.Eur. J. Med. Chem.20114651874188110.1016/j.ejmech.2011.02.051 21414694
    [Google Scholar]
  7. FaragA.M. MayhoubA.S. BarakatS.E. BayomiA.H. Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity.Bioorg. Med. Chem.20081684569457810.1016/j.bmc.2008.02.043 18313934
    [Google Scholar]
  8. (a AndreaniA. BurnelliS. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. VaroliL. CalonghiN. CappadoneC. FarruggiaG. ZiniM. StefanelliC. MasottiL. RadinN.S. ShoemakerR.H. New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues.J. Med. Chem.200851480981610.1021/jm701246g 18251494
    [Google Scholar]
  9. (b FurlanA. ColomboF. KoverA. IssalyN. TintoriC. AngeliL. LerouxV. LetardS. AmatM. AssesY. BernardM. DubreuilP. BottaM. DonoR. BoschJ. PiccoloL. PassarellaD. MainaF. Identification of new aminoacid amides containing the imidazo [2, 1-b] benzothiazol-2-ylphenyl moiety as inhibitors of tumorigenesis by oncogenic Met signaling.Eur. J. Med. Chem.201247239254
    [Google Scholar]
  10. (c AndreaniA. BurnelliS. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. VaroliL. CalonghiN. CappadoneC. VoltattorniM. ZiniM. StefanelliC. MasottiL. ShoemakerR.H. Antitumor activity of new substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones and 3-(5-imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: Selectivity against colon tumor cells and effect on cell cycle-related events.J. Med. Chem.200851237508751310.1021/jm800827q 19006285
    [Google Scholar]
  11. (a AndreaniA. RambaldiM. LocatelliA. AndreaniF. 5-Formylimidazo[2,1-b]thiazoles and derivatives with herbicidal activity.Collect. Czech. Chem. Commun.199156112436244710.1135/cccc19912436
    [Google Scholar]
  12. (b AndreaniA. RambaldiM. LocatelliA. Synthesis and fungicide activity of 2,3-dihydroimidazo[2,1-b]thiazole-5-carboxamides.Pharm. Acta Helv.199570432532810.1016/0031‑6865(95)00038‑0 8765698
    [Google Scholar]
  13. MukkuN. MaitiB. On water catalyst-free synthesis of benzo[ d]imidazo[2,1- b] thiazoles and novel N -alkylated 2-aminobenzo[ d]oxazoles under microwave irradiation.RSC Advances202010277077810.1039/C9RA08929B 35494448
    [Google Scholar]
  14. (a IoanP. CarosatiE. MicucciM. CrucianiG. BroccatelliF. ZhorovB.S. ChiariniA. BudriesiR. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): Action in ion channels and GPCRs.Curr. Med. Chem.201118324901492210.2174/092986711797535173 22050742
    [Google Scholar]
  15. (b CarosatiE. IoanP. MicucciM. BroccatelliF. CrucianiG. ZhorovB.S. ChiariniA. BudriesiR. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): Action in other targets and antitargets.Curr. Med. Chem.201219254306432310.2174/092986712802884204 22709009
    [Google Scholar]
  16. KumbhareR.M. Vijay KumarK. Janaki RamaiahM. DadmalT. PushpavalliS.N.C.V.L. MukhopadhyayD. DivyaB. Anjana DeviT. KosurkarU. Pal-BhadraM. Synthesis and biological evaluation of novel Mannich bases of 2-arylimidazo[2,1-b]benzothiazoles as potential anti-cancer agents.Eur. J. Med. Chem.20114694258426610.1016/j.ejmech.2011.06.031 21775028
    [Google Scholar]
  17. (a TrapaniG. FrancoM. LatrofaA. RehoA. LisoG. Synthesis, in vitro and in vivo cytotoxicity, and prediction of the intestinal absorption of substituted 2-ethoxycarbonyl-imidazo[2,1-b]benzothiazoles.Eur. J. Pharm. Sci.200114320921610.1016/S0928‑0987(01)00173‑7 11576825
    [Google Scholar]
  18. (b AndreaniA. GranaiolaM. LocatelliA. MorigiR. RambaldiM. VaroliL. CalonghiN. CappadoneC. FarruggiaG. StefanelliC. MasottiL. NguyenT.L. HamelE. ShoemakerR.H. Substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones and analogues: Synthesis, cytotoxic activity, and study of the mechanism of action.J. Med. Chem.20125552078208810.1021/jm2012694 22283430
    [Google Scholar]
  19. FurlanA. ColomboF. KoverA. IssalyN. TintoriC. AngeliL. LerouxV. LetardS. AmatM. AssesY. MaigretB. DubreuilP. BottaM. DonoR. BoschJ. PiccoloO. PassarellaD. MainaF. Identification of new aminoacid amides containing the imidazo[2,1-b]benzothiazol-2-ylphenyl moiety as inhibitors of tumorigenesis by oncogenic Met signaling.Eur. J. Med. Chem.201247123925410.1016/j.ejmech.2011.10.051 22138308
    [Google Scholar]
  20. (a ZhangX. JiaJ. MaC. A one-pot regioselective synthesis of benzo[d]imidazo[2,1-b]thiazoles.Org. Biomol. Chem.201210397944794810.1039/c2ob26211h 22936251
    [Google Scholar]
  21. (b MirN.A. ShahT.A. AhmedS. MuneerM. RathN.P. AhmadM. One pot synthesis of imidazo[2,1-b]thiazoles and benzo[d]thiazolo[3,2-a]imidazoles.Tetrahedron Lett.201455101706171010.1016/j.tetlet.2014.01.085
    [Google Scholar]
  22. (c ChenZ. XueF. ZhangY. JinW. WangB. XiaY. XieM. AbdukaderA. LiuC. Visible-light-promoted [3 + 2] cyclization of chalcones with 2-mercaptobenzimidazoles: A protocol for the synthesis of imidazo[2,1- b]thiazoles.Org. Lett.202224173149315410.1021/acs.orglett.2c00867 35451846
    [Google Scholar]
  23. (a SamalaG. DeviP.B. SaxenaS. MedaN. YogeeswariP. SriramD. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors.Bioorg. Med. Chem.20162461298130710.1016/j.bmc.2016.01.059 26867485
    [Google Scholar]
  24. (b WangJ. ZhangW. ZhaoZ. MaoJ. GuoC. Construction of benzo[d]imidazo[2,1-b]thiazole derivatives via a simple multi-component domino cyclization.Res. Chem. Intermed.201844161362810.1007/s11164‑017‑3123‑0
    [Google Scholar]
  25. (c WangH. ZhaoS. XuY. LiL. LiB. PeiM. ZhangG. A new fluorescent probe based on imidazole[2,1-b]benzothiazole for sensitive and selective detection of Cu2+.J. Mol. Struct.2020120312738410.1016/j.molstruc.2019.127384
    [Google Scholar]
  26. (d JanaA. BhaumickP. PandayA.K. MishraR. ChoudhuryL.H.I. 2/DMSO mediated multicomponent reaction for the synthesis of 2-arylbenzo[ d]imidazo[2,1- b] thiazole derivatives.Org. Biomol. Chem.201917215316533010.1039/C9OB00515C 31095156
    [Google Scholar]
  27. (a MishraS. MonirK. MitraS. HajraA. FeCl3/ZnI2-catalyzed synthesis of benzo[d]imidazo[2,1-b]thiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone.Org. Lett.201416236084608710.1021/ol5028893 25393913
    [Google Scholar]
  28. (b BakheradM. Nasr-IsfahaniH. KeivanlooA. SangG. Synthesis of 2-benzylimidazo[2,1-b][1,3]benzothiazoles through palladium-catalyzed heteroannulation of acetylenic compounds.Tetrahedron Lett.200849436188619110.1016/j.tetlet.2008.07.163
    [Google Scholar]
  29. (c WangJ. LiJ. ZhuQ. Copper-promoted cycloaddition of α-methylenyl isocyanides with benzothiazoles: Tunable access to benzo[ d]imidazothiazoles.Org. Lett.201517215336533910.1021/acs.orglett.5b02694 26509678
    [Google Scholar]
  30. (d XieY. ChenX. WangZ. HuangH. YiB. DengG.J. Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen.Green Chem.201719184294429810.1039/C7GC02014G
    [Google Scholar]
  31. (e RassokhinaI.V. TikhonovaT.A. KobylskoyS.G. BabkinI.Y. ShirinianV.Z. GevorgyanV. ZavarzinI.V. VolkovaY.A. Synthesis of imidazo[2,1- b ]thiazoles via copper-catalyzed A 3 - coupling in batch and continuous flow.J. Org. Chem.201782189682969210.1021/acs.joc.7b01762 28799762
    [Google Scholar]
  32. (f ShaikS.P. VishnuvardhanM.V.P.S. SultanaF. Subba RaoA.V. BagulC. BhattacharjeeD. KapureJ.S. JainN. KamalA. Design and synthesis of 1,2,3-triazolo linked benzo[ d ]imidazo[2,1- b ]thiazole conjugates as tubulin polymerization inhibitors.Bioorg. Med. Chem.201725133285329710.1016/j.bmc.2017.04.013 28462842
    [Google Scholar]
  33. (g SultanaF. Reddy BonamS. ReddyV.G. NayakV.L. AkunuriR. Rani RouthuS. AlarifiA. HalmuthurM.S.K. KamalA. Synthesis of benzo[ d ]imidazo[2,1- b ]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents.Bioorg. Chem.20187611210.1016/j.bioorg.2017.10.019 29102724
    [Google Scholar]
  34. (a BarchéchathS.D. TawataoR.I. CorrM. CarsonD.A. CottamH.B. Inhibitors of apoptosis in lymphocytes: Synthesis and biological evaluation of compounds related to pifithrin-alpha.J. Med. Chem.200548206409642210.1021/jm0502034 16190767
    [Google Scholar]
  35. (b ChristodoulouM.S. ColomboF. PassarellaD. IeronimoG. ZucoV. De CesareM. ZuninoF. Synthesis and biological evaluation of imidazolo[2,1-b]benzothiazole derivatives, as potential p53 inhibitors.Bioorg. Med. Chem.20111951649165710.1016/j.bmc.2011.01.039 21324703
    [Google Scholar]
  36. (c MishraA. SrivastavaM. RaiP. YadavS. TripathiB.P. SinghJ. SinghJ. Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo[2,1-b]thiazoles in EtOH: H 2 O green medium.RSC Advances2016654491644917210.1039/C6RA05385H
    [Google Scholar]
  37. (a BaranwalJ. KushwahaS. SinghS. JyotiA. Synergistic effect of Ethyl lactate/Glycerol: A new route for the synthesis of Hexahydro-4H-indazol-4-one and its derivatives.Heterocycl. Lett.2022123621630
    [Google Scholar]
  38. (b BaranwalJ. KushwahaS. SinghS. JyotiA. A review on the synthesis and pharmacological activity of heterocyclic compounds.Curr. Phys. Chem.202313121910.2174/1877946813666221021144829
    [Google Scholar]
  39. (c BaranwalJ. SinghS. KushwahaS. JyotiA. Acemannan from aloe vera extract: A catalyst-free, approach for the access of imidazole-fused nitrogen-bridgehead heterocycles.Lett. Org. Chem.202320544645610.2174/1570178620666221116093457
    [Google Scholar]
  40. (d KushwahaS. BaranwalJ. SinghS. JyotiA. A review on green synthesis of biologically active compounds.Curr. Green Chem.20229317419510.2174/2213346110666221213092734
    [Google Scholar]
  41. (e KushwahaS. BaranwalJ. SinghS. JyotiA. Synergistic effect of Ethyl lactate/GVL: A new route for the synthesis of Spirooxindole-indazolones and its derivatives.Heterocycl. Lett.2023132319329
    [Google Scholar]
  42. (f KushwahaS. SinghS. BaranwalJ. JyotiA. 5-Sulphosalicylic acid: An expeditious Organocatalyst for One-pot Synthesis of Indenopyrazolones and its derivatives.Curr. Organocatal.2023103215224
    [Google Scholar]
  43. (g BaranwalJ. SinghS. KushwahaS. JyotiA. Stepping into the World of Technology.Research Culture Society and Publication2023
    [Google Scholar]
  44. (h KushwahaS. SinghS. BaranwalJ. JyotiA. Stepping into the World of Technology.Research Culture Society and Publication2023
    [Google Scholar]
  45. (a TufailF. SaquibM. SinghS. TiwariJ. SinghM. SinghJ. SinghJ. Bioorganopromoted green Friedländer synthesis: A versatile new malic acid promoted solvent free approach to multisubstituted quinolines.New J. Chem.20174141618162410.1039/C6NJ03907C
    [Google Scholar]
  46. (b TiwariJ. SaquibM. SinghS. TufailF. SinghM. SinghJ. SinghJ. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions.Green Chem.201618113221323110.1039/C5GC02855H
    [Google Scholar]
  47. (c SinghS. SaquibM. SinghM. TiwariJ. TufailF. SinghJ. SinghJ. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium.New J. Chem.2016401636710.1039/C5NJ01938A
    [Google Scholar]
  48. (d TufailF. SinghS. SaquibM. TiwariJ. SinghJ. SinghJ. Catalyst‐free, glycerol‐assisted facile approach to imidazole‐fused nitrogen‐bridgehead heterocycles.ChemistrySelect20172216082608910.1002/slct.201700557
    [Google Scholar]
  49. (e SinghM. SaquibM. SinghS.B. SinghS. AnkitP. FatmaS. SinghJ. Organocatalysis in aqueous micellar medium: A new protocol for the synthesis of [1,2,4]-triazolyl-thiazolidinones.Tetrahedron Lett.201455456175617910.1016/j.tetlet.2014.09.030
    [Google Scholar]
  50. (f TiwariJ. SinghS. SaquibM. TufailF. SharmaA.K. SinghS. SinghJ. SinghJ. Organocatalytic mediated green approach: A versatile new L -valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans.Synth. Commun.201848218819610.1080/00397911.2017.1393087
    [Google Scholar]
  51. (a RajasekaranS. RaviK. SivagnanamK. SubramanianS. Hypoglycemic effect of aloe vera gel on streptozotocin-induced diabetes in experimental rats.J. Med. Food200471616610.1111/j.1440‑1681.2006.04351.x 16487267
    [Google Scholar]
  52. (b MaharjanR. Bio-prospecting of aloe vera gel for the treatment of female infertility., Doctoral dissertation, Maharaja Sayajirao University of Baroda: India,2016
    [Google Scholar]
  53. (a ChithraP. SajithlalG.B. ChandrakasanG. Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats.Mol. Cell. Biochem.19981811/2717610.1023/A:1006813510959 9562243
    [Google Scholar]
  54. (b ShanmugavelS. ReddyV.J. RamakrishnaS. LakshmiB.S. DevV.R.G. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.J. Biomater. Appl.2014291465810.1177/0885328213513934 24287981
    [Google Scholar]
  55. (a OzsoyN. CandokenE. AkevN. Implications for degenerative disorders: Antioxidative activity, total phenols, flavonoids, ascorbic acid, beta-carotene and beta-tocopherol in Aloe vera.Oxid. Med. Cell. Longev.2009229910610.4161/oxim.2.2.8493 20357932
    [Google Scholar]
  56. (b BalaS. ChughN.A. BansalS.C. GargM.L. KoulA. Protective role of Aloe vera against X-ray induced testicular dysfunction.Andrologia2017497e1269710.1111/and.12697 27620003
    [Google Scholar]
  57. HammanJ. Composition and applications of Aloe vera leaf gel.Molecules20081381599161610.3390/molecules13081599 18794775
    [Google Scholar]
  58. ChowJ. WilliamsonT. YatesK. Chemical characterization of the immunomodulating polysaccharide of Aloe vera L.Carbohydr. Res.200534061131114710.1016/j.carres.2005.02.016 15797128
    [Google Scholar]
  59. Chun-huiL. Chang-haiW. Zhi-liangX. YiW. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water.Process Biochem.200742696197010.1016/j.procbio.2007.03.004
    [Google Scholar]
  60. ChandrababuP. CheriyanS. RaghavanR. Aloe vera leaf extract-assisted facile green synthesis of amorphous Fe2O3 for catalytic thermal decomposition of ammonium perchlorate.J. Therm. Anal. Calorim.20201391899910.1007/s10973‑019‑08376‑5
    [Google Scholar]
  61. AnjuT.R. ParvathyS. Valiya VeettilM. RosemaryJ. AnsalnaT.H. ShahzabanuM.M. DevikaS. Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity.Mater. Today Proc.2021433956396010.1016/j.matpr.2021.02.665
    [Google Scholar]
  62. PinzonM.I. GarciaO.R. VillaC.C. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch‐chitosan edible films.J. Sci. Food Agric.201898114042404910.1002/jsfa.8915 29377147
    [Google Scholar]
  63. LiuC. CuiY. PiF. ChengY. GuoY. QianH. Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from aloe vera: A review.Molecules2019248155410.3390/molecules24081554 31010204
    [Google Scholar]
  64. TummalapalliM. BerthetM. VerrierB. DeopuraB.L. AlamM.S. GuptaB. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents.Int. J. Biol. Macromol.20168210411310.1016/j.ijbiomac.2015.10.087 26529192
    [Google Scholar]
  65. BoudreauM.D. BelandF.A. An evaluation of the biological and toxicological properties of aloe barbadensis (miller), aloe vera.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200624110315410.1080/10590500600614303
    [Google Scholar]
  66. Escobedo-LozanoA.Y. DomardA. VelázquezC.A. GoycooleaF.M. Argüelles-MonalW.M. Physical properties and antibacterial activity of chitosan/acemannan mixed systems.Carbohydr. Polym.201511570771410.1016/j.carbpol.2014.07.064 25439952
    [Google Scholar]
  67. (a DayM.J. Glucocorticosteroids and antihistamines. Small Animal Clinical Pharmacology.Philadelphia, PASaunders Elsevier200826126910.1016/B978‑070202858‑8.50013‑0
    [Google Scholar]
  68. (b SykesJ. E. PapichM. G. Antiviral and immunomodulatory drugs.Canine and feline infectious diseases201454
    [Google Scholar]
  69. (a RushB.R. DavisE.G. Pharmacology and therapeutics of pulmonary medications.Equine Respiratory Medicine and Surgery20078399
    [Google Scholar]
  70. (b WynnS.G. FougèreB.J. Veterinary herbal medicine: A systems-based approach.Veterinary herbal medicine2007291.
    [Google Scholar]
  71. (a TheoretC.L. StashakT.S. Integumentary system: Wound healing, management, and reconstruction.Equine Emergencies201423826710.1016/B978‑1‑4557‑0892‑5.00019‑2
    [Google Scholar]
  72. (b Sharrif MoghaddasiM. VermaS.K. Aloe vera their chemicals composition and applications: A review.Int. J. Biol. Med. Res.201121467
    [Google Scholar]
  73. (a Escobedo-LozanoA.Y. DomardA. VelázquezC.A. GoycooleaF.M. Argüelles-MonalW.M. Physical properties and antibacterial activity of chitosan/acemannan mixed systems.Carbohydr. Polym.2015115707714
    [Google Scholar]
  74. (b StuartR.W. LefkowitzD.L. LincolnJ.A. HowardK. GeldermanM.P. LefkowitzS.S. Upregulation of phagocytosis and candidicidal activity of macrophages exposed to the immunostimulant, acemannan.Int. J. Immunopharmacol.1997192758210.1016/S0192‑0561(97)00010‑6 9278177
    [Google Scholar]
  75. (a DarabighaneB. NahashonS.N. A review on effects of aloe vera as a feed additive in broiler chicken diets.Ann. Anim. Sci.201414349150010.2478/aoas‑2014‑0026
    [Google Scholar]
  76. (b PengS.Y. NormanJ. CurtinG. CorrierD. McDanielH.R. BusbeeD. Decreased mortality of Norman murine sarcoma in mice treated with the immunomodulator.Acemannan. Mol. Biother.1991327987 1910624
    [Google Scholar]
  77. (a WombleD. HeldermanJ.H. The impact of acemannan on the generation and function of cytotoxic T-lymphocytes.Immunopharmacol. Immunotoxicol.1992141-2637710.3109/08923979209009213 1597661
    [Google Scholar]
  78. (b WombleD. HeldermanJ.H. Enhancement of allo-resposiveness of human lymphocytes by acemannan (CarrisynTM).Int. J. Immunopharmacol.198810896797410.1016/0192‑0561(88)90043‑4 2975271
    [Google Scholar]
  79. c LeeJ.K. LeeM.K. YunY.P. KimY. KimJ.S. KimY.S. KimK. HanS.S. LeeC.K. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells.Int. Immunopharmacol.2001171275128410.1016/S1567‑5769(01)00052‑2 11460308
    [Google Scholar]
  80. GangadharanC. ArthanareeswariM. PandiyanR. IlangoK. MohanKumar, R. Enhancing the bioactivity of Lupeol, isolated from Aloe vera leaf via targeted semi - synthetic modifications of the olefinic bond.Mater. Today Proc.20191429630110.1016/j.matpr.2019.04.150
    [Google Scholar]
  81. (a RahmaniR. GharanfoliM. GholaminM. DarroudiM. ChamaniJ. SadriK. HashemzadehA. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities.Ceram. Int.202046330513058
    [Google Scholar]
  82. (b RoutrayK.L. SahaS. BeheraD. Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices.Mater. Chem. Phys.20192242935
    [Google Scholar]
  83. (c FardsadeghB. Jafarizadeh-MalmiriH. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains.Green Process. Synth.201981399407
    [Google Scholar]
  84. (d RajeshkumarS. TharaniM. JeevithaM. SanthoshkumarJ. Anticariogenic activity of fresh aloe vera gel mediated copper oxide nanoparticles.Indian J. Public Health Res. Dev.20191011
    [Google Scholar]
  85. (e ArshadH. SaleemM. PashaU. SadafS. Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms.Electron. J. Biotechnol.2022555564
    [Google Scholar]
  86. (a KamalA. SultanaF. RamaiahM.J. SrikanthY.V.V. ViswanathA. KishorC. SharmaP. PushpavalliS.N.C.V.L. AddlagattaA. Pal-BhadraM. 3-substituted 2-phenylimidazo[2,1-b]benzothiazoles: synthesis, anticancer activity, and inhibition of tubulin polymerization.ChemMedChem20127229230010.1002/cmdc.201100511 22241597
    [Google Scholar]
  87. (b SultanaF. ShaikS.P. AlarifiA. SrivastavaA.K. KamalA. Transition‐metal‐free oxidative cross‐coupling of methylhetarenes with imidazoheterocycles towards efficient C(sp2)-H Carbonylation.Asian J. Org. Chem.20176789089710.1002/ajoc.201700173
    [Google Scholar]
  88. (a JinkalaR. TadiparthiK. RaghunadhA. Shiva KumarK.B. VenkateshwarluR. SiddaiahV. RamamohanH. Polycycl. Aromat. Compd.2022110
    [Google Scholar]
  89. (b ShaikS.P. SultanaF. RavikumarA. SunkariS. AlarifiA. KamalA. Regioselective oxidative cross-coupling of benzo[d]imidazo[2,1-b]thiazoles with styrenes: A novel route to C3-dicarbonylation.Org. Biomol. Chem.201715367696770410.1039/C7OB01778B 28872171
    [Google Scholar]
  90. (c SamantaS. MondalS. SantraS. KibriyaG. HajraA. FeCl3 -catalyzed cross-dehydrogenative coupling between imidazoheterocycles and oxoaldehydes.J. Org. Chem.20168120100881009310.1021/acs.joc.6b02091 27696879
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072278083240214060120
Loading
/content/journals/cbc/10.2174/0115734072278083240214060120
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test