Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Nimodipine is a highly lipophilic anti-hypertensive drug having 13% oral bioavailability (log P 3.41). Nimodipine is a prominent calcium channel blocker that must be given intravenously for an extended period of time (1-2 weeks) in order to treat cerebral vasospasm. It might be possible to substitute a sustained-release biodegradable formulation for the ongoing intravenous infusion used in this traditional therapy.

Objectives

The primary goal of this study was to formulate and evaluate the potentiality of ethosomes to deliver nimodipine, a potent water-insoluble anti-hypertensive drug, through the deeper layers of the skin. The greatest challenge for drug formulation is its poor oral bioavailability and solubility.

Methods

Nimodipine-loaded ethosomal gel was developed for transdermal drug delivery to increase solubility and skin penetration and to promote oral bioavailability. Central composite design employing a thin-film hydration method was used to prepare and optimize ethosomes. A better dispersion medium for nimodipine's preparation in ethosomes was selected based on the effect. The design consisted of independent variables as lipid (X1), ethanol (X2), and sonication time (X3). Concentrations were manipulated to examine the effects on three responses, namely the %entrapment efficiency (Y1), vesicle size (Y2), and %cumulative drug release (Y3). Surface morphology and other tests were used to identify ethosomes containing nimodipine. The preparation of ethosomal gel formulations began with incorporating a single ethosomal formulation (F4) into various concentrations of gelling agents. These studies performed physicochemical characterization, compatibility testing, and drug release tests on ethosomal gels. studies involving hypertensive rats were conducted after skin permeation, and studies were performed. In order to assess the drug's permeability and deposition, we employed the abdomen skin of rats.

Results

The optimal process parameters resulted in ethosomes with 89.9 ± 0.19 percent entrapment efficiency, a vesicle size of 102.37 ± 5.84 nm, and a cumulative drug release of 98.3 ± 0.13%. pH and drug content measurements were consistent with the homogeneous ethosomal gels. Viscosity was found to increase with the spreadability. The ethosomal gel formulation (G2) met the regulatory standards regarding appearance, spreadability, viscosity, and release studies. Compared to pure nimodipine, ethosomal suspension (F4) and ethosomal gel (G2) formulations had higher permeation, steady-state flux, and drug retention. Rats' mean arterial pressure (146.11 ± 0.84 mmHg) was significantly lower ( < 0.01) after after two hours of the experiment than it had been ( < 0.001) (98.88 ± 0.63 mmHg) after six hours.

Conclusion

To summarize, ethosomal gels have been found to be lipid carriers that enhance skin permeation and extend the anti-hypertensive effect of nimodipine. Compared to plain gel, drug permeation through rat abdominal skin in ethosomal gel was enhanced. Gel-based ethosomal transdermal drug delivery formulations of nimodipine can be used to achieve a faster rate and extend the duration of drug delivery by more than 24 hours.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072275742240103055511
2024-02-23
2025-01-18
Loading full text...

Full text loading...

References

  1. LodzkiM. GodinB. RakouL. MechoulamR. GallilyR. TouitouE. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model.J. Control. Release200393337738710.1016/j.jconrel.2003.09.001 14644587
    [Google Scholar]
  2. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Oestradiol skin delivery from ultradeformable liposomes: Refinement of surfactant concentration.Int. J. Pharm.20001961637410.1016/S0378‑5173(99)00441‑X 10675708
    [Google Scholar]
  3. ManconiM. SinicoC. ValentiD. LoyG. FaddaA.M. Niosomes as carriers for tretinoin. I. Preparation and properties.Int. J. Pharm.20022341-223724810.1016/S0378‑5173(01)00971‑1 11839454
    [Google Scholar]
  4. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.003 24981757
    [Google Scholar]
  5. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research.Int. J. Pharm.20073321-211610.1016/j.ijpharm.2006.12.005 17222523
    [Google Scholar]
  6. El-MenshaweS.F. KharshomR. El SisiA. Preparation and optimization of buccal propranolol hydrochloride nanoethosomal gel: A novel approach for enhancement of bioavailability.J. Nanomed. Nanotechnol.201781000435
    [Google Scholar]
  7. AkhtarN. PathakK. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: development and comparison with ethosomal gel.AAPS PharmSciTech201213134435510.1208/s12249‑012‑9754‑y 22282041
    [Google Scholar]
  8. PandeyV. GolhaniD. ShuklaR. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents.Drug Deliv.2015228988100210.3109/10717544.2014.889777 24580572
    [Google Scholar]
  9. PeppasN.A. HiltJ.Z. KhademhosseiniA. LangerR. Hydrogels in biology and medicine: From molecular principles to bionanotechnology.Adv. Mater.200618111345136010.1002/adma.200501612
    [Google Scholar]
  10. AbdulbaqiI.M. DarwisY. KhanN.A.K. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S105016 27307730
    [Google Scholar]
  11. EzzatH.M. ElnaggarY.S.R. AbdallahO.Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in-vitro appraisal and in-vivo studies.Int. J. Pharm.201956548849810.1016/j.ijpharm.2019.05.034 31100382
    [Google Scholar]
  12. MertinsO. DimovaR. Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry.Langmuir20112795506551510.1021/la200553t 21466162
    [Google Scholar]
  13. CevcG. BlumeG. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage.Biochim. Biophys. Acta Biomembr.200416631-2617310.1016/j.bbamem.2004.01.006 15157608
    [Google Scholar]
  14. JainS. JainV. MahajanS.C. Lipid based vesicular drug delivery systems.Adv. Pharm.2014201410.1155/2014/574673
    [Google Scholar]
  15. MannJ.F.S. ScalesH.E. ShakirE. AlexanderJ. CarterK.C. MullenA.B. FerroV.A. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity.Methods2006382909510.1016/j.ymeth.2005.11.002 16414269
    [Google Scholar]
  16. IbrahimT.M. AbdallahM.H. El-MegrabN.A. El-NahasH.M. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol.J. Liposome Res.201929321522810.1080/08982104.2018.1529793 30272506
    [Google Scholar]
  17. CevcG. Lipid vesicles and other colloids as drug carriers on the skin.Adv. Drug Deliv. Rev.200456567571110.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  18. AbdallahM.H. ElsewedyH.S. AbuLilaA.S. AlmansourK. UnissaR. ElghamryH.A. SolimanM.S. Quality by design for optimizing a novel liposomal jojoba oil-based emulgel to ameliorate the anti-inflammatory effect of brucine.Gels20217421910.3390/gels7040219 34842709
    [Google Scholar]
  19. RotherM. LavinsB.J. KneerW. LehnhardtK. SeidelE.J. MazgareanuS. Efficacy and safety of epicutaneous ketoprofen in Transfersome (IDEA-033) versus oral celecoxib and placebo in osteoarthritis of the knee: multicentre randomised controlled trial.Ann. Rheum. Dis.20076691178118310.1136/ard.2006.065128 17363401
    [Google Scholar]
  20. KumarA. PathakK. BaliV. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents.Drug Discov. Today20121721-221233124110.1016/j.drudis.2012.06.013 22766375
    [Google Scholar]
  21. FesqH. LehmannJ. KontnyA. ErdmannI. TheilingK. RotherM. RingJ. CevcG. AbeckD. Improved risk-benefit ratio for topical triamcinolone acetonide in TransfersomeR in comparison with equipotent cream and ointment: A randomized controlled trial.Br. J. Dermatol.2003149361161910.1046/j.1365‑2133.2003.05475.x 14510997
    [Google Scholar]
  22. CevcG. Transfersomes: Innovative transdermal drug carriers.Modified-release drug delivery technology.CRC press200255757010.1201/9780203910337.ch44
    [Google Scholar]
  23. ShahS.M. AshtikarM. JainA.S. MakhijaD.T. NikamY. GudeR.P. SteinigerF. JagtapA.A. NagarsenkerM.S. FahrA. LeciPlex, invasomes, and liposomes: A skin penetration study.Int. J. Pharm.20154901-239140310.1016/j.ijpharm.2015.05.042 26002568
    [Google Scholar]
  24. PratimaNA ShaileeT Ethosomes: A novel tool for transdermal drug delivery.Int. J. Res. Pharm. Sci.20122
    [Google Scholar]
  25. Zakeri-MilaniP. Hallaj NezhadiS. Barzegar-JalaliM. MohammadiL. NokhodchiA. ValizadehH. Studies on dissolution enhancement of prednisolone, a poorly water-soluble drug by solid dispersion technique.Adv. Pharm. Bull.2011114853 24312756
    [Google Scholar]
  26. JainS. TiwaryA.K. SapraB. JainN.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine.AAPS PharmSciTech20078424910.1208/pt0804111 18181532
    [Google Scholar]
  27. GannuR. VishnuY.V. KishanV. RaoY.M. Development of carvedilol transdermal patches: Evaluation of physicochemical, ex vivo and mechanical properties.PDA J. Pharm. Sci. Technol.2008626391401 19634343
    [Google Scholar]
  28. SakdisetP. AmnuaikitT. PichayakornW. PinsuwanS. Formulation development of ethosomes containing indomethacin for transdermal delivery.J. Drug Deliv. Sci. Technol.20195276076810.1016/j.jddst.2019.05.048
    [Google Scholar]
  29. IsmailT.A. ShehataT.M. MohamedD.I. ElsewedyH.S. SolimanW.E. Quality by design for development, optimization and characterization of brucine ethosomal gel for skin cancer delivery.Molecules20212611345410.3390/molecules26113454 34200144
    [Google Scholar]
  30. YeoY. ParkK. Control of encapsulation efficiency and initial burst in polymeric microparticle systems.Arch. Pharm. Res.200427111210.1007/BF02980037 14969330
    [Google Scholar]
  31. GhanbarzadehS. HaririR. KouhsoltaniM. ShokriJ. JavadzadehY. HamishehkarH. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles.Colloids Surf. B Biointerfaces20151361004101010.1016/j.colsurfb.2015.10.041 26579567
    [Google Scholar]
  32. LiK. GaoS. TianB. ShiY. LvQ. HanJ. Formulation optimization and in-vitro and in-vivo evaluation of lornoxicam ethosomal gels with penetration enhancers.Curr. Drug Deliv.201815342443510.2174/1567201815666171207163010 29219057
    [Google Scholar]
  33. MaH. GuoD. FanY. WangJ. ChengJ. ZhangX. Paeonol-loaded ethosomes as transdermal delivery carriers: Design, preparation and evaluation.Molecules2018237175610.3390/molecules23071756 30018278
    [Google Scholar]
  34. VidyasagarC.C. Arthoba NaikY. Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles.Arab. J. Chem.20169450751010.1016/j.arabjc.2012.08.002
    [Google Scholar]
  35. MorsiN.M. AboelwafaA.A. DawoudM.H.S. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: Formulation and in vivo study.J. Liposome Res.201828213714810.1080/08982104.2017.1295989 28264602
    [Google Scholar]
  36. ShenY. LingX. JiangW. DuS. LuY. TuJ. Formulation and evaluation of cyclosporin a emulgel for ocular delivery.Drug Deliv.201522791191710.3109/10717544.2013.861883 24401095
    [Google Scholar]
  37. ShahH. NairA.B. ShahJ. BharadiaP. Al-DhubiabB.E. Proniosomal gel for transdermal delivery of lornoxicam: Optimization using factorial design and in vivo evaluation in rats.Daru2019271597010.1007/s40199‑019‑00242‑x 30701460
    [Google Scholar]
  38. IbrahimM.M. HafezS.A. MahdyM.M. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. asian.J. Pharm. Sci.201384857
    [Google Scholar]
  39. GuleriK.T. PreetK.L. Formulation and evaluation of topical gel of aceclofenac. J. Drug Deliv. \&.Ther.201335153
    [Google Scholar]
  40. SarohaK. SinghS. AggarwalA. NandaS. Transdermal gels-an alternative vehicle for drug delivery.Int. J. Pharm. Chem. Biol. Sci.20133
    [Google Scholar]
  41. MitragotriS. AnissimovY.G. BungeA.L. FraschH.F. GuyR.H. HadgraftJ. KastingG.B. LaneM.E. RobertsM.S. Mathematical models of skin permeability: An overview.Int. J. Pharm.2011418111512910.1016/j.ijpharm.2011.02.023 21356301
    [Google Scholar]
  42. ZhangW. GaoJ. ZhuQ. ZhangM. DingX. WangX. HouX. FanW. DingB. WuX. WangX. GaoS. Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles.Int. J. Pharm.20104021-220521210.1016/j.ijpharm.2010.09.037 20932886
    [Google Scholar]
  43. HallanS.S. SguizzatoM. MarianiP. CortesiR. HuangN. SimelièreF. MarchettiN. DrechslerM. RuzgasT. EspositoE. Design and characterization of ethosomes for transdermal delivery of caffeic acid.Pharmaceutics202012874010.3390/pharmaceutics12080740 32781717
    [Google Scholar]
  44. MahmoodS. MandalU.K. Morphological characterization of lipid structured nanoparticles by atomic force microscopy while minimizing the formation of failed artefacts.Curr. Nanomater.201721243210.2174/2405461502666170329100007
    [Google Scholar]
  45. AkhtarN. Vesicles: A recently developed novel carrier for enhanced topical drug delivery.Curr. Drug Deliv.2014111879710.2174/15672018113106660064 24533724
    [Google Scholar]
  46. AminS. SarfenejadA. AhmadJ. KohliK. MirS. Nanovesicular transfersomes for enhanced systemic delivery of telmisartan.Adv. Sci. Eng. Med.20135429930810.1166/asem.2013.1288
    [Google Scholar]
  47. JinH. OksenbergD. AshkenaziA. PeroutkaS.J. DuncanA.M. RozmahelR. YangY. MengodG. PalaciosJ.M. O’DowdB.F. Characterization of the human 5-hydroxytryptamine1B receptor.J. Biol. Chem.199226795735573810.1016/S0021‑9258(18)42612‑9 1348246
    [Google Scholar]
  48. UnnisaA. ChettupalliA.K. AlazragiR.S. AlelwaniW. BannunahA.M. BarnawiJ. AmarachintaP.R. JandrajupalliS.B. ElamineB.A. MohamedO.A. HussainT. Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: Statistical optimization and pharmacological evaluations.Pharmaceuticals2023168115110.3390/ph16081151 37631066
    [Google Scholar]
  49. FangY.P. TsaiY.H. WuP.C. HuangY.B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.Int. J. Pharm.20083561-214415210.1016/j.ijpharm.2008.01.020 18325699
    [Google Scholar]
  50. FathallaD. YoussefE.M.K. SolimanG.M. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients.Pharmaceutics202012544610.3390/pharmaceutics12050446 32403379
    [Google Scholar]
  51. RamtekeS. BarupalA.K. GuptaV. Preparation and characterization of ethosomes for topical delivery of aceclofenac.Indian J. Pharm. Sci.201072558258610.4103/0250‑474X.78524 21694989
    [Google Scholar]
  52. TalluriS.V. KuppusamyG. KarriV.V.S.R. YamjalaK. WadhwaniA. MadhunapantulaS.V. PindiproluS.S.S. Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles.Artif. Cells Nanomed. Biotechnol.201745347448810.3109/21691401.2016.1173046 27112220
    [Google Scholar]
  53. ChaudharyH. KohliK. AminS. RatheeP. KumarV. Optimization and formulation design of gels of Diclofenac and Curcumin for transdermal drug delivery by Box-Behnken statistical design.J. Pharm. Sci.2011100258059310.1002/jps.22292 20669331
    [Google Scholar]
  54. Abdel MessihH.A. IshakR.A.H. GeneidiA.S. MansourS. Nanoethosomes for transdermal delivery of tropisetron HCl: Multi-factorial predictive modeling, characterization, and ex vivo skin permeation.Drug Dev. Ind. Pharm.201743695897110.1080/03639045.2017.1287717 28121196
    [Google Scholar]
  55. FaisalW. SolimanG.M. HamdanA.M. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations.J. Liposome Res.2018281142110.1080/08982104.2016.1239636 27667097
    [Google Scholar]
  56. AggarwalN. GoindiS. Dermatopharmacokinetic and pharmacodynamic evaluation of ethosomes of griseofulvin designed for dermal delivery.J. Nanopart. Res.20131510198310.1007/s11051‑013‑1983‑9
    [Google Scholar]
  57. AhadA. RaishM. Al-MohizeaA.M. Al-JenoobiF.I. AlamM.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel.Int. J. Biol. Macromol.2014679910410.1016/j.ijbiomac.2014.03.011 24657163
    [Google Scholar]
  58. KumarA.C. KrishnaR.G. VenkannaC.K. RafiS. Formulation and characterization of itraconazole ethosomal gel for topical application.J Bio Innov201765564
    [Google Scholar]
  59. ZhaiY. XuR. WangY. LiuJ. WangZ. ZhaiG. Ethosomes for skin delivery of ropivacaine: Preparation, characterization and ex vivo penetration properties.J. Liposome Res.201525431632410.3109/08982104.2014.999686 25625544
    [Google Scholar]
  60. JainS. PatelN. MadanP. LinS. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route.Pharm. Dev. Technol.201520447348910.3109/10837450.2014.882939 24490793
    [Google Scholar]
  61. SabirM. NeupaneY.R. SrivastavaM. AminS. KohliK. Lipid based nanocarrier of lercanidipine for the management of hypertension.Adv. Sci. Eng. Med.20157536136910.1166/asem.2015.1675
    [Google Scholar]
  62. SalemH.F. GamalA. SaeedH. TulbahA.S. The Impact of improving dermal permeation on the efficacy and targeting of liposome nanoparticles as a potential treatment for breast cancer.Pharmaceutics20211310163310.3390/pharmaceutics13101633 34683926
    [Google Scholar]
  63. ChenM. LiuX. FahrA. Skin delivery of ferulic acid from different vesicular systems.J. Biomed. Nanotechnol.20106557758510.1166/jbn.2010.1154 21329050
    [Google Scholar]
  64. AmarachintaP.R. SharmaG. SamedN. ChettupalliA.K. AlleM. KimJ-C. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect.J. Nanobiotechnology202119115
    [Google Scholar]
  65. D’AddioS.M. BukariA.A. DawoudM. BunjesH. RinaldiC. Prud’hommeR.K. Determining drug release rates of hydrophobic compounds from nanocarriers.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201637420722015012810.1098/rsta.2015.0128 27298440
    [Google Scholar]
  66. AvulaP.R. ChettupalliA.K. ChauhanV. JadiR.K. Design, formulation, in-vitro and in-vivo pharmacokinetic evaluation of Nicardipine-nanostructured lipid carrier for transdermal drug delivery system.Mater. Today Proc.2023
    [Google Scholar]
  67. AhadA. AqilM. KohliK. SultanaY. MujeebM. Nano vesicular lipid carriers of angiotensin II receptor blocker: Anti-hypertensive and skin toxicity study in focus.Artif. Cells Nanomed. Biotechnol.201644310021007 25707444
    [Google Scholar]
  68. NayakA.K. PalD. Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.Int. J. Biol. Macromol.201149478479310.1016/j.ijbiomac.2011.07.013 21816168
    [Google Scholar]
  69. MbahC.C. BuildersP.F. AttamaA.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus.Expert Opin. Drug Deliv.2014111455910.1517/17425247.2013.860130 24294974
    [Google Scholar]
  70. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  71. BakshiV. AmarachintaP.R. ChettupalliA.K. Design, development and optimization of solid lipid nanoparticles of rizatriptan for intranasal delivery: In vitro & in vivo assessment.Mater. Today Proc.2022662342235710.1016/j.matpr.2022.06.329
    [Google Scholar]
  72. NavaG. PiñónE. MendozaL. MendozaN. QuintanarD. GanemA. Formulation and in vitro, ex vivo and in vivo evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine.Pharmaceutics20113495497010.3390/pharmaceutics3040954 24309316
    [Google Scholar]
  73. MohammedM.I. MakkyA.M.A. AbdellatifM.M. Formulation and characterization of ethosomes bearing vancomycin hydrochloride for transdermal delivery.Int. J. Pharm. Pharm. Sci.2014190194
    [Google Scholar]
  74. LimsuwanT. BoonmeP. KhongkowP. AmnuaikitT. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications.BioMed Res. Int.20172017831097910.1155/2017/8310979
    [Google Scholar]
  75. GuptaA. SinghS. KotlaN.G. WebsterT.J. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity.Int. J. Nanomedicine201410171182 25565812
    [Google Scholar]
  76. ShahK.A. DateA.A. JoshiM.D. PatravaleV.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery.Int. J. Pharm.2007345163171
    [Google Scholar]
  77. ShajiJ. LalM. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor.Int. J. Pharm. Pharm. Sci.20146467477
    [Google Scholar]
  78. MahmoodS. MandalU.K. ChatterjeeB. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation.Int. J. Pharm.20185421-2364610.1016/j.ijpharm.2018.02.044 29501737
    [Google Scholar]
  79. MaoX. ChengX. ZhangZ. WangZ. WangZ. The therapy with ethosomes containing 5-fluorouracil for laryngotracheal stenosis in rabbit models.Eur. Arch. Otorhinolaryngol.201727441919192410.1007/s00405‑016‑4417‑3 28004261
    [Google Scholar]
  80. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.2017145613633 27199229
    [Google Scholar]
  81. ChourasiaM.K. KangL. ChanS.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery.Results Pharma Sci.201111606710.1016/j.rinphs.2011.10.002 25755983
    [Google Scholar]
  82. Attar NasseriA. AboofazeliR. ZiaH. NeedhamT. Lecithin-stabilized microemulsion-based organogels for topical application of ketorolac tromethamine. II. in vitro Release Study.Iran. J. Pharm. Res.2010117124
    [Google Scholar]
  83. LiuX. LiuH. LiuJ. HeZ. DingC. HuangG. ZhouW. ZhouL. Preparation of a ligustrazine ethosome patch and its evaluation in vitro and in vivo.Int. J. Nanomedicine2011624124710.2147/IJN.S16044 21499422
    [Google Scholar]
  84. MengS. ChenZ. YangL. ZhangW. LiuD. GuoJ. GuanY. LiJ. Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes.Int. J. Nanomedicine201383051306010.2147/IJN.S46748 23990718
    [Google Scholar]
  85. VermaP. PathakK. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation.Nanomedicine20128448949610.1016/j.nano.2011.07.004 21839053
    [Google Scholar]
  86. DeshpandeP.B. GurramA.K. DeshpandeA. ShaviG.V. MusmadeP. ArumugamK. AverineniR.K. MutalikS. ReddyM.S. UdupaN. A novel nanoproliposomes of lercanidipine: Development, in vitro and preclinical studies to support its effectiveness in hypertension therapy.Life Sci.201616212513710.1016/j.lfs.2016.08.016 27544752
    [Google Scholar]
  87. MaheshwariR.G.S. TekadeR.K. SharmaP.A. DarwhekarG. TyagiA. PatelR.P. JainD.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment.Saudi Pharm. J.201220216117010.1016/j.jsps.2011.10.001 23960788
    [Google Scholar]
  88. MishraK.K. KaurC.D. VermaS. SahuA.K. DashD.K. KashyapP. MishraS.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system.Nanomedicine201923354
    [Google Scholar]
  89. AinbinderD. PaolinoD. FrestaM. TouitouE. Drug delivery applications with ethosomes.J. Biomed. Nanotechnol.20106555856810.1166/jbn.2010.1152 21329048
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072275742240103055511
Loading
/content/journals/cbc/10.2174/0115734072275742240103055511
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test