Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Biosurfactants are very important amphiphile compounds due to their interesting advantages such as low toxicity, biodegradability and also their many biological properties.

Methods

In the present study, antimicrobial and anti-imflammatory activities were evaluated to determine the biological proprieties of biosurfactant BLA 2906 produced by YGD 2906 using different assays. Screening and optimization component concentrations in the medium were investigated using PBD and SRM to increase surfactant yield in term emulsification activity value (E24%).

Results

The halos of antifungal activity presented a mean value of 12.33 mm to 17.67 mm. For antibacterial activity, the diameter varied from 10.33 to 12.67 mm with a very important anti-inflammatory activity using a protein denaturation method that showed a maximum inhibition of 92.79%.

Conclusion

These results suggest that BLA 2906 may be used as a new therapeutic and anti-inflammatory agent. The PBD selected 7 significant components out of the 14 screened. The RSM resulted in the production in terms of emulsification activity of 68.37% in the optimized medium.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072287039240214112330
2024-03-04
2025-01-18
Loading full text...

Full text loading...

References

  1. KuppusamyS. ThavamaniP. VenkateswarluK. LeeY.B. NaiduR. MegharajM. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.Chemosphere201716894496810.1016/j.chemosphere.2016.10.115 27823779
    [Google Scholar]
  2. ChaprãoM.J. Soares da SilvaR.C.F. RufinoR.D. LunaJ.M. SantosV.A. SarubboL.A. Formulation and application of a biosurfactant from Bacillus methylotrophicus as collector in the flotation of oily water in industrial environment.J. Biotechnol.2018285152210.1016/j.jbiotec.2018.08.016 30171926
    [Google Scholar]
  3. DasA.J. KumarR. Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil.Environ. Technol. Innov.20191610045010.1016/j.eti.2019.100450
    [Google Scholar]
  4. KrelingN.E. ZaparoliM. MargaritesA.C. FriedrichM.T. ThoméA. CollaL.M. Extracellular biosurfactants from yeast and soil–biodiesel interactions during bioremediation.Int. J. Environ. Sci. Technol.202017139540810.1007/s13762‑019‑02462‑9
    [Google Scholar]
  5. MachadoT.S. DecesaroA. CappellaroÂ.C. MachadoB.S. van SchaikR.K. ReinehrC.O. ThoméA. CollaL.M. Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil.Ecotoxicol. Environ. Saf.202020111079810.1016/j.ecoenv.2020.110798 32526591
    [Google Scholar]
  6. KhaledE. Aboul-EneinH.Y. Surfactants.Environmental analysis by electrochemical sensors and biosensors. Nanostructure Science and Technology. MorettoL. KalcherK. New York, NYSpringer201590593010.1007/978‑1‑4939‑1301‑5_10
    [Google Scholar]
  7. ChenW.C. JuangR.S. WeiY.H. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms.Biochem. Eng. J.201510315816910.1016/j.bej.2015.07.009
    [Google Scholar]
  8. DoblerL. VilelaL.F. AlmeidaR.V. NevesB.C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting.N. Biotechnol.201633112313510.1016/j.nbt.2015.09.005 26409933
    [Google Scholar]
  9. ShaoB. LiuZ. ZhongH. ZengG. LiuG. YuM. LiuY. YangX. LiZ. FangZ. ZhangJ. ZhaoC. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review.Microbiol. Res.2017200334410.1016/j.micres.2017.04.005 28527762
    [Google Scholar]
  10. Pacwa-PłociniczakM. PłazaG.A. Piotrowska-SegetZ. CameotraS.S. Environmental applications of biosurfactants: recent advances.Int. J. Mol. Sci.201112163365410.3390/ijms12010633 21340005
    [Google Scholar]
  11. StellaN.C. ClareE.C. GladysA.C. NonyelumA.V. NkiruM.A. AmaechiE.I. Isolation and screening of biosurfactant-producing bacteria from hydrocarbon-contaminated soils in Awka, Southeast, Nigeria.Microbiol. Res. J. Int.2023331091910.9734/mrji/2023/v33i101407
    [Google Scholar]
  12. NikolovaC. GutierrezT. Biosurfactants and their applications in the oil and gas industry: Current state of knowledge and future perspectives.Front. Bioeng. Biotechnol.2021962663910.3389/fbioe.2021.626639 33659240
    [Google Scholar]
  13. ZahedM.A. MatinvafaM.A. AzariA. MohajeriL. Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment.Discover Water202221510.1007/s43832‑022‑00013‑x
    [Google Scholar]
  14. LotfyW. GhanemK. ElhelowE. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs.Bioresour. Technol.200798183470347710.1016/j.biortech.2006.11.032 17317159
    [Google Scholar]
  15. CavazzutiM. Design of experiments.Optimization Methods.Berlin, HeidelbergSpringer2013134210.1007/978‑3‑642‑31187‑1_2
    [Google Scholar]
  16. MyersR.H. MontgomeryD.C. Anderson-CookC.M. Process and product optimization using designed experiments.Response Surface Methodology.20022328335
    [Google Scholar]
  17. RodriguesL. TeixeiraJ. OliveiraR. van der MeiH.C. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria.Process Biochem.2006411110a10.1016/j.procbio.2005.01.030
    [Google Scholar]
  18. MutalikS.R. VaidyaB.K. JoshiR.M. DesaiK.M. NeneS.N. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574.Bioresour. Technol.200899167875788010.1016/j.biortech.2008.02.027 18511269
    [Google Scholar]
  19. KiranG.S. SabuA. SelvinJ. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19.J. Biotechnol.2010148422122510.1016/j.jbiotec.2010.06.012 20600381
    [Google Scholar]
  20. SivapathasekaranC. MukherjeeS. SenR. Optimization of a marine medium for augmented biosurfactant production.Int. J. Chem. React. Eng.20108110.2202/1542‑6580.2231
    [Google Scholar]
  21. Yalaoui-GuellalD. Fella-TemziS. Djafri-DibS. SahuS.K. IrorereV.U. BanatI.M. MadaniK. The petroleum-degrading bacteria Alcaligenes aquatilis strain YGD 2906 as a potential source of lipopeptide biosurfactant.Fuel202128511911210.1016/j.fuel.2020.119112
    [Google Scholar]
  22. Yalaoui-GuellalD. BrahmiF. TouatiA. De ChampsC. BanatI.M. MadaniK. Production of biosurfactants by hydrocarbons degrading bacteria isolated from soummam watershed sediments of Bejaia in Algeria.Environ. Prog. Sustain. Energy201837118919510.1002/ep.12653
    [Google Scholar]
  23. Yalaoui-GuellalD. Fella-TemziS. Djafri-DibS. BrahmiF. BanatI.M. MadaniK. Biodegradation potential of crude petroleum by hydrocarbonoclastic bacteria isolated from Soummam wadi sediment and chemical-biological proprieties of their biosurfactants.J. Petrol. Sci. Eng.202018410655410.1016/j.petrol.2019.106554
    [Google Scholar]
  24. BrahmiF. AdjaoudA. MarongiuB. FalconieriD. Yalaoui-GuellalD. MadaniK. ChibaneM. Chemical and biological profiles of essential oils from Mentha spicata L. leaf from Bejaia in Algeria.J. Essent. Oil Res.201628321122010.1080/10412905.2015.1118411
    [Google Scholar]
  25. DasP. MukherjeeS. SenR. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans.J. Appl. Microbiol.200810461675168410.1111/j.1365‑2672.2007.03701.x 18194244
    [Google Scholar]
  26. KandikattuK. KumarP.B.R. PriyaR.V. KumarK.S. RathoreR.S.B. Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method.IJRPB201315729731
    [Google Scholar]
  27. RaniA.A. PunithaS.M.J. RemaM. Anti-inflammatory activity of flower extract of Cassia auriculata-an in-vitro study.Int. Res. J. Pharm. Appl. Sci.2014415760
    [Google Scholar]
  28. PlackettR.L. BurmanJ.P. The design of optimum multifactorial experiments.Biometrika194633430532510.1093/biomet/33.4.305
    [Google Scholar]
  29. CaladoV MontgomeryD Planning Experiments Using Statistica1st ed; E-Papers Editorial ServicesRiode Janeiro2003
    [Google Scholar]
  30. RodriguesM.I. LemmaA.F. Experiment planning and process optimization: a sequential planning strategy.2nd edCampinasCasado Espírito Amigo Fraternidade Fée Amor2009
    [Google Scholar]
  31. BalakrishnanS. ArunagirinathanN. RameshkumarM.R. InduP. VijaykanthN. AlmaaryK.S. AlmutairiS.M. ChenT.W. Molecular characterization of biosurfactant producing marine bacterium isolated from hydrocarbon-contaminated soil using 16S rRNA gene sequencing.J. King Saud Univ. Sci.202234310187110.1016/j.jksus.2022.101871
    [Google Scholar]
  32. MaalejH. HmidetN. BoissetC. BaymaE. HeyraudA. NasriM. Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22.Food Hydrocoll.20165263464710.1016/j.foodhyd.2015.07.010
    [Google Scholar]
  33. KuyukinaM.S. IvshinaI.B. Multifunctional biosurfactant from non-pathogenic Rhodococcus ruber for diverse industrial applications.J. Biotechnol.2010150838410.1016/j.jbiotec.2010.08.215
    [Google Scholar]
  34. SinghP. CameotraS.S. Potential applications of microbial surfactants in biomedical sciences.Trends Biotechnol.200422314214610.1016/j.tibtech.2004.01.010 15036865
    [Google Scholar]
  35. FernandesP.A.V. ArrudaI.R. SantosA.F.A.B. AraújoA.A. MaiorA.M.S. XimenesE.A. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria.Braz. J. Microbiol.200738470470910.1590/S1517‑83822007000400022
    [Google Scholar]
  36. ChakrabortyJ. ChakrabartiS. DasS. Characterization and antimicrobial properties of lipopeptide biosurfactants produced by Bacillus subtilis SJ301 and Bacillus vallismortis JB201.Appl. Biochem. Microbiol.201450660961810.1134/S0003683814060039
    [Google Scholar]
  37. RodriguesL. BanatI.M. TeixeiraJ. OliveiraR. Biosurfactants: Potential applications in medicine.J. Antimicrob. Chemother.200657460961810.1093/jac/dkl024 16469849
    [Google Scholar]
  38. AnanthiS. RaghavendranH.R.B. SunilA.G. GayathriV. RamakrishnanG. VasanthiH.R. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga).Food Chem. Toxicol.201048118719210.1016/j.fct.2009.09.036 19799956
    [Google Scholar]
  39. MizushimaY. KobayashiM. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins.J. Pharm. Pharmacol.201120316917310.1111/j.2042‑7158.1968.tb09718.x 4385045
    [Google Scholar]
  40. ChereshnevV.A. GeinS.V. BaevaT.A. GalkinaT.V. KuyukinaM.S. IvshinaI.B. Modulation of cytokine secretion and oxidative metabolism of innate immune effectors by Rhodococcus biosurfactant.Bull. Exp. Biol. Med.2010149673473810.1007/s10517‑010‑1039‑4 21165433
    [Google Scholar]
  41. ZhangY. LiuC. DongB. MaX. HouL. CaoX. WangC. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages.Inflammation201538275676410.1007/s10753‑014‑9986‑y 25331175
    [Google Scholar]
  42. SubramaniamM.D. VenkatesanD. IyerM. SubbarayanS. GovindasamiV. RoyA. NarayanasamyA. KamalakannanS. GopalakrishnanA.V. ThangarasuR. KumarN.S. VellingiriB. Biosurfactants and anti-inflammatory activity: A potential new approach towards COVID-19.Curr. Opin. Environ. Sci. Health202017728110.1016/j.coesh.2020.09.002 33015428
    [Google Scholar]
  43. ChangC.C. ChenW.C. HoT.F. WuH.S. WeiY.H. Development of natural anti-tumor drugs by microorganisms.J. Biosci. Bioeng.2011111550151110.1016/j.jbiosc.2010.12.026 21277252
    [Google Scholar]
  44. SinghS.P. BharaliP. KonwarB.K. Optimization of nutrient requirements and culture conditions for the production of rhamnolipid from Pseudomonas aeruginosa (MTCC 7815) using Mesua ferrea seed oil.Indian J. Microbiol.201353446747610.1007/s12088‑013‑0403‑2 24426152
    [Google Scholar]
  45. KalyaniALT Naga SireeshaG AdityaAKG Girija SankarG PrabhakarT Production optimization of rhamnolipid biosurfactant by streptomyces coelicoflavus (NBRC 15399T) using Plackett–Burman design.European J. Biotechnol. Biosci.2014201450713
    [Google Scholar]
  46. KorayemA.S. AbdelhafezA.A. ZakiM.M. SalehE.A. Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett–Burman design.Ann. Agric. Sci.201560220921710.1016/j.aoas.2015.09.001
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072287039240214112330
Loading
/content/journals/cbc/10.2174/0115734072287039240214112330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test