Skip to content
2000
image of Starch-ZnCr/LDH Composite and ZnCr-LDH: Synthesis, Characterization, and Adsorption Efficiency to Remove Congo Red from Aqueous Solution

Abstract

Background

To bring new materials with high performance, a large number of composites, among others, such as starch-laminated double hydroxides (starch/ZnCr-LDH), have been produced, which have shown significant adsorption predisposition to remove heavy metals and dyes. These LDHs display great adsorption potential due to their high anion exchange capacity, large surface area, and good thermal stability.

Objective

This study aimed to develop starch-ZnCr-hydroxide composite (S/ZnCr-LDH) as a new material and investigate its performance in removing various anionic dyes compared to ZnCr-LDH.

Methods

The starch-ZnCr-laminated double hydroxides (S/ZnCr-LDH) and ZnCr-LDH composites were prepared by the co-precipitation method and their structures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential thermogravimetric/thermal analysis (TG/DTA) Scanning electron microscopy (SEM), and Energy Dispersive X-rays Spectroscopy (EDX).

Results

The effects of different operating parameters, such as pH, initial CR concentration, contact time, and adsorbent dose, on CR removal were studied. The results showed that the S/ZnCr-LDH composite is more efficient for CR removal, reaching 99% at pH 3, while ZnCr-LDH presented a removal efficiency of 90%. Isothermal data were processed according to the Langmuir, Freundlich, and Temkin models. According to the results, Langmuir's isothermal model best matched the experimental data, with a maximum adsorption capacity of 252. 92 and 236. 98 mg/g for S/ZnCr-LDH and ZnCr-LDH, respectively. The adsorption kinetics corresponded to the PSO model. CR dye molecules were adsorbed to different sites on the S/ZnCr-LDH composite based on various interactions, such as electrostatic interactions, hydrogen bonds, and Van der Waals forces.

Conclusions

S/ZnCr-LDH composite displays the highest capacity to remove CR dye molecules compared to ZnCr-LDH.

Loading

Article metrics loading...

/content/journals/cam/10.2174/0126667312332482241003051640
2025-01-13
2025-04-24
Loading full text...

Full text loading...

References

  1. Benselka-Hadj Abdelkader N. Bentouami A. Derriche Z. Bettahar N. de Ménorval L-C. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution. Chem. Eng. J. 2011 169 1-3 231 238 10.1016/j.cej.2011.03.019
    [Google Scholar]
  2. El Khanchaoui A. Sajieddine M. Mansori M. Moubarik A. Essoumhi A. Removal of single dye and dye mixture from aqueous solution with alginate-coated calcined layered double hydroxide and illite clay composite beads. Mater. Res. Innov. 2023 27 5 355 370 10.1080/14328917.2022.2163112
    [Google Scholar]
  3. Pandey G. Singh S. Hitkari G. Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int. Nano Lett. 2018 8 2 111 121 10.1007/s40089‑018‑0234‑6
    [Google Scholar]
  4. Moore L. Textiles and clothing. 1999 416
    [Google Scholar]
  5. Li S. Han K. Li J. Li M. Lu C. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 2017 243 291 300 10.1016/j.micromeso.2017.02.052
    [Google Scholar]
  6. Tang S. Yao Y. Chen T. Kong D. Shen W. Lee H.K. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Anal. Chim. Acta 2020 1103 32 48 10.1016/j.aca.2019.12.065 32081187
    [Google Scholar]
  7. Yu J. Wang Q. O’Hare D. Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017 46 19 5950 5974 10.1039/C7CS00318H 28766671
    [Google Scholar]
  8. Alibakhshi E. Ghasemi M. Mahdavian B. Ramezanzadeh M. Mana Y. The effect of interlayer spacing on the inhibitor release capability of layered double hydroxide based nanocontainers. J. Clean. Prod. 2020 251
    [Google Scholar]
  9. Es-sahbany H. El Hachimi M.L. Hsissou R. Belfaquir M. Es-sahbany K. Nkhili S. Loutfi M. Elyoubi M.S. Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima – Morocco region). Mater. Today Proc. 2021 45 7299 7305 10.1016/j.matpr.2020.12.1102
    [Google Scholar]
  10. Gupta A.D. Rawat K.P. Bhadauria V. Singh H. Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review. Carbohydr. Polym. 2021 269 117763 10.1016/j.carbpol.2021.117763 34294282
    [Google Scholar]
  11. Haq F. Yu H. Wang L. Teng L. Haroon M. Khan R.U. Mehmood S. Bilal-Ul-Amin Ullah R.S. Khan A. Nazir A. Advances in chemical modifications of starches and their applications. Carbohydr. Res. 2019 476 12 35 10.1016/j.carres.2019.02.007 30884443
    [Google Scholar]
  12. Kärkkäinen J. Wik T.R. Niemelä M. Lappalainen K. Joensuu P. Lajunen M. 1H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride. Carbohydr. Polym. 2016 136 721 727 10.1016/j.carbpol.2015.09.097 26572405
    [Google Scholar]
  13. Menzel C. Seisenbaeva G. Agback P. Gällstedt M. Boldizar A. Koch K. Wheat starch carbamate: Production, molecular characterization, and film forming properties. Carbohydr. Polym. 2017 172 365 373 10.1016/j.carbpol.2017.05.053 28606545
    [Google Scholar]
  14. Kumar P. Prakash K.S. Jan K. Swer T.L. Jan S. Verma R. Deepika K. Dar M.Z. Verma K. Bashir K. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. J. Cereal Sci. 2017 77 194 200 10.1016/j.jcs.2017.08.017
    [Google Scholar]
  15. Xiao Z. Wang L. Lv C. Guo S. Lu X. Tao L. Duan Q. Yang Q. Luo Z. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. Int. J. Biol. Macromol. 2020 143 401 412 10.1016/j.ijbiomac.2019.10.261 31760022
    [Google Scholar]
  16. Zhang K. Cheng F. Zhang K. Hu J. Xu C. Lin Y. Zhou M. Zhu P. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization. Eur. Polym. J. 2019 119 136 147 10.1016/j.eurpolymj.2019.07.021
    [Google Scholar]
  17. Brașoveanu M. Nemțanu M-R. Aspects on starches modified by ionizing radiation processing. Applications of Modified Starches. IntechOpen London, UK 2018 10.5772/intechopen.71626
    [Google Scholar]
  18. Kshirsagar A.C. Singhal R.S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydr. Polym. 2007 69 3 455 461 10.1016/j.carbpol.2007.01.007
    [Google Scholar]
  19. Tran H. Chin B.K. Chang A.S.T. Chiang Dye adsorption in ZIF-8: The importance of external surface area. Microporous Mesoporous Mater. 2018 277 149 153
    [Google Scholar]
  20. Chen Y. Li J. Zhang J. Zhou Y. Guo H. Liu Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity. Chem. Eng. J. 2012 185–186 120 126
    [Google Scholar]
  21. Haroon M. Li Wang Haojie Yu Nasir M. Abbasi Z. Muhammad M. Rizwan U.K. Raja S.U. Chen Jialiang Wu Chemical modification of starch and its application as an adsorbent material. RSC Adv. 2016 6 78264 78285
    [Google Scholar]
  22. Gupta V.K. Agarwal S. Singh P. Pathania D. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr. Polym. 2013 98 1 1214 1221 10.1016/j.carbpol.2013.07.019 23987466
    [Google Scholar]
  23. Mallakpour S. Rashidimoghadam S. Starch/MWCNT-vitamin C nanocomposites: Electrical, thermal properties and their utilization for removal of methyl orange. Carbohydr. Polym. 2017 169 23 32 10.1016/j.carbpol.2017.03.081 28504141
    [Google Scholar]
  24. Darmograi G. Prelot B. Geneste A. De Menorval L-C. Zajac J. Removal of three anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin. The effect of single-component and competitive adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2016 508 240 250 10.1016/j.colsurfa.2016.08.063
    [Google Scholar]
  25. El Khanchaoui A. Boukontar N. Sajieddine M. Hnini K. Essoumhi A Noticeable improvement in adsorption capacity of glycine-modified MgAl-LDH in the removal of methyl orange dye compared to urea standard method. Mater. Res. Innov. 2023 27 3 152 162
    [Google Scholar]
  26. Mohiuddin I. Grover A. Aulakh J.S. Malik A.K. Lee S.S. Brown R.J.C. Kim K.H. Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants. J. Hazard. Mater. 2021 401 123782 10.1016/j.jhazmat.2020.123782 33113735
    [Google Scholar]
  27. Zubair M. Jarrah N. Ihsanullah Khalid A. Manzar M.S. Kazeem T.S. Al-Harthi M.A. Starch-NiFe-layered double hydroxide composites: Efficient removal of methyl orange from aqueous phase. J. Mol. Liq. 2018 249 254 264 10.1016/j.molliq.2017.11.022
    [Google Scholar]
  28. El Khanchaoui A. Sajieddine M. Mansori M. Essoumhi A. Anionic dye adsorption on ZnAl hydrotalcite-type and regeneration studies based on “memory effect”. Int. J. Environ. Anal. Chem. 2022 102 15 3542 3560 10.1080/03067319.2020.1772769
    [Google Scholar]
  29. El Jemli Y. Mansori M. Gonzalez Diaz O. Barakat A. Solhy A. Abdelouahdi K. Controlling the growth of nanosized titania via polymer gelation for photocatalytic applications. RSC Advances 2020 10 33 19443 19453 10.1039/D0RA03312J 35515433
    [Google Scholar]
  30. Dotto G.L. Pinto L.A.A. Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydr. Polym. 2011 84 1 231 238 10.1016/j.carbpol.2010.11.028
    [Google Scholar]
  31. Lafi R. Charradi K. Djebbi M.A. Ben Haj Amara A. Hafiane A. Adsorption study of Congo red dye from aqueous solution to Mg–Al–layered double hydroxide. Adv. Powder Technol. 2016 27 1 232 237 10.1016/j.apt.2015.12.004
    [Google Scholar]
  32. Lu Y. Jiang B. Fang L. Ling F. Gao J. Wu F. Zhang X. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere 2016 152 415 422 10.1016/j.chemosphere.2016.03.015 26999751
    [Google Scholar]
  33. Mu’azu N.D. Haladu S.A. Jarrah N. Zubair M. Essa M.H. Ali S.A. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design. J. Hazard. Mater. 2018 342 58 68 10.1016/j.jhazmat.2017.08.013 28822250
    [Google Scholar]
  34. Zubair M. Jarrah N. Manzar M.S. Al-Harthi M. Daud M. Mu’azu N.D. Haladu S.A. Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. J. Mol. Liq. 2017 230 344 352 10.1016/j.molliq.2017.01.031
    [Google Scholar]
  35. Rhaman M. R. Karim M. K. M. Z. Hyder Y. Ahmed R. K. Nath Removal of chromium (VI) from effluent by a magnetic bioadsorbent based on jute stick powder and its adsorption isotherm, kinetics and regeneration study. Water. Air. Soil Pollut. 2020 231 18
    [Google Scholar]
  36. Molano-Mendoza M. Donneys-Victoria D. Marriaga-Cabrales N. Mueses M.A. Li Puma G. Machuca-Martínez F. Synthesis of Mg-Al layered double hydroxides by electrocoagulation. MethodsX 2018 5 915 923 10.1016/j.mex.2018.07.019
    [Google Scholar]
  37. Shan R. Yan L. Yang Y. Yang K. Yu S. Yu H. Zhu B. Du B. Highly efficient removal of three red dyes by adsorption onto Mg–Al-layered double hydroxide. J. Ind. Eng. Chem. 2015 21 561 568 10.1016/j.jiec.2014.03.019
    [Google Scholar]
  38. Liu Y. Xu Y. Yan D. Hu L. Yang R. Shen Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch/Staerke 2015 67 612 619
    [Google Scholar]
  39. Palapa N.R. Taher T. Rahayu B.R. Mohadi R. Rachmat A. Lesbani A. CuAl LDH/Rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution. Bull. Chem. React. Eng. Catal. 2020 15 2 525 537 10.9767/bcrec.15.2.7828.525‑537
    [Google Scholar]
  40. Forano C. Costantino U. Prévot V. Gueho C.T. Layered double hydroxides (LDH). Developments in Clay Science 2013 5 745 782 10.1016/B978‑0‑08‑098258‑8.00025‑0
    [Google Scholar]
  41. Karami Z. Jouyandeh M. Ali J.A. Ganjali M.R. Aghazadeh M. Paran S.M.R. Naderi G. Puglia D. Saeb M.R. Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Prog. Org. Coat. 2019 136 105218 10.1016/j.porgcoat.2019.105218
    [Google Scholar]
  42. Elhatimi W. Bouragba F.Z. Lahkale R. Sadik R. Lebbar N. Siniti M. Sabbar E. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy. Solid State Sci. 2018 79 23 29 10.1016/j.solidstatesciences.2018.03.006
    [Google Scholar]
  43. Cocheci L. Lupa L. Lazău R. Vodă R. Pode R. Zinc recovery from waste zinc ash - A new “green” route for the preparation of Zn-Al layered double hydroxide used for molybdate retention. J. Alloys Compd. 2019 787 332 343 10.1016/j.jallcom.2019.02.035
    [Google Scholar]
  44. Bruna F. Pereira M.G. Polizeli M.L.T.M. Valim J.B. Starch biocatalyst based on α-amylase-Mg/Al-layered double hydroxide nanohybrids. ACS Appl. Mater. Interfaces 2015 7 33 18832 18842 10.1021/acsami.5b05668 26259168
    [Google Scholar]
  45. Amiri F. Kabiri K. Bouhendi H. Abdollahi H. Najafi V. Karami Z. High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique. Polym. Bull. 2019 76 8 4047 4068 10.1007/s00289‑018‑2593‑6
    [Google Scholar]
  46. Shao H. Liu X. Zhou Z. Zhao B. Chen Z. Xu M. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent. Chem. Eng. J. 2016 291 306 316 10.1016/j.cej.2016.01.090
    [Google Scholar]
  47. Tao X. Liu D. Cong W. Huang L. Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement. Appl. Surf. Sci. 2018 457 572 579 10.1016/j.apsusc.2018.06.264
    [Google Scholar]
  48. Naushad M. Ahamad T. Sharma G. Al-Muhtaseb A.H. Albadarin A.B. Alam M.M. ALOthman Z.A. Alshehri S.M. Ghfar A.A. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem. Eng. J. 2016 300 306 316 10.1016/j.cej.2016.04.084
    [Google Scholar]
  49. Sposito G. On points of zero charge. Environ. Sci. Technol. 1998 32 19 2815 2819 10.1021/es9802347
    [Google Scholar]
  50. Machrouhi A. Taoufik N. Elhalil A. Tounsadi H. Rais Z. Barka N. Patent blue V dye adsorption by fresh and calcined Zn/Al LDH: Effect of process parameters and experimental design optimization. J. Compos. Sci. 2022 6 4 14
    [Google Scholar]
  51. DeSá F. P. Cunha B. N. Nunes L. M. Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 2013 215–216 122 127
    [Google Scholar]
  52. Sonal S. Prakash P. Mishra B.K. Nayak G.C. Synthesis, characterization and sorption studies of a zirconium( iv ) impregnated highly functionalized mesoporous activated carbons. RSC Advances 2020 10 23 13783 13798 10.1039/C9RA10103A 35493016
    [Google Scholar]
  53. Guechi E. K. Hamdaoui O. Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: Equilibrium modelling, kinetic, and thermodynamic studies. Desalin. Water Treat. 2016 57 0270 10285
    [Google Scholar]
  54. Taher T. Rohendi D. Mohadi R. Lesbani A. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab. J. Basic Appl. Sci. 2019 26 125 136
    [Google Scholar]
  55. Talbi S. El khanchaoui A. Bouissane L. Hafid A. Khouili M. Rabi S. Essoumhi A The high performance of multi-metal layered double hydroxides (LDHs) in the removal of organic dyes. Chem. Proc. 2023 99 1 12
    [Google Scholar]
  56. Nguyen T. M. P. Nguyen H.T. Van V. Q. Nguyen L.H. Nguyen T. D. Nguyen T. H. V. Nguyen T. H. H. Chu T. H. Nguyen L.T. Ha N.D. Vinh V. N. Thai V. Q. Nguyen K. A. Nguyen P. Q. Thang Adsorption removal of ammonium from aqueous solution using Mg/Al layered double hydroxides-zeolite composite. Environ. Technol. Innov. 2022 25 102244
    [Google Scholar]
  57. Pahalagedara M. Samaraweera S. Dharmarathna Chung-Hao K. Pahalagedara L. R. Gascón S. L. Suib J. Phys. Chem. C. 2014 118 31 17801 17809
    [Google Scholar]
  58. Oladipo A.A. Gazi M. Yilmaz E. Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: Selectivity factor and Box-Behnken process design. Chem. Eng. Res. Des. 2015 104 264 279 10.1016/j.cherd.2015.08.018
    [Google Scholar]
  59. Guo L. Wu W. Zhou Y. Zhang F. Zeng R. Zeng J. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol. 2018 34 9 1455 1466 10.1016/j.jmst.2018.03.003
    [Google Scholar]
  60. Grover A. Mohiuddin I. Malik A.K. Aulakh J.S. Vikrant K. Kim K-H. Brown R.J.C. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. J. Hazard. Mater. 2022 424 127454 10.1016/j.jhazmat.2021.127454
    [Google Scholar]
  61. Aksu Z. Tezer S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem. 2000 36 5 431 439 10.1016/S0032‑9592(00)00233‑8
    [Google Scholar]
  62. Cheung C.W. Porter J.F. McKay G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 2000 75 11 963 970 10.1002/1097‑4660(200011)75:11<963::AID‑JCTB302>3.0.CO;2‑Z
    [Google Scholar]
  63. Shabani S. Dinari M. Cu-Ca-Al-layered double hydroxide modified by itaconic acid as an adsorbent for anionic dye removal: Kinetic and isotherm study. Inorg. Chem. Commun. 2021 133 108914 10.1016/j.inoche.2021.108914
    [Google Scholar]
  64. El Khanchaoui M. Calcined ZnAl-LDH trapping performance in alginate beads for adsorption of Congo Red dye Calcined ZnAl-LDH trapping performance in alginate beads. Int. J. Environ. Anal. Chem. 2021 00 00 1 16
    [Google Scholar]
  65. Zhang R. Zhang J. Zhang X. Dou C. Han R. Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study. J. Taiwan Inst. Chem. Eng. 2014 45 5 2578 2583 10.1016/j.jtice.2014.06.009
    [Google Scholar]
  66. Wang E. Lei S. Zhang S. Huang T. Zhong L. Removal of methyl orange from aqueous solution by mineral-based porous granulated material. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015 30 185 192
    [Google Scholar]
  67. Yao Y. Bing H. Feifei X. Xiaofeng C. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 2011 170 1 82 89 10.1016/j.cej.2011.03.031
    [Google Scholar]
  68. Sakr A. Cactus (Adsorption study of Methylene Blue on biomaterial using cactus). J. Mater. Environ. Sci. 2015 6 397 406
    [Google Scholar]
  69. Almoisheer N. Alseroury F.A. Kumar R. Aslam M. Barakat M.A. Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: Kinetic, thermodynamic and isotherm analysis. RSC Advances 2019 9 1 560 568 10.1039/C8RA09562K 35521609
    [Google Scholar]
  70. Harrache Z. Abbas M. Aksil T. Trari M. Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem. J. 2019 144 180 189 10.1016/j.microc.2018.09.004
    [Google Scholar]
  71. Vimonses V. Lei S. Jin B. Chow C.W.K. Saint C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009 148 2-3 354 364 10.1016/j.cej.2008.09.009
    [Google Scholar]
  72. Hu X. Wang J. Liu Y. Li X. Zeng G. Bao Z. Zeng X. Chen A. Long F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 2011 185 1 306 314 10.1016/j.jhazmat.2010.09.034 20889258
    [Google Scholar]
  73. Lei C. Zhu X. Zhu B. Yu J. Ho W. Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. J. Colloid Interface Sci. 2016 466 238 246 10.1016/j.jcis.2015.12.035 26724707
    [Google Scholar]
/content/journals/cam/10.2174/0126667312332482241003051640
Loading
/content/journals/cam/10.2174/0126667312332482241003051640
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: anionic dye ; elovich model ; starch ; adsorption ; LDH ; ZnCr-LDH ; congo red
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test