Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Background

To deliver the drug through the pulmonary route, polymers like oleoyl-carboxymethyl chitosan (O-CMC), chitosan, and HPMC (hydroxypropyl methylcellulose) K4M are well known for their effective mucoadhesive properties. Drug-loaded polymeric nanoparticles have the potential for a therapeutic response for the targeted site is a beneficial approach.

Objective

The present study is to develop polymeric nanoparticles (PNPs) utilizing mucoadhesive polymers with varying concentrations as well as to develop the PNPs for pulmonary delivery.

Methods

Polymeric nanoparticles are developed by homogenization and solvent evaporation methods and characterized by modified twin-stage impinger to study deposition.

Results

The characterization of pirfenidone-loaded polymeric nanoparticles (PFD-PNPs) reveals that the mean particle size of O-CMC-PNPs is 140.8 nm ± 20, found to be less than CS-PNPs and HPMC-PNPs. The polydispersibility index reveals that the particles of all prepared formulations are homogenous. At the same time, the zeta potential of O-CMC-PNPs is 40.8 mV ± 5.64, and the entrapment efficiency is 91% ± 1.2, which is better as compared to Chitosan and HPMC K4M PNPs and makes them efficient for pulmonary delivery. Findings from the deposition study using modified TSI show that 88.5% of the drug delivered through nebulization from both the stage of right and left sides of the TSI suggests effective deposition in the lungs of O-CMC PNPs, and it may move to the deeper regions because of the lowest diameter of the particles. Sustaining release of the drug was found in the O-CMC PNPs for 8 hours, compared with 5 and 7 hours for HPMC PNPs and Chitosan PNPs, respectively.

Conclusions

Overall, the results of the O-CMC-PNPs highlight that the prepared nanoparticles with O-CMC would be effective for pulmonary delivery instead of chitosan and HPMC K4M.

Loading

Article metrics loading...

/content/journals/cam/10.2174/0126667312289623240327073342
2024-04-04
2024-11-22
Loading full text...

Full text loading...

References

  1. SuS. M Kang P, Recent Advances P. Recent advances in nanocarrier-assisted therapeutics delivery systems.Pharmaceutics202012983710.3390/pharmaceutics1209083732882875
    [Google Scholar]
  2. LiF. QinY. LeeJ. Stimuli-responsive nano-assemblies for remotely controlled drug delivery.J. Control. Release202032256659210.1016/j.jconrel.2020.03.05132276006
    [Google Scholar]
  3. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: The future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.136426314803
    [Google Scholar]
  4. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  5. BakshiP.S. SelvakumarD. KadirveluK. KumarN.S. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications.Int. J. Biol. Macromol.2019150107210.1016/j.ijbiomac.2019.10.11331739057
    [Google Scholar]
  6. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  7. MaškováE. KubováK. Raimi-AbrahamB.T. Hypromellose – A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery.J. Control. Release202032469572710.1016/j.jconrel.2020.05.04532479845
    [Google Scholar]
  8. LimC. HwangD.S. LeeD.W. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight.Carbohydr. Polym.202125911778210.1016/j.carbpol.2021.11778233674019
    [Google Scholar]
  9. LimC. LeeD.W. IsraelachviliJ.N. JhoY. HwangD.S. Contact time- and pH-dependent adhesion and cohesion of low molecular weight chitosan coated surfaces.Carbohydr. Polym.201511788789410.1016/j.carbpol.2014.10.03325498713
    [Google Scholar]
  10. TianY SunY WangX Chitosan and its derivatives-based nanoformulations in drug delivery.Nanobiomaterials in Drug Delivery Applications of Nanobiomaterials.Amsterdam: Elsevier201695157210.1016/B978‑0‑323‑42866‑8.00015‑0
    [Google Scholar]
  11. BiswasS. AhmedT. Biomedical applications carboxymethyl chitosans.Handbook of Chitin and Chitosan.Amsterdam: Elsevier202034337010.1016/B978‑0‑12‑817966‑6.00014‑5
    [Google Scholar]
  12. NaH.N. ParkS.H. KimK-I. KimM.K. SonT-I. Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: Synthesis, in vitro biocompatibility, and their wound healing effects.Macromol. Res.201220111144114910.1007/s13233‑012‑0167‑2
    [Google Scholar]
  13. AmeeduzzafarAli J. BhatnagarA. KumarN. AliA. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits.Int. J. Biol. Macromol.20146547949110.1016/j.ijbiomac.2014.02.00224530326
    [Google Scholar]
  14. AttriK. SinghM. SharmaK. SrivastavS. SharmaL. BhallaV. A review on recent trends in nasal drug delivery system.Ann. Rom. Soc. Cell Biol.202226110381056
    [Google Scholar]
  15. LabirisN.R. DolovichM.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications.Br. J. Clin. Pharmacol.200356658859910.1046/j.1365‑2125.2003.01892.x14616418
    [Google Scholar]
  16. HussainM. MadlP. KhanA. Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I.Health2011225159
    [Google Scholar]
  17. LongestW. SpenceB. HindleM. Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs.J. Aerosol Med. Pulm. Drug Deliv.201932531733910.1089/jamp.2018.150831287369
    [Google Scholar]
  18. EMA. Access to documents.2022Available From: https://www.ema.europa.eu/en/about-us/how-we-work/access-documents
  19. Lyseng-WilliamsonK.A. Pirfenidone tablets in idiopathic pulmonary fibrosis: A profile of their use.Drugs Ther. Perspect.201834181510.1007/s40267‑017‑0459‑x30008572
    [Google Scholar]
  20. TaniguchiH. EbinaM. KondohY. Pirfenidone in idiopathic pulmonary fibrosis.Eur. Respir. J.201035482182910.1183/09031936.0000520919996196
    [Google Scholar]
  21. KimE.S. KeatingG.M. Pirfenidone: A review of its use in idiopathic pulmonary fibrosis.Drugs201575221923010.1007/s40265‑015‑0350‑925604027
    [Google Scholar]
  22. FujiwaraA. FunakiS. FukuiE. Effects of pirfenidone targeting the tumor microenvironment and tumor-stroma interaction as a novel treatment for non-small cell lung cancer.Sci. Rep.20201011090010.1038/s41598‑020‑67904‑832616870
    [Google Scholar]
  23. ParmarV.K. DesaiS.B. VajaT. RP-HPLC and UV spectrophotometric methods for estimation of pirfenidone in pharmaceutical formulations.Indian J. Pharm. Sci.201476322522925035534
    [Google Scholar]
  24. ChenX. WangT. Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres.J. Integr. Agric.20191851035104110.1016/S2095‑3119(19)62613‑4
    [Google Scholar]
  25. KakadS.P. GangurdeT.D. KshirsagarS.J. MundheV.G. Nose to brain delivery of nanosuspensions with first line antiviral agents is alternative treatment option to Neuro-AIDS treatment.Heliyon202287e0992510.1016/j.heliyon.2022.e0992535879999
    [Google Scholar]
  26. MuliaK. SafieraA. PaneI.F. KrisantiE.A. Effect of high speed homogenizer speed on particle size of polylactic acid.J. Phys. Conf. Ser.20191198606200610.1088/1742‑6596/1198/6/062006
    [Google Scholar]
  27. MdS. Kuldeep SinghJ.K.A.P. WaqasM. Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting.Drug Dev. Ind. Pharm.201945232333210.1080/03639045.2018.154270430404554
    [Google Scholar]
  28. PanditJ. SultanaY. AqilM. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: Optimization, characterization, and in vitro toxicity evaluation.Artif. Cells Nanomed. Biotechnol.20174571397140710.1080/21691401.2016.124354527855494
    [Google Scholar]
  29. Omar ZakiS.S. IbrahimM.N. KatasH. Particle size affects concentration-dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells.J. Nanotechnol.201520151510.1155/2015/919658
    [Google Scholar]
  30. KorbagI. Mohamed SalehS. Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film.Int. J. Environ. Stud.201673222623510.1080/00207233.2016.1143700
    [Google Scholar]
  31. AlsaidanO.A. PattanayakP. AwasthiA. Quality by design-based optimization of formulation parameters to develop quercetin nanosuspension for improving its biopharmaceutical properties.S. Afr. J. Bot.202214979880610.1016/j.sajb.2022.04.030
    [Google Scholar]
  32. JarrarQ.B. HakimM.N. CheemaM.S. ZakariaZ.A. In vitro characterization and in vivo performance of mefenamic acid-sodium diethyldithiocarbamate based liposomes.Braz. J. Pharm. Sci.2019551218
    [Google Scholar]
  33. ZafarA. AlruwailiN.K. ImamS.S. Development and optimization of hybrid polymeric nanoparticles of apigenin: Physicochemical characterization, antioxidant activity and cytotoxicity evaluation.Sensors (Basel)2022224136410.3390/s2204136435214260
    [Google Scholar]
  34. Owodeha-AshakaK. IlomuanyaM.O. IyireA. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery.Prog. Biomater.202110320722010.1007/s40204‑021‑00164‑534549376
    [Google Scholar]
  35. MichailidouG. AinaliN.M. XanthopoulouE. Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability.Polymers (Basel)2020125110110.3390/polym1205110132408557
    [Google Scholar]
  36. BhattacharjeeS. DLS and zeta potential – What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.01727297779
    [Google Scholar]
  37. AliN.A. KishtaM.S. FekryM. MohamedS.H. The targeted delivery of chitosan nanoparticles to treat indoxacarb: Induced lung fibrosis in rats.Bull. Natl. Res. Cent.202246127410.1186/s42269‑022‑00963‑1
    [Google Scholar]
  38. RaneB.R. GujarathiN.A. PatelJ.K. Biodegradable anionic acrylic resin based hollow microspheres of moderately water soluble drug Rosiglitazone Maleate: Preparation and in vitro characterization.Drug Dev. Ind. Pharm.201238121460146910.3109/03639045.2011.65381122356275
    [Google Scholar]
  39. GujarathiN.A. RaneB.R. PatelJ.K. pH sensitive polyelectrolyte complex of O-carboxymethyl chitosan and poly (acrylic acid) cross-linked with calcium for sustained delivery of acid susceptible drugs.Int. J. Pharm.20124361-241842510.1016/j.ijpharm.2012.07.01622814224
    [Google Scholar]
  40. SohailA. KhanR.U. KhanM. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica.Bull. Natl. Res. Cent.202145118710.1186/s42269‑021‑00644‑5
    [Google Scholar]
  41. DebnathS.K. SaisivamS. DebanthM. OmriA. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide.PLoS One2018131e019097610.1371/journal.pone.019097629370192
    [Google Scholar]
  42. PourshahabP.S. GilaniK. MoazeniE. EslahiH. FazeliM.R. JamalifarH. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid.J. Microencapsul.201128760561310.3109/02652048.2011.59943721793647
    [Google Scholar]
  43. NasibiS Nargesi khoramabadi H, Arefian M, et al. A review of Polyvinyl alcohol/Carboxiy methyl cellulose (PVA/CMC) composites for various applications.Journal of Composites and Compounds202023687510.29252/jcc.2.2.2
    [Google Scholar]
  44. GilaniK. MoazeniE. RamezanliT. AminiM. FazeliM.R. JamalifarH. Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization.J. Pharm. Sci.2011100125225910.1002/jps.2227420602350
    [Google Scholar]
  45. SharmaM. SharmaR. JainD.K. SarafA. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study.Int. J. Biol. Macromol.201913524626010.1016/j.ijbiomac.2019.05.16231128197
    [Google Scholar]
/content/journals/cam/10.2174/0126667312289623240327073342
Loading
/content/journals/cam/10.2174/0126667312289623240327073342
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test