- Home
- A-Z Publications
- Recent Patents on Biotechnology
- Previous Issues
- Volume 19, Issue 1, 2025
Recent Patents on Biotechnology - Volume 19, Issue 1, 2025
Volume 19, Issue 1, 2025
-
-
Medicinal Plants in the Treatment of Respiratory Diseases and their Future Aspects
Authors: Aliya Firdaus, Mohd. Hadi Yunus, Syed Khalida Izhar and Uzma AfaqThe utilization of medicinal plants in the treatment of respiratory diseases has a rich history dating back centuries. A vast body of research literature, including review articles, research papers, case studies, patents, and books, provides substantial evidence supporting the use of medicinal plants in the treatment of diseases and injuries. This study delves into the diverse range of plant species known for their therapeutic properties, with a specific focus on their applications in respiratory health. Medicinal plants have played a crucial role as a source of ingredients for medications and the synthesis of drugs. Globally, over 35,000 plant species are employed for medicinal purposes, particularly in emerging countries where traditional medicine, predominantly plant-based pharmaceuticals, serves as a primary healthcare resource. This review highlights the significance of medicinal plants, such as aloe, ginger, turmeric, tulsi, and neem, in treating a wide array of common respiratory ailments. These plants contain bioactive compounds, including tannins, alkaloids, sugars, terpenoids, steroids, and flavonoids, which have diverse therapeutic applications. Some medicinal plants, notably Echinacea purpurea and Zingiber officinale, exhibit potential for adjuvant symptomatic therapy in respiratory conditions, such as chronic obstructive pulmonary disease (COPD), bronchitis, asthma, the common cold, cough, and whooping cough. The leaves of medicinal plants like Acacia torta, Ocimum sanctum, Mentha haplocalyx, Lactuca virosa, Convolvulus pluricaulis, and Acalypha indica are commonly used to address pneumonia, bronchitis, asthma, colds, and cough. This review aims to shed light on specific medicinal plants with therapeutic value, providing valuable insights for researchers in the field of herbal medicine. These plants hold the potential to serve as novel therapeutic agents in the treatment of respiratory diseases.
-
-
-
Nutritional Health Connection of Algae and its Pharmaceutical Value as Anticancer and Antioxidant Constituents of Drugs
The marine environment is one of the major biomass producers of algae and seaweed; it is rich in functional ingredients or active metabolites with valuable nutritional health effects. Algal metabolites derived from the cultivation of both microalgae and macroalgae may positively impact human health, offering physiological, pharmaceutical and nutritional benefits. Microalgae have been widely used as novel sources of bioactive substances. Bioactive polymers extracted from algae, such as algal fucans, Galatians, alginates phenolics, carotenoids, vitamin B12, and peptides possess antioxidant, anticoagulant, antimicrobial, antiviral, anti-inflammatory, anti-allergy, anticancer, and hypocholesterolemic properties. It emphasizes that using marine-derived compounds with bioactive properties as functional food ingredients may help promote human health and prevent chronic diseases. Utilizing bioactive compounds has demonstrated notable advantages in terms of effectiveness more than conventional treatments and therapies currently in use which is also proven from different patents about algal applications in different fields. Despite the availability of numerous microalgae-derived products catering to human health and nutrition in the market, there remains a lack of social acceptance and awareness regarding the health benefits of microalgae. Hence, this review aims to offer a comprehensive account of the current knowledge on anticancers, antioxidants, commercially available edible algal products and therapeutics isolated from algae.
-
-
-
Role of Artificial Intelligence in Drug Discovery to Revolutionize the Pharmaceutical Industry: Resources, Methods and Applications
Authors: Pranjal Kumar Singh, Kapil Sachan, Vishal Khandelwal, Sumita Singh and Smita SinghTraditional drug discovery methods such as wet-lab testing, validations, and synthetic techniques are time-consuming and expensive. Artificial Intelligence (AI) approaches have progressed to the point where they can have a significant impact on the drug discovery process. Using massive volumes of open data, artificial intelligence methods are revolutionizing the pharmaceutical industry. In the last few decades, many AI-based models have been developed and implemented in many areas of the drug development process. These models have been used as a supplement to conventional research to uncover superior pharmaceuticals expeditiously. AI's involvement in the pharmaceutical industry was used mostly for reverse engineering of existing patents and the invention of new synthesis pathways. Drug research and development to repurposing and productivity benefits in the pharmaceutical business through clinical trials. AI is studied in this article for its numerous potential uses. We have discussed how AI can be put to use in the pharmaceutical sector, specifically for predicting a drug's toxicity, bioactivity, and physicochemical characteristics, among other things. In this review article, we have discussed its application to a variety of problems, including de novo drug discovery, target structure prediction, interaction prediction, and binding affinity prediction. AI for predicting drug interactions and nanomedicines were also considered.
-
-
-
Carvacrol: Innovative Synthesis Pathways and Overview of its Patented Applications
Authors: Reda El Boukhari and Ahmed FatimiAimThis research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds.
BackgroundLike thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants’ resistance and their protection. Carvacrol has many chemical properties, such as antioxidant and anti-microbial, which have made it interesting for multiple biotechnological applications in the fields of food, feed, pharmacology, and cosmetology.
ObjectiveWe have made an attempt to demonstrate the value of carvacrol, first by studying quantitative data from patent documents, and then, through some relevant patents, we have tried to highlight the various fields of innovation related to the properties of carvacrol.
MethodsFor the study, we have collected and sorted patent documents (i.e., patent applications and granted patents) from specialized patent databases, using “carvacrol” and some of its synonyms as keywords. The selected documents have included these keywords in their titles, abstracts, or claims. Then, thanks to patent analysis, we have tried to provide an overview of the useful properties of organic compounds.
ResultsWe have shown that about 90% of the patent documents studied have been published in the 2000s. The number of publications, which is constantly increasing, demonstrates the growing interest in carvacrol. Although the applications of carvacrol are varied, the data on the IPC classification show that most published innovations are concerned with formulations in the fields of health, food, and feed. The study of the most relevant patents has allowed us to highlight some developments in the extraction and synthesis of carvacrol and some examples of patents that illustrate the wide possibilities offered by the exploitation of carvacrol. Thus, we have discussed its use in the cosmetic, pharmaceutical, food, and agricultural fields.
ConclusionCarvacrol is a natural compound with beneficial properties. Several applications using this monoterpene have already been patented in different fields. However, the evolution of patentability has grown this past year and revealed the potential of carvacrol in biotechnology.
-
-
-
Construction of Camelus dromedaries Immune Single Domain Antibodies Library for Development of Schistosoma mansoni Specific Nanobodies using Phage Display Strategy
BackgroundSchistosoma mansoni poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.
AimConstruction of an immune phage display Nbs library based on the VHH framework for selecting S. mansoni-specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting Schistosoma mansoni.
MethodsCamel was immunized using soluble adult worm antigens (SAWP) for the production of Variable domains of heavy chains of camelid heavy-chain only antibodies (VHHs), which are known as nanobodies (Nb). The PBMCs repertoires VHH sequences library have been constructed with a high percentage of insertion and right orientation using pADL-23c phagmid and M13 phage followed by three rounds of bio-panning against SAWP using phage display technique. Evaluations using polyclonal phage ELISA and other techniques have been carried out to reveal the successful enrichment of anti-SAWP Nbs (VHH) clones. Evaluation of the diagnostic potentiality of these Nbs was carried out using ELISA on human serum samples confirmed for S. mansoni infection. Receiver Operator of Characteristics (ROC) curve analysis was used for discrimination between S. mansoni infection and both negative controls and the Fasciola hepatica group.
ResultsUsing monoclonal ELISA, Nbs of 22 clones out of 24 selected clones showed binding affinity to SAWP. The cutoff values of the produced anti-S. mansoni Nbs was > 0.19, leading to 80% sensitivity, 95% specificity, and 90% accuracy. Sequence analysis of three of these Nbs with high binding affinities showed diversity in their targets, considering their CDR3 aa sequences.
ConclusionThis study successfully generated a diverse phage library enriched with anti-S. mansoni VHHs. The nanobodies produced exhibit high diagnostic potential for detecting S. mansoni infection in human patients, offering a promising avenue for the development of efficient diagnostic tools. The innovative approach described herein may have potential applications for patent considerations in the field of the field of diagnostic technology.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)