Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2083
  • E-ISSN:

Abstract

The utilization of medicinal plants in the treatment of respiratory diseases has a rich history dating back centuries. A vast body of research literature, including review articles, research papers, case studies, patents, and books, provides substantial evidence supporting the use of medicinal plants in the treatment of diseases and injuries. This study delves into the diverse range of plant species known for their therapeutic properties, with a specific focus on their applications in respiratory health. Medicinal plants have played a crucial role as a source of ingredients for medications and the synthesis of drugs. Globally, over 35,000 plant species are employed for medicinal purposes, particularly in emerging countries where traditional medicine, predominantly plant-based pharmaceuticals, serves as a primary healthcare resource. This review highlights the significance of medicinal plants, such as aloe, ginger, turmeric, tulsi, and neem, in treating a wide array of common respiratory ailments. These plants contain bioactive compounds, including tannins, alkaloids, sugars, terpenoids, steroids, and flavonoids, which have diverse therapeutic applications. Some medicinal plants, notably and , exhibit potential for adjuvant symptomatic therapy in respiratory conditions, such as chronic obstructive pulmonary disease (COPD), bronchitis, asthma, the common cold, cough, and whooping cough. The leaves of medicinal plants like , , , , , and are commonly used to address pneumonia, bronchitis, asthma, colds, and cough. This review aims to shed light on specific medicinal plants with therapeutic value, providing valuable insights for researchers in the field of herbal medicine. These plants hold the potential to serve as novel therapeutic agents in the treatment of respiratory diseases.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083278561231212072408
2024-01-24
2024-11-22
Loading full text...

Full text loading...

References

  1. Davidson-HuntI. Ecological ethnobotany: Stumbling toward new practices and paradigms.MASA J200016113
    [Google Scholar]
  2. ChahK.F. EzeC.A. EmuelosiC.E. EsimoneC.O. Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants.J. Ethnopharmacol.20061041-216416710.1016/j.jep.2005.08.070 16226414
    [Google Scholar]
  3. NateshS. Mohan RamH.Y. An update on green medicine.J. Indian Bot. Soc.1999781323
    [Google Scholar]
  4. AwareC.B. PatilD.N. SuryawanshiS.S. Natural bioactive products as promising therapeutics: A review of natural product-based drug development.South African J. Bot.202215151252810.1016/j.sajb.2022.05.028
    [Google Scholar]
  5. RavichandranS. BhargaviK.M. RaiA. PandeyT. RajputJ. SriR.M.M. Medicinal plants for curing human diseases. Insight -.Chin. Med.20236157010.18282/i‑cm.v6i1.570
    [Google Scholar]
  6. UNESCO C. Health orientation Texts world decade for cultural development198819971996
    [Google Scholar]
  7. KhuntiaA. MartorellM. IlangoK. Theoretical evaluation of Cleome species’ bioactive compounds and therapeutic potential: A literature review.Biomed. Pharmacother.202215111316110.1016/j.biopha.2022.113161 35644118
    [Google Scholar]
  8. AdesokanA.A. YakubuM.T. OwoyeleB.V. AkanjiM.A. SoladoyeA.O. LawalO.K. Effect of administration of aqueous and ethanolic extracts of Enantia chlorantha stem bark on brewer’s yeast-induced pyresis in rats.Afr. J. Biochem. Res.20082165169
    [Google Scholar]
  9. AlamgeerYounis W Asif H, et al. Traditional medicinal plants used for respiratory disorders in Pakistan: A review of the ethno-medicinal and pharmacological evidence.Chin. Med.20181314810.1186/s13020‑018‑0204‑y 30250499
    [Google Scholar]
  10. NascimentoG.G.F. LocatelliJ. FreitasP.C. SilvaG.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria.Braz. J. Microbiol.200031424725610.1590/S1517‑83822000000400003
    [Google Scholar]
  11. WHO monographs on selected medicinal plants. World Health Organization 1999
    [Google Scholar]
  12. World Health OrganizationWHO monographs on selected medicinal plants.2007 3.
    [Google Scholar]
  13. World Health OrganizationWHO monographs on selected medicinal plants.2005 4.
    [Google Scholar]
  14. Habeeb RahumanH.B. DhandapaniR. NarayananS. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications.IET Nanobiotechnol.20221611514410.1049/nbt2.12078
    [Google Scholar]
  15. VenugopalS. AlagesanV. Brief review of the genus diospyros montana roxb: Phytopharmacological properties.Exten Rev202221111910.21467/exr.2.1.4572
    [Google Scholar]
  16. SrujanaT.S. KonduriR.B. RaoB.S. Phytochemical investigation and biological activity of leaves extract of plant Boswellia serrata.Pharma Innov.2012122
    [Google Scholar]
  17. RajasekharanP.E. WaniS.H. Conservation and utilization of threatened medicinal plants.Springer202010.1007/978‑3‑030‑39793‑7
    [Google Scholar]
  18. DeebT. KnioK. ShinwariZ.K. KreydiyyehS. BaydounE. Survey of medicinal plants currently used by herbalists in Lebanon.Pak. J. Bot.201345543555
    [Google Scholar]
  19. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  20. RiccardiB. From bioactive molecules to their nutritional effect, biodynamic interpretation between productional and functional aspects of nutrients.Recent Prog Nutr20222411610.21926/rpn.2204023
    [Google Scholar]
  21. PottD.M. OsorioS. VallarinoJ.G. From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit.Front Plant Sci20191083510.3389/fpls.2019.00835 31316537
    [Google Scholar]
  22. JainC. KhatanaS. VijayvergiaR. Bioactivity of secondary metabolites of various plants: A review.Int. J. Pharm. Sci. Res.201910494504
    [Google Scholar]
  23. EdeogaH.O. OkwuD.E. MbaebieB.O. Phytochemical constituents of some Nigerian medicinal plants.Afr. J. Biotechnol.20054768568810.5897/AJB2005.000‑3127
    [Google Scholar]
  24. CraggG.M. NewmanD.J. Natural product drug discovery in the next millennium.Pharm. Biol.200139Suppl. 1817 21554167
    [Google Scholar]
  25. ShahidiF. HossainA. Importance of insoluble-bound phenolics to the antioxidant potential is dictated by source material.Antioxidants202312120310.3390/antiox12010203 36671065
    [Google Scholar]
  26. Maciel-VergaraG. JensenA.B. LecocqA. EilenbergJ. Diseases in edible insect rearing systems.J. Insects Food Feed20217562163810.3920/JIFF2021.0024
    [Google Scholar]
  27. ZebA. Zeb phenolic antioxidants in foods: Chemistry, biochemistry and analysis.Berlin/Heidelberg, GermanySpringer202110.1007/978‑3‑030‑74768‑8
    [Google Scholar]
  28. EscarpaA. GonzalezM.C. An overview of analytical chemistry of phenolic compounds in foods.Crit. Rev. Anal. Chem.20013125713910.1080/20014091076695
    [Google Scholar]
  29. SongY. ChenS. LiL. ZengY. HuX. The hypopigmentation mechanism of tyrosinase inhibitory peptides derived from food proteins: An overview.Molecules2022279271010.3390/molecules27092710 35566061
    [Google Scholar]
  30. ObiedH.K. Biography of biophenols: Past, present and future.Funct. Food Health Dis.20133623024110.31989/ffhd.v3i6.51
    [Google Scholar]
  31. WagnerK.H. ElmadfaI. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes.Ann. Nutr. Metab.2003473-49510610.1159/000070030 12743459
    [Google Scholar]
  32. MtewaA.G. EgbunaC. RaoG.N. Poisonous Plants and Phytochemicals in Drug Discovery.John Wiley & Sons202010.1002/9781119650034
    [Google Scholar]
  33. MolyneuxR.J. NashR.J. AsanoN. Alkaloids: Chemical and biological perspectives.Elsevier1996
    [Google Scholar]
  34. YaoC. HaoR. PanS. WangY. Functional foods based on traditional Chinese medicine. In: Nutrition, Well-Being and Health. InTech201217920010.5772/27643
    [Google Scholar]
  35. AbegazB.M. KinfeH.H. Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview.Phys Sci Rev2019462018010010.1515/psr‑2018‑0100
    [Google Scholar]
  36. OakenfullD. Saponins in food-A review.Food Chem.198171194010.1016/0308‑8146(81)90019‑4
    [Google Scholar]
  37. GóralI. WojciechowskiK. Surface activity and foaming properties of saponin-rich plants extracts.Adv. Colloid Interface Sci.202027910214510.1016/j.cis.2020.102145 32229329
    [Google Scholar]
  38. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology28020017 35366261
    [Google Scholar]
  39. GurfinkelD.M. RaoA.V. Soyasaponins: The relationship between chemical structure and colon anticarcinogenic activity.Nutr. Cancer2003471243310.1207/s15327914nc4701_3 14769534
    [Google Scholar]
  40. KimS.W. ParkS.K. KangS. Hypocholesterolemic property of Yucca schidigera and Quillaja saponaria extracts in human body.Arch. Pharm. Res.200326121042104610.1007/BF02994756 14723338
    [Google Scholar]
  41. LiuJ. HenkelT. Traditional Chinese medicine (TCM): Are polyphenols and saponins the key ingredients triggering biological activities?Curr. Med. Chem.20029151483148510.2174/0929867023369709 12173978
    [Google Scholar]
  42. KerwinS. Soy saponins and the anticancer effects of soybeans and soy-based foods.Curr. Med. Chem. Anticancer Agents20044326327210.2174/1568011043352993 15134504
    [Google Scholar]
  43. MurrayC.J.L. LopezA.D. Measuring the global burden of disease.N. Engl. J. Med.2013369544845710.1056/NEJMra1201534 23902484
    [Google Scholar]
  44. MaraisB.J. LönnrothK. LawnS.D. Tuberculosis comorbidity with communicable and non-communicable diseases: Integrating health services and control efforts.Lancet Infect. Dis.201313543644810.1016/S1473‑3099(13)70015‑X 23531392
    [Google Scholar]
  45. BygbjergI.C. Double burden of noncommunicable and infectious diseases in developing countries.Science201233761011499150110.1126/science.1223466 22997329
    [Google Scholar]
  46. Martínez-GarcíaM.A. Perpiñá-TorderaM. Román-SánchezP. Soler-CataluñaJ.J. Quality-of-life determinants in patients with clinically stable bronchiectasis.Chest2005128273974510.1378/chest.128.2.739 16100162
    [Google Scholar]
  47. Martínez-GarcíaM.A. Soler-CataluñaJ.J. Perpiñá-TorderaM. Román-SánchezP. SorianoJ. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis.Chest200713251565157210.1378/chest.07‑0490 17998359
    [Google Scholar]
  48. BleaseK. RaymonH.K. Small molecule inhibitors of cell signaling: Novel future therapeutics for asthma and chronic obstructive pulmonary diseases.Curr. Opin. Investigat. Drugs20034544551
    [Google Scholar]
  49. SharafkhanehA. HananiaN.A. KimV. Pathogenesis of emphysema: From the bench to the bedside.Proc. Am. Thorac. Soc.20085447547710.1513/pats.200708‑126ET 18453358
    [Google Scholar]
  50. LarssonK. Aspects on pathophysiological mechanisms in COPD.J. Intern. Med.2007262331134010.1111/j.1365‑2796.2007.01837.x 17697154
    [Google Scholar]
  51. HuangH. Plant diversity and conservation in China: Planning a strategic bioresource for a sustainable future.Bot. J. Linn. Soc.2011166328230010.1111/j.1095‑8339.2011.01157.x 22059249
    [Google Scholar]
  52. KaminW. MaydannikV. MalekF.A. KieserM. Efficacy and tolerability of EPs 7630 in children and adolescents with acute bronchitis – A randomized, double-blind, placebo-controlled multicenter trial with a herbal drug preparation from Pelargonium sidoides roots.Int. J. Clin. Pharmacol. Ther.201048318419110.5414/CPP48184 20197012
    [Google Scholar]
  53. LiuY. Salvia miltiorrhiza injection in the treatment of chronic obstructive pulmonary disease: A systematic review and meta-analysis.J. Tradit. Chin. Med.201737334344
    [Google Scholar]
  54. GibbsB.F. Differential modulation of IgE-dependent activation of human basophils by ambroxol and related secretolytic analogues.Int. J. Immunopathol. Pharmacol.200922491992710.1177/039463200902200407 20074455
    [Google Scholar]
  55. GangulyD. HaqueM. Intranasal administration of curcumin: A recent formulation approach to evaluate the biodistribution in the brain.Appl. Biochem. Biotechnol.201216720442052
    [Google Scholar]
  56. ShirwaikarA. RajendranK. BodlaR. KumarC.D. Neutralization potential of Viper russelli russelli (Russell’s viper) venom by ethanol leaf extract of Acalypha indica.J. Ethnopharmacol.2004942-326727310.1016/j.jep.2004.05.010 15325729
    [Google Scholar]
  57. LamabadusuriyaS.P. JayanthaU.K. Acalypha indica induced haemolysis in G6PD deficiency.Ceylon Med. J.19943914647 8194149
    [Google Scholar]
  58. KeesaraB.R. JatR.K. Isolation and characterization of Vasicine from Adhatoda vasica (Adusa).Int J Res Develop Pharma Life Sci2017622590259610.21276/IJRDPL.2278‑0238.2017.6(2).2590‑2596
    [Google Scholar]
  59. KoF.N. HuangT.F. TengC.M. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta.Biochim. Biophys. Acta, Gen. Subj.199111151697410.1016/0304‑4165(91)90013‑7 1659912
    [Google Scholar]
  60. MencheriniT. CauA. BiancoG. LoggiaR.D. AquinoR.P. AutoreG. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its anti-inflammatory properties.J. Pharm. Pharmacol.201059689189710.1211/jpp.59.6.0016 17637182
    [Google Scholar]
  61. SinghA. HandaS.S. Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats.J. Ethnopharmacol.199549311912610.1016/0378‑8741(95)01291‑5 8824736
    [Google Scholar]
  62. HamzaA.A. AminA. Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats.J. Exp. Zool. Part A. Ecol. Genet. Physiol.2007307A419920610.1002/jez.357 17351917
    [Google Scholar]
  63. KhareC.P. Indian medicinal plants.Springer2007
    [Google Scholar]
  64. DieyeA.M. TidjaniM.A. DioufA. BasseneE. FayeB. Senegalese pharmacopoeia: Study of acute toxicity and antitussive activity of Calotropis procera AIT (Asclepiadaceae).Bull. Soc. Med. Afr. Noire Lang. Fr.19933816972 7882852
    [Google Scholar]
  65. MuthuC. AyyanarM. RajaN. IgnacimuthuS. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India.J. Ethnobiol. Ethnomed.2006214310.1186/1746‑4269‑2‑43 17026769
    [Google Scholar]
  66. SinghG.D. KaiserP. YoussoufM.S. Inhibition of early and late phase allergic reactions by Euphorbia hirta L.Phytother. Res.200620431632110.1002/ptr.1844 16557622
    [Google Scholar]
  67. YoussoufM.S. KaiserP. TahirM. Anti-anaphylactic effect of Euphorbia hirta.Fitoterapia2007787-853553910.1016/j.fitote.2007.06.003 17643865
    [Google Scholar]
  68. SmM.R. RanaS. AfmA.I. Antithrombotic and anti-inflammatory activities of leaf methanolic extract of Euphorbia hirta Lin.Int. J. Complement. Altern. Med.201912415416210.15406/ijcam.2019.12.00466
    [Google Scholar]
  69. PrakashP. GuptaN. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review.Indian J. Physiol. Pharmacol.2005492125131 16170979
    [Google Scholar]
  70. GuptaS.K. PrakashJ. SrivastavaS. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant.Indian J. Exp. Biol.2002407765773
    [Google Scholar]
  71. WalterTM Catalogue of Siddha medicinal plants.2005
    [Google Scholar]
  72. ShilphaJ. PandianS. LargiaM.J.V. SohnS.I. RameshM. Short-term storage of Solanum trilobatum L. synthetic seeds and evaluation of genetic homogeneity using SCoT markers.Plant Biotechnol. Rep.202115565166110.1007/s11816‑021‑00709‑x
    [Google Scholar]
  73. ShahjahanM. VaniG. ShyamaladeviC.S. Effect of Solanum trilobatum on the antioxidant status during diethyl nitrosamine induced and phenobarbital promoted hepatocarcinogenesis in rat.Chem. Biol. Interact.20051562-311312310.1016/j.cbi.2005.08.003 16188247
    [Google Scholar]
  74. ShahjahanM. SabithaK.E. JainuM. ShyamalaD.C.S. Effect of Solanum trilobatum against carbon tetrachloride induced hepatic damage in albino rats.Indian J. Med. Res.20041203194198 15489557
    [Google Scholar]
  75. ShanmugaveluM. Noikaluku Siddha parikaram Part-I. Indian medicine Homeopathy department.Government of India2004
    [Google Scholar]
  76. BihareeA. ChaudhariL. BhartiyaS. A comprehensive study on natural products and their bioactive constituents to cure respiratory diseases.Nat. Prod. J.2024142e12062321787910.2174/2210315513666230612111133
    [Google Scholar]
  77. GovindanS. ViswanathanS. VijayasekaranV. AlagappanR. Further studies on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma.Phytother. Res.2004181080580910.1002/ptr.1555 15551394
    [Google Scholar]
  78. MazzioE.A. SolimanK.F.A. In vitro screening for the tumoricidal properties of international medicinal herbs.Phytother. Res.200923338539810.1002/ptr.2636 18844256
    [Google Scholar]
  79. MorrisseyB.M. EvansS.J. Severe bronchiectasis.Clin. Rev. Allergy Immunol.200325323324810.1385/CRIAI:25:3:233 14716069
    [Google Scholar]
  80. BarleR. ShrivastavaA. MishraG. AgrawalS. Qualitative phytochemical study of medicinal plants of Durg District.Indian J Life Sci201557377
    [Google Scholar]
  81. BarnesP.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005.Br. J. Pharmacol.2006148324525410.1038/sj.bjp.0706736 16604091
    [Google Scholar]
  82. LozanoR. NaghaviM. ForemanK. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592095212810.1016/S0140‑6736(12)61728‑0 23245604
    [Google Scholar]
  83. DongE. DuH. GardnerL. An interactive web-based dashboard to track COVID-19 in real time.Lancet Infect. Dis.202020553353410.1016/S1473‑3099(20)30120‑1 32087114
    [Google Scholar]
  84. a ZhaoJ. Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: A perspective on plant biotechnology application.Recent Patents. Biotechnol.2007117597
    [Google Scholar]
  85. b MulinX. Plant sample sampling device for biotechnology experiment. CN21742478302022
/content/journals/biot/10.2174/0118722083278561231212072408
Loading
/content/journals/biot/10.2174/0118722083278561231212072408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test