Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2083
  • E-ISSN:

Abstract

The marine environment is one of the major biomass producers of algae and seaweed; it is rich in functional ingredients or active metabolites with valuable nutritional health effects. Algal metabolites derived from the cultivation of both microalgae and macroalgae may positively impact human health, offering physiological, pharmaceutical and nutritional benefits. Microalgae have been widely used as novel sources of bioactive substances. Bioactive polymers extracted from algae, such as algal fucans, Galatians, alginates phenolics, carotenoids, vitamin B12, and peptides possess antioxidant, anticoagulant, antimicrobial, antiviral, anti-inflammatory, anti-allergy, anticancer, and hypocholesterolemic properties. It emphasizes that using marine-derived compounds with bioactive properties as functional food ingredients may help promote human health and prevent chronic diseases. Utilizing bioactive compounds has demonstrated notable advantages in terms of effectiveness more than conventional treatments and therapies currently in use which is also proven from different patents about algal applications in different fields. Despite the availability of numerous microalgae-derived products catering to human health and nutrition in the market, there remains a lack of social acceptance and awareness regarding the health benefits of microalgae. Hence, this review aims to offer a comprehensive account of the current knowledge on anticancers, antioxidants, commercially available edible algal products and therapeutics isolated from algae.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083287672240321081428
2024-03-27
2024-11-22
Loading full text...

Full text loading...

References

  1. VidyasagarA. what are algae? live science contributor.2016Available from: http://www.livescience. com/54979 (Accessed on 2016 June 4).
  2. SaeedM.U. HussainN. ShahbazA. HameedT. IqbalH.M.N. BilalM. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications.J. Basic Microbiol.20226291110112410.1002/jobm.202100445 34914840
    [Google Scholar]
  3. HerreroM. CifuentesA. IbañezE. Sub and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review.Food Chem.200698113614810.1016/j.foodchem.2005.05.058
    [Google Scholar]
  4. BalajiM. ThamilvananD. VinayagamS.C. BalakumarB.S. Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae.Int. J. Pharm. Sci. Rev. Res.20178833023314
    [Google Scholar]
  5. TakaichiS. Carotenoids in algae: Distributions, biosyntheses and functions.Mar. Drugs2011961101111810.3390/md9061101 21747749
    [Google Scholar]
  6. BaumanE FriedlanderJ. Eating for Health: A new system, not another diet—I. J Integ Hea 2016241
    [Google Scholar]
  7. RiccioG. De LucaD. LauritanoC. Monogalactosyldiacylglycerol and sulfolipid synthesis in microalgae.Mar. Drugs202018523710.3390/md18050237 32370033
    [Google Scholar]
  8. BhattacharjeeM. Pharmaceutically valuable bioactive compounds of algae.Asian J. Pharm. Clin. Res.201696434710.22159/ajpcr.2016.v9i6.14507
    [Google Scholar]
  9. HalliwellB. Dietary polyphenols: Good, bad, or indifferent for your health?Cardiovasc. Res.200773234134710.1016/j.cardiores.2006.10.004 17141749
    [Google Scholar]
  10. KollerM. SalernoA. TuffnerP. Characteristics and potential of micro algal cultivation strategies: A review.J. Clean. Prod.20123737738810.1016/j.jclepro.2012.07.044
    [Google Scholar]
  11. AditiI.G.A. Legalization of land pawning at Balinese community customs in North Lombok.Int. J. Life Sci.202042525810.29332/ijls.v4n2.439
    [Google Scholar]
  12. MurthyK.N.C. VanithaA. RajeshaJ. SwamyM.M. SowmyaP.R. RavishankarG.A. In vivo antioxidant activity of carotenoids from Dunaliella salina: A green microalga.Life Sci.200576121381139010.1016/j.lfs.2004.10.015 15670617
    [Google Scholar]
  13. PlazaM. HerreroM. CifuentesA. IbáñezE. Innovative natural functional ingredients from microalgae.J. Agric. Food Chem.200957167159717010.1021/jf901070g 19650628
    [Google Scholar]
  14. a DanielsB. Seaweed extract composition for retardation of cardiovascular disorders and preservation of healthy cardiovascular function. . United States patent application US 10/795,560. 2004
    [Google Scholar]
  15. b IbañezE. HerreroM. MendiolaJ.A. Castro-PuyanaM. Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates.Marine Bioactive Comp20115598
    [Google Scholar]
  16. WangB. BiasuttiM. ByrneM.P. Monsoons climate change assessment.Bull. Am. Meteorol. Soc.20211021E1E1910.1175/BAMS‑D‑19‑0335.1
    [Google Scholar]
  17. GodicA. PoljšakB. AdamicM. DahmaneR. The role of antioxidants in skin cancer prevention and treatment.Oxid. Med. Cell. Longev.201420141610.1155/2014/860479 24790705
    [Google Scholar]
  18. BohnT. Bioavailability of non-provitamin a carotenoids.Curr. Nutr. Food Sci.20084424025810.2174/157340108786263685
    [Google Scholar]
  19. a FukudaK. inventor; Shimizu Chemical Corp, assignee. Dietary fibres of seaweed having ionexchange ability. United States patent US 4,804,536,1989
    [Google Scholar]
  20. b CycilL.M. HausrathE.M. MingD.W. Investigating algae growth under low atmospheric pressures for potential food and oxygen production on Mars.52nd Lunar and Planetary Science Conference 2021202111609
    [Google Scholar]
  21. MaoT.K. WaterJ.V. GershwinM.E. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients.J. Med. Food200581273010.1089/jmf.2005.8.27 15857205
    [Google Scholar]
  22. ShanabS.M.M. MostafaS.S.M. ShalabyE.A. MahmoudG.I. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities.Asian Pac. J. Trop. Biomed.20122860861510.1016/S2221‑1691(12)60106‑3 23569980
    [Google Scholar]
  23. ButlerT. GolanY. Astaxanthin production from microalgae.In: Microalgae Biotechnology for Food.Health and High Value Products202017524210.1007/978‑981‑15‑0169‑2_6
    [Google Scholar]
  24. PulzO. GrossW. Valuable products from biotechnology of microalgae.Appl. Microbiol. Biotechnol.200465663564810.1007/s00253‑004‑1647‑x 15300417
    [Google Scholar]
  25. KumarS. PandeyS. PandeyA.K. In vitro antibacterial, antioxidant, and cytotoxic activities of Parthenium hysterophorus and characterization of extracts by LC-MS analysis.BioMed Res. Int.2014201411010.1155/2014/495154 24895583
    [Google Scholar]
  26. GuzmánF. WongG. RománT. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement.Mar. Drugs201917845310.3390/md17080453 31374937
    [Google Scholar]
  27. AlsenaniF. TupallyK.R. ChuaE.T. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds.Saudi Pharm. J.202028121834184110.1016/j.jsps.2020.11.010 33424272
    [Google Scholar]
  28. GhasemiY. MoradianA. MohagheghzaA. ShokraviS. MorowvatH. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran, characterization of antimicrobial activity of Chroococcus dispersus.J. Biol. Sci.20077690491010.3923/jbs.2007.904.910
    [Google Scholar]
  29. El ShafayS.M. AliS.S. El-SheekhM.M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria.Egypt. J. Aquat. Res.2016421657410.1016/j.ejar.2015.11.006
    [Google Scholar]
  30. TangmanS. Govinden-SoulangeJ. MarieD. Bioactive profile of Plakortis nigra, a sea sponge from Mauritius Islands.J. Coast. Life Med.2015314451
    [Google Scholar]
  31. ChoiS.M. JangE.J. ChaJ.D. Synergistic effect between fucoidan and antibiotics against clinic methicillin-resistant Staphylococcus aureus.Adv. Biosci. Biotechnol.20156427528510.4236/abb.2015.64027
    [Google Scholar]
  32. EL-Sayed AIM, El-Sheekh MM, Makhlof MEM. Synergistic antibacterial effects of Ulva lactuca methanolic extract alone and in combination with different antibiotics on multidrug-resistant Klebsiella pneumoniae isolate.BMC Microbiol.202323110610.1186/s12866‑023‑02854‑5 37072731
    [Google Scholar]
  33. a BriandX. Utilization of algae extract for the preparation of pharmaceutical, cosmetic, food or agricultural compositions. United States patent US 5,508,033, 1996
    [Google Scholar]
  34. b HosseiniT.A. ShariatiM. Dunaliella biotechnology: Methods and applications.J. Appl. Microbiol.20091071143510.1111/j.1365‑2672.2009.04153.x 19245408
    [Google Scholar]
  35. HerreroM. JaimeL. Martín-ÁlvarezP.J. CifuentesA. IbáñezE. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids.J. Agric. Food Chem.200654155597560310.1021/jf060546q 16848551
    [Google Scholar]
  36. OrtizJ. RomeroN. RobertP. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica.Food Chem.20069919810410.1016/j.foodchem.2005.07.027
    [Google Scholar]
  37. MacArtainP. GillC.I.R. BrooksM. CampbellR. RowlandI.R. Nutritional value of edible seaweeds.Nutr. Rev.2007651253554310.1111/j.1753‑4887.2007.tb00278.x 18236692
    [Google Scholar]
  38. BeckerE.W. Microalgae for human and animal nutrition.In: Handbook of microalgal culture.Applied Phycology and Biotechnology201346150310.1002/9781118567166.ch25
    [Google Scholar]
  39. DurmazY. Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation.Aquaculture20072721-471772210.1016/j.aquaculture.2007.07.213
    [Google Scholar]
  40. GuptaS. NayakA. RoyC. YadavA.K. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production.Chemosphere202126312813210.1016/j.chemosphere.2020.128132 33297120
    [Google Scholar]
  41. TaboadaC. MillánR. MíguezI. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida.J. Sci. Food Agric.201090344544910.1002/jsfa.3836 20355066
    [Google Scholar]
  42. IjiP.A. KadamM.M. Prebiotic properties of algae and algae-supplemented products. In: Functional ingredients from algae for foods and nutraceuticals.Woodhead Publishing201365867010.1533/9780857098689.4.658
    [Google Scholar]
  43. NguyenM.H.T. JungW.K. KimS.K. Marine algae possess therapeutic potential for Ca-mineralization via osteoblastic differentiation.Adv. Food Nutr. Res.20116442944110.1016/B978‑0‑12‑387669‑0.00033‑8 22054966
    [Google Scholar]
  44. LordanS. RossR.P. StantonC. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases.Mar. Drugs2011961056110010.3390/md9061056 21747748
    [Google Scholar]
  45. KarleskintG. TurnerR. SmallJ. Multicellular primary producers.In: Introduction to marine biology.Belmont, MACengage Learning2012
    [Google Scholar]
  46. GalassoC. GentileA. OreficeI. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception.Nutrients2019116122610.3390/nu11061226 31146462
    [Google Scholar]
  47. KimS.K. TaylorS. Eds Marine medicinal foods: Implications and applications. Macro and microalgae. Academic Press2011 64: pp. 358-63.
    [Google Scholar]
  48. KoyandeA.K. ChewK.W. RambabuK. TaoY. ChuD.T. ShowP.L. Microalgae: A potential alternative to health supplementation for humans.Food Sci. Hum. Wellness201981162410.1016/j.fshw.2019.03.001
    [Google Scholar]
  49. CostaJ.A. RadmannE.M. CerqueiraV.S. SantosG.C. CalheirosM.N. Fatty acids Profile of the microalgae Chlorella vulgaris and Chlorella minutissima cultivated under different conditions.Aliment. Nutr.2006174429436
    [Google Scholar]
  50. HerreroM. ThorntonP.K. Mason-D’CrozD. Articulating the effect of food systems innovation on the Sustainable Development Goals.Lancet Planet. Health202151e50e6210.1016/S2542‑5196(20)30277‑1 33306994
    [Google Scholar]
  51. TeasJ. Dietary brown seaweeds and human health effects. In: Advances in applied phycology utilization World Seaweed Resources.ETI Bioinformatics2006
    [Google Scholar]
  52. BrownleeI.A. AllenA. PearsonJ.P. Alginate as a source of dietary fiber.Crit. Rev. Food Sci. Nutr.200545649751010.1080/10408390500285673 16183570
    [Google Scholar]
  53. WijesekaraI. PangestutiR. KimS.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae.Carbohydr. Polym.2011841142110.1016/j.carbpol.2010.10.062
    [Google Scholar]
  54. HoldtS.L. KraanS. Bioactive compounds in seaweed: Functional food applications and legislation.J. Appl. Phycol.201123354359710.1007/s10811‑010‑9632‑5
    [Google Scholar]
  55. DawczynskiC. SchubertR. JahreisG. Amino acids, fatty acids, and dietary fibre in edible seaweed products.Food Chem.2007103389189910.1016/j.foodchem.2006.09.041 26065750
    [Google Scholar]
  56. GuptaS. Abu-GhannamN. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods.Innov. Food Sci. Emerg. Technol.201112460060910.1016/j.ifset.2011.07.004
    [Google Scholar]
  57. MataT.M. MartinsA.A. CaetanoN.S. Microalgae for biodiesel production and other applications: A review.Renew. Sustain. Energy Rev.201014121723210.1016/j.rser.2009.07.020
    [Google Scholar]
  58. JiaoG. YuG. ZhangJ. EwartH. Chemical structures and bioactivities of sulfated polysaccharides from marine algae.Mar. Drugs20119219622310.3390/md9020196 21566795
    [Google Scholar]
  59. AmaroH.M. GuedesA.C. MalcataF.X. Antimicrobial activities of microalgae: An invited review. In: Science against microbial pathogens: communicating current research and technological advances.20112127284
    [Google Scholar]
  60. SmelcerovicA. Knezevic-JugovicZ. PetronijevicZ. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals.Curr. Pharm. Des.200814293168319510.2174/138161208786404254 19075698
    [Google Scholar]
  61. RastogiR.P. SinhaR.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites.Biotechnol. Adv.200927452153910.1016/j.biotechadv.2009.04.009 19393308
    [Google Scholar]
  62. SmeeD. BaileyK. WongM. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N.Antiviral Res.200880326627110.1016/j.antiviral.2008.06.003 18601954
    [Google Scholar]
  63. TaoriK. PaulV.J. LueschH. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp.J. Am. Chem. Soc.200813061806180710.1021/ja7110064 18205365
    [Google Scholar]
  64. MohantyS. PradhanB. PatraS. BeheraC. NayakR. JenaM. Screening for nutritive bioactive compounds in some algal strains isolated from coastal Odisha.J Advan Plant Sci202010218
    [Google Scholar]
  65. GaoX. LuY. XingY. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17.Microbiol. Res.20121671061662210.1016/j.micres.2012.02.008 22494896
    [Google Scholar]
  66. CostaL.S. FidelisG.P. TellesC.B.S. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula.Mar. Drugs20119695296610.3390/md9060952 21747741
    [Google Scholar]
  67. NguyenV.T. LeeJ. QianZ.J. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells.Mar. Drugs2013121698710.3390/md12010069 24368570
    [Google Scholar]
  68. Cirne-SantosC. BarrosC.D. NogueiraC.C. Inhibition of Zika virus by marine algae.Bio Life Sci201718343710.20944/preprints201703.0087.v1
    [Google Scholar]
  69. HeoS.J. YoonW.J. KimK.N. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages.Food Chem. Toxicol.2010488-92045205110.1016/j.fct.2010.05.003 20457205
    [Google Scholar]
  70. ZhangJ.L. TianH.Y. LiJ. Steroids with inhibitory activity against the prostate cancer cells and chemical diversity of marine alga Tydemania expeditionis.Fitoterapia201283597397810.1016/j.fitote.2012.04.019 22561913
    [Google Scholar]
  71. MacedoN.R.P.V. RibeiroM.S. VillaçaR.C. Caulerpin as a potential antiviral drug against herpes simplex virus type 1.Rev. Bras. Farmacogn.201222486186710.1590/S0102‑695X2012005000072
    [Google Scholar]
  72. MaoS-C. LiuD-Q. YuX.Q. FengL.H. LaiX.P. Caulerchlorin, a novel chlorinated bisindole alkaloid with antifungal activity from the Chinese green alga Caulerpa racemosa.Heterocycles201285366166610.3987/COM‑11‑12408
    [Google Scholar]
  73. VilchesT. NorteM. DaranasA. FernándezJ. Biosynthetic studies on water-soluble derivative 5c (DTX5c).Mar. Drugs201210122234224510.3390/md10102234 23170080
    [Google Scholar]
  74. KelmanD. PosnerE.K. McDermidK.J. TabanderaN.K. WrightP.R. WrightA.D. Antioxidant activity of Hawaiian marine algae.Mar. Drugs2012101240341610.3390/md10020403 22412808
    [Google Scholar]
  75. GöthelQ. LichteE. KöckM. Further eleganolone-derived diterpenes from the brown alga Bifurcaria bifurcata.Tetrahedron Lett.201253151873187710.1016/j.tetlet.2011.09.128
    [Google Scholar]
  76. Kawamura-KonishiY. WatanabeN. SaitoM. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens.J. Agric. Food Chem.201260225565557010.1021/jf300165j 22594840
    [Google Scholar]
  77. LeeS.H. KangS.M. KoS.C. LeeD.H. JeonY.J. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells.Biochem. Biophys. Res. Commun.2012420357658110.1016/j.bbrc.2012.03.036 22445752
    [Google Scholar]
  78. KangS.M. HeoS.J. KimK.N. LeeS.H. JeonY.J. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect.J. Funct. Foods20124115816610.1016/j.jff.2011.10.001
    [Google Scholar]
  79. Ortalo-MagnéA. CulioliG. VallsR. PucciB. PiovettiL. Polar acyclic diterpenoids from Bifurcaria bifurcata (Fucales, Phaeophyta).Phytochemistry200566192316232310.1016/j.phytochem.2005.06.006 16038952
    [Google Scholar]
  80. SuT.R. TsaiF.J. LinJ.J. Induction of apoptosis by 11-dehydrosinulariolide via mitochondrial dysregulation and ER stress pathways in human melanoma cells.Mar. Drugs201210121883189810.3390/md10081883 23015779
    [Google Scholar]
  81. ChenW.F. ChakrabortyC. SungC.S. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: A promising candidate for the treatment of Parkinson’s disease.Naunyn Schmiedebergs Arch. Pharmacol.2012385326527510.1007/s00210‑011‑0710‑2 22119889
    [Google Scholar]
  82. LiX.D. MiaoF.P. LiK. JiN.Y. Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai.Fitoterapia201283351852210.1016/j.fitote.2011.12.018 22233863
    [Google Scholar]
  83. ChungH.M. HongP.H. SuJ.H. Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae).Mar. Drugs201210121169117910.3390/md10051169 22822364
    [Google Scholar]
  84. WangS.K. PuuS.Y. DuhC.Y. New 19-oxygenated steroids from the soft coral Nephthea chabrolii.Mar. Drugs201210121288129610.3390/md10061288 22822372
    [Google Scholar]
  85. LiC. LaM.P. TangH. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea.Bioorg. Med. Chem. Lett.201222134368437210.1016/j.bmcl.2012.05.001 22647719
    [Google Scholar]
  86. WangS.K. HsiehM.K. DuhC.Y. Three new cembranoids from the Taiwanese soft coral Sarcophyton ehrenbergi.Mar. Drugs201210121433144410.3390/md10071433 22851917
    [Google Scholar]
  87. MayerA.M.S. AvilésE. RodríguezA.D. Marine sponge Hymeniacidon sp. amphilectane metabolites potently inhibit rat brain microglia thromboxane B2 generation.Bioorg. Med. Chem.201220127928210.1016/j.bmc.2011.10.086 22153874
    [Google Scholar]
  88. BisharaA. RudiA. AkninM. NeumannD. Ben-CalifaN. KashmanY. Salarins A and B and tulearin A: new cytotoxic sponge-derived macrolides.Org. Lett.200810215315610.1021/ol702221v 18085784
    [Google Scholar]
  89. Ben-CalifaN. BisharaA. KashmanY. NeumannD. Salarin C, a member of the salarin superfamily of marine compounds, is a potent inducer of apoptosis.Invest. New Drugs20123019810410.1007/s10637‑010‑9521‑4 20734109
    [Google Scholar]
  90. FestaC. De MarinoS. D’AuriaM.V. Anti-inflammatory cyclopeptides from the marine sponge Theonella swinhoei.Tetrahedron201268132851285710.1016/j.tet.2012.01.097
    [Google Scholar]
  91. FestaC. D’AmoreC. RengaB. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists.Mar. Drugs20131172314232710.3390/md11072314 23820629
    [Google Scholar]
  92. KimuraM. WakimotoT. EgamiY. TanK.C. IseY. AbeI. Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx.J. Nat. Prod.201275229029410.1021/np2009187 22276742
    [Google Scholar]
  93. GanesanP. MatsubaraK. OhkuboT. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile.Phytomedicine201017141140114410.1016/j.phymed.2010.05.005 20637577
    [Google Scholar]
  94. RathJ.P. KinastS. MaierM.E. Synthesis of the fully functionalized core structure of the antibiotic abyssomicin C.Org. Lett.20057143089309210.1021/ol0511068 15987212
    [Google Scholar]
  95. DineshkumarK. AparnaV. MadhuriK.Z. HopperW. Biological activity of sporolides A and B from Salinispora tropica: In silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase.Chem. Biol. Drug Des.201483335036110.1111/cbdd.12252 24165098
    [Google Scholar]
  96. RasalaB.A. MutoM. LeeP.A. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii.Plant Biotechnol. J.20108671973310.1111/j.1467‑7652.2010.00503.x 20230484
    [Google Scholar]
  97. CamachoF. MacedoA. MalcataF. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review.Mar. Drugs201917631210.3390/md17060312 31141887
    [Google Scholar]
  98. WellsM.L. PotinP. CraigieJ.S. Algae as nutritional and functional food sources: Revisiting our understanding.J. Appl. Phycol.201729294998210.1007/s10811‑016‑0974‑5 28458464
    [Google Scholar]
  99. HalliwellB. GutteridgeJ.M. Free radicals in biology and medicine.USAOxford university press201510.1093/acprof:oso/9780198717478.001.0001
    [Google Scholar]
  100. CornishM.L. GarbaryD.J. Antioxidants from macroalgae: Potential applications in human health and nutrition.Algae201025415517110.4490/algae.2010.25.4.155
    [Google Scholar]
  101. VechtomovaY. TeleginaT. BuglakA. KritskyM. UV radiation in DNA damage and repair involving DNA-photolyases and cryptochromes.Biomedicines2021911156410.3390/biomedicines9111564 34829793
    [Google Scholar]
  102. HolstB. WilliamsonG. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants.Curr. Opin. Biotechnol.2008192738210.1016/j.copbio.2008.03.003 18406129
    [Google Scholar]
  103. LovegroveA. EdwardsC.H. De NoniI. Role of polysaccharides in food, digestion, and health.Crit. Rev. Food Sci. Nutr.201757223725310.1080/10408398.2014.939263 25921546
    [Google Scholar]
  104. BoehlkeC. ZierauO. HannigC. Salivary amylase: The enzyme of unspecialized euryphagous animals.Arch. Oral Biol.20156081162117610.1016/j.archoralbio.2015.05.008 26043446
    [Google Scholar]
  105. a Kawamura-KonishiY. WatanabeN. SaitoM. NakajimaN. SakakiT. KatayamaT. EnomotoT. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens.J. Agricult. Food Chem.2012602255655570
    [Google Scholar]
  106. b IwaiK. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice.Plant Foods Hum. Nutr.200863416316910.1007/s11130‑008‑0098‑4 18958624
    [Google Scholar]
  107. OkadaY. IshikuraM. MaokaT. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits.Biosci. Biotechnol. Biochem.20097391928193210.1271/bbb.90078 19734684
    [Google Scholar]
  108. GoblerC.J. BerryD.L. DyhrmanS.T. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics.Proc. Natl. Acad. Sci. 2011108114352435710.1073/pnas.1016106108 21368207
    [Google Scholar]
  109. FournierE. AdamC. MassabuauJ.C. Garnier-LaplaceJ. Selenium bioaccumulation in Chlamydomonas reinhardtii and Subsequent transfer to Corbicula fluminea: Role of selenium speciation and bivalve ventilation.Environ. Toxicol. Chem.200625102692269910.1897/05‑386R1.1 17022410
    [Google Scholar]
  110. TuzenM. VerepB. OgretmenA.O. SoylakM. Trace element content in marine algae species from the Black Sea, Turkey.Environ. Monit. Assess.20091511-436336810.1007/s10661‑008‑0277‑7 18369727
    [Google Scholar]
  111. CasesJ. NapolitanoA. CaporiccioB. Selenium from selenium-rich Spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats.J. Nutr.200113192343235010.1093/jn/131.9.2343 11533277
    [Google Scholar]
  112. NwosuF. MorrisJ. LundV.A. StewartD. RossH.A. McDougallG.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae.Food Chem.201112631006101210.1016/j.foodchem.2010.11.111
    [Google Scholar]
  113. OrenA. Gunde-CimermanN. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?FEMS Microbiol. Lett.2007269111010.1111/j.1574‑6968.2007.00650.x 17286572
    [Google Scholar]
  114. McCartyM.F. Clinical potential of Spirulina as a source of phycocyanobilin.J. Med. Food200710456657010.1089/jmf.2007.621 18158824
    [Google Scholar]
  115. FittonH.J. OddieT. StringerD. KarpiniecS. Marine plant extracts offer superior dermal protection.Personal Care20165154
    [Google Scholar]
  116. PoliA. AnzelmoG. NicolausB. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities.Mar. Drugs2010861779180210.3390/md8061779 20631870
    [Google Scholar]
  117. SunS.M. ChungG.H. ShinT.S. Volatile compounds of the green alga, Capsosiphon fulvescens.J. Appl. Phycol.20122451003101310.1007/s10811‑011‑9724‑x
    [Google Scholar]
  118. GhibaudoM BaltenneckC MinondoAM CouturierLT PotterA A natural sulfated polysaccharide from Porphyridium cruentum red microalgae–a potential mimetic of heparan sulfate and its modulation of the epidermal biological activity of human reconstructed skin.2014
    [Google Scholar]
  119. FenoradosoaT.A. AliG. DelattreC. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow.J. Appl. Phycol.201022213113710.1007/s10811‑009‑9432‑y
    [Google Scholar]
  120. BixlerH.J. PorseH. A decade of change in the seaweed hydrocolloids industry.J. Appl. Phycol.201123332133510.1007/s10811‑010‑9529‑3
    [Google Scholar]
  121. CustódioC.A. ReisR.L. ManoJ.F. Photo-cross-linked laminarin-based hydrogels for biomedical applications.Biomacromolecules20161751602160910.1021/acs.biomac.5b01736 27017983
    [Google Scholar]
  122. KudaT. YanoT. MatsudaN. NishizawaM. Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats.Food Chem.200591474574910.1016/j.foodchem.2004.06.047
    [Google Scholar]
  123. SunM.L. ZhaoF. ShiM. Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127.Sci. Rep.2015511843510.1038/srep18435 26688201
    [Google Scholar]
  124. TakahashiK. HiranoY. ArakiS. HattoriM. Emulsifying ability of porphyran prepared from dried nori, Porphyra yezoensis, a red alga.J. Agric. Food Chem.20004872721272510.1021/jf990990b 10898612
    [Google Scholar]
  125. KotrbáčekV. DoubekJ. DouchaJ. The Chlorococcalean alga Chlorella in animal nutrition: A review.J. Appl. Phycol.20152762173218010.1007/s10811‑014‑0516‑y
    [Google Scholar]
  126. MouritsenO.G. Vinther SchmidtC. A role for macroalgae and cephalopods in sustainable eating.Front. Psychol.202011140210.3389/fpsyg.2020.01402 32733319
    [Google Scholar]
  127. BiondiN. PiccardiR. MargheriM.C. RodolfiL. SmithG.D. TrediciM.R. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides.Appl. Environ. Microbiol.20047063313332010.1128/AEM.70.6.3313‑3320.2004 15184126
    [Google Scholar]
  128. MundtS. KreitlowS. NowotnyA. EffmertU. Biochemical and pharmacological investigations of selected cyanobacteria.Int. J. Hyg. Environ. Health2001203432733410.1078/1438‑4639‑00045 11434213
    [Google Scholar]
  129. BokeschH.R. O’KeefeB.R. McKeeT.C. A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium.Biochemistry20034292578258410.1021/bi0205698 12614152
    [Google Scholar]
  130. ClarkB.R. EngeneN. TeasdaleM.E. Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum.J. Nat. Prod.20087191530153710.1021/np800088a 18698821
    [Google Scholar]
  131. PereiraA. CaoZ. MurrayT.F. GerwickW.H. Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two papua new Guinea cyanobacteria.Chem. Biol.200916889390610.1016/j.chembiol.2009.06.012 19716479
    [Google Scholar]
  132. ZainuddinE.N. MentelR. WrayV. Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe.J. Nat. Prod.20077071084108810.1021/np060303s 17602586
    [Google Scholar]
  133. LueschH. MooreR.E. PaulV.J. MooberryS.L. CorbettT.H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1.J. Nat. Prod.200164790791010.1021/np010049y 11473421
    [Google Scholar]
  134. ShenP. ZhaoS.W. ZhengW.J. HuaZ.C. ShiQ. LiuZ.T. Effects of cyanobacteria bloom extract on some parameters of immune function in mice.Toxicol. Lett.20031431273610.1016/S0378‑4274(03)00110‑3 12697377
    [Google Scholar]
  135. KanekiyoK. LeeJ.B. HayashiK. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme.J. Nat. Prod.20056871037104110.1021/np050056c 16038544
    [Google Scholar]
  136. DevillersJ. DoréJ.C. GuyotM. Prediction of biological activity profiles of cyanobacterial secondary metabolites.SAR QSAR Environ. Res.2007187-862964310.1080/10629360701698704 18038364
    [Google Scholar]
  137. FieldL.M. FagerbergW.R. GattoK.K. AnneB.S. A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria.J. Appl. Phycol.20172931271127810.1007/s10811‑016‑1027‑9
    [Google Scholar]
  138. SinghR.K. TiwariS.P. RaiA.K. MohapatraT.M. Cyanobacteria: An emerging source for drug discovery.J. Antibiot. 201164640141210.1038/ja.2011.21 21468079
    [Google Scholar]
/content/journals/biot/10.2174/0118722083287672240321081428
Loading
/content/journals/biot/10.2174/0118722083287672240321081428
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer; antioxidant; macroalgae; microalgae; nutritional values; pharmaceutical value
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test