Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2083
  • E-ISSN:

Abstract

Traditional drug discovery methods such as wet-lab testing, validations, and synthetic techniques are time-consuming and expensive. Artificial Intelligence (AI) approaches have progressed to the point where they can have a significant impact on the drug discovery process. Using massive volumes of open data, artificial intelligence methods are revolutionizing the pharmaceutical industry. In the last few decades, many AI-based models have been developed and implemented in many areas of the drug development process. These models have been used as a supplement to conventional research to uncover superior pharmaceuticals expeditiously. AI's involvement in the pharmaceutical industry was used mostly for reverse engineering of existing patents and the invention of new synthesis pathways. Drug research and development to repurposing and productivity benefits in the pharmaceutical business through clinical trials. AI is studied in this article for its numerous potential uses. We have discussed how AI can be put to use in the pharmaceutical sector, specifically for predicting a drug's toxicity, bioactivity, and physicochemical characteristics, among other things. In this review article, we have discussed its application to a variety of problems, including drug discovery, target structure prediction, interaction prediction, and binding affinity prediction. AI for predicting drug interactions and nanomedicines were also considered.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083297406240313090140
2024-03-21
2024-11-26
Loading full text...

Full text loading...

References

  1. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement.20173465165710.1016/j.trci.2017.10.005 29255791
    [Google Scholar]
  2. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  3. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  4. GliozzoE. IonescuC. Pigments—Lead-based whites, reds, yellows and oranges and their alteration phases.Archaeol. Anthropol. Sci.20221411710.1007/s12520‑021‑01407‑z
    [Google Scholar]
  5. RameshA.N. KambhampatiC. MonsonJ.R.T. DrewP.J. Artificial intelligence in medicine.Ann. R. Coll. Surg. Engl.200486533433810.1308/147870804290 15333167
    [Google Scholar]
  6. MilesJ. WalkerA. The potential application of artificial intelligence in transport. IEE Proc-Intell Transport Syst 200620061531839810.1049/ip‑its:20060014
    [Google Scholar]
  7. YangY SiauK. A qualitative research on marketing and sales in the artificial intelligence age.2018Available from: https://www.researchgate.net/profile/Keng-Siau-2/publication/325934359_A_Qualitative_Research_on_Marketing_and_Sales_in_the_Artificial_Intelligence_Age/links/5b9733644585153a532634e3/AQualitative-Research-on-Marketing-and-Sales-inthe-Artificial-Intelligence-Age.pdf
    [Google Scholar]
  8. WirtzB.W. WeyererJ.C. GeyerC. Artificial intelligence and the public sector—applications and challenges.Int. J. Public Adm.201942759661510.1080/01900692.2018.1498103
    [Google Scholar]
  9. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  10. RantanenJ. KhinastJ. The future of pharmaceutical manufacturing sciences.J. Pharm. Sci.2015104113612363810.1002/jps.24594 26280993
    [Google Scholar]
  11. Jämsä-JounelaS.L. Future trends in process automation.Annu. Rev. Contr.200731221122010.1016/j.arcontrol.2007.08.003
    [Google Scholar]
  12. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z 34686947
    [Google Scholar]
  13. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w 34159484
    [Google Scholar]
  14. QureshiR. IrfanM. GondalT.M. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  15. BenekeF. MackenrodtM.O. Artificial intelligence and collusion. IIC Int. Rev.IIC Int. Rev. Ind. Prop. Copyr. Law201950110913410.1007/s40319‑018‑00773‑x
    [Google Scholar]
  16. SteelsL. BrooksR. The artificial life route to artificial intelligence: Building embodied, situated agents.1st edLondonRoutledge2018130010.4324/9781351001885
    [Google Scholar]
  17. BieleckiA. BieleckiA. Foundations of artificial neural networks. . In: Kacprzyk J, Ed.Models of Neurons and Perceptrons: Selected Problems and Challenges. KacprzykJ. Springer International Publishing2019152810.1007/978‑3‑319‑90140‑4_3
    [Google Scholar]
  18. KalyaneD. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. . In: Tekade RK, Ed.The Future of Pharmaceutical Product Development and Research. TekadeR.K. Elsevier20207310710.1016/B978‑0‑12‑814455‑8.00003‑7
    [Google Scholar]
  19. Da SilvaIn. Artificial neural networks.Springer201710.1007/978‑3‑319‑43162‑8
    [Google Scholar]
  20. MedskerL. JainL.C. Recurrent neural networks: Design and applications.CRC Press199910.1201/9781420049176
    [Google Scholar]
  21. Ha¨nggiM. MoschytzG.S. Cellular neural networks: Analysis, design and optimization.Springer Science & Business Media200010.1007/978‑1‑4757‑3220‑7
    [Google Scholar]
  22. RouseM. IBM Watson Supercomputer 2017.IBM-Watson-supercomputer2017
    [Google Scholar]
  23. VyasM. Artificial intelligence: The beginning of a new era in pharmacy profession.Asian J. Pharm.2018127276
    [Google Scholar]
  24. TaleviA. MoralesJ.F. HatherG. Machine learning in drug discovery and development Part 1: A primer.CPT Pharmacometrics Syst. Pharmacol.20209312914210.1002/psp4.12491 31905263
    [Google Scholar]
  25. PedregosaF. VaroquauxG. GramfortA. Scikit-learn: Machine learning in Python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  26. PaszkeA. GrossS. MassaF. PyTorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, 32. Curran Associates, Inc.2019802435
    [Google Scholar]
  27. HammannF. GutmannH. VogtN. HelmaC. DreweJ. Prediction of adverse drug reactions using decision tree modeling.Clin. Pharmacol. Ther.2010881525910.1038/clpt.2009.248 20220749
    [Google Scholar]
  28. SchoberP. VetterT.R. Logistic regression in medical research.Anesth. Analg.2021132236536610.1213/ANE.0000000000005247 33449558
    [Google Scholar]
  29. MaltarolloV.G. KronenbergerT. EspinozaG.Z. OliveiraP.R. HonorioK.M. Advances with support vector machines for novel drug discovery.Expert Opin. Drug Discov.2019141233310.1080/17460441.2019.1549033 30488731
    [Google Scholar]
  30. El-AttarN.E. HassanM.K. AlghamdiO.A. AwadW.A. Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt.Sci. Rep.20201012134910.1038/s41598‑020‑78449‑1 33288845
    [Google Scholar]
  31. GuptaA. MüllerA.T. HuismanB.J.H. FuchsJ.A. SchneiderP. SchneiderG. Generative recurrent networks for de novo drug design.Mol. Inform.2018371-2188014110.1002/minf.201880141 29442444
    [Google Scholar]
  32. BlanchardA.E. StanleyC. BhowmikD. Using GANs with adaptive training data to search for new molecules.J. Cheminform.20211311410.1186/s13321‑021‑00494‑3 33622401
    [Google Scholar]
  33. ShenM. XiaoY. GolbraikhA. GombarV.K. TropshaA. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates.J. Med. Chem.200346143013302010.1021/jm020491t 12825940
    [Google Scholar]
  34. ManelfiC. GemeiM. TalaricoC. “Molecular Anatomy”: A new multi-dimensional hierarchical scaffold analysis tool.J. Cheminform.20211315410.1186/s13321‑021‑00526‑y 34301327
    [Google Scholar]
  35. YooC. ShahlaeiM. The applications of PCA in QSAR studies: A case study on CCR5 antagonists.Chem. Biol. Drug Des.201891113715210.1111/cbdd.13064 28656625
    [Google Scholar]
  36. KarlovD.S. SosninS. TetkoI.V. FedorovM.V. Chemical space exploration guided by deep neural networks.RSC Advances2019995151515710.1039/C8RA10182E 35514634
    [Google Scholar]
  37. YasonikJ. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting.J. Cheminform.20201211410.1186/s13321‑020‑00419‑6 33430996
    [Google Scholar]
  38. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  39. SimmJ. KlambauerG. AranyA. Repurposing high- throughput image assays enables biological activity prediction for drug discovery.Cell Chem. Biol.2018255611618.e310.1016/j.chembiol.2018.01.015 29503208
    [Google Scholar]
  40. HofmarcherM. RumetshoferE. ClevertD.A. HochreiterS. KlambauerG. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks.J. Chem. Inf. Model.20195931163117110.1021/acs.jcim.8b00670 30840449
    [Google Scholar]
  41. RamsundarB. KearnesS. RileyP. WebsterD. KonerdingD. PandeV. Massively multitask networks for drug discovery. arXiv:1502020722015
  42. DuvenaudD. MaclaurinD. Aguilera-IparraguirreJ. Convolutional networks on graphs for learning molecular fingerprints. arXiv:1509092922015
  43. GlemR.C. BenderA. ArnbyC.H. CarlssonL. BoyerS. SmithJ. Circular fingerprints: Flexible molecular descriptors with applications from physical chemistry to ADME.IDrugs200693199204 16523386
    [Google Scholar]
  44. GohG.B. SiegelC. VishnuA. HodasN.O. BakerN. Chemception: A deep neural network with minimal chemistry knowledge matches the performance of expert- developed QSAR/QSPR models. arXiv:1706066892017
  45. HuangG. LiuZ. Van Der MaatenL. WeinbergerK.Q. Densely connected convolutional networks.Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionSan Juan, PR, USA 17-19 June. 199711
    [Google Scholar]
  46. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2016770778
    [Google Scholar]
  47. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition. arXiv:140915562014
  48. RifaiogluA.S. NalbatE. AtalayV. MartinM.J. Cetin-AtalayR. DoğanT. DEEPScreen: High performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations.Chem. Sci. 20201192531255710.1039/C9SC03414E 33209251
    [Google Scholar]
  49. RajanK. BrinkhausH.O. SorokinaM. ZielesnyA. SteinbeckC. DECIMER-Segmentation: Automated extraction of chemical structure depictions from scientific literature.J. Cheminform.20211312010.1186/s13321‑021‑00496‑1 33685498
    [Google Scholar]
  50. StakerJ. MarshallK. AbelR. McQuawC.M. Molecular structure extraction from documents using deep learning.J. Chem. Inf. Model.20195931017102910.1021/acs.jcim.8b00669 30758950
    [Google Scholar]
  51. RajanK. ZielesnyA. SteinbeckC. DECIMER: Towards deep learning for chemical image recognition.J. Cheminform.20201216510.1186/s13321‑020‑00469‑w 33372621
    [Google Scholar]
  52. HossainM.D.Z. SohelF. ShiratuddinM.F. LagaH. A comprehensive survey of deep learning for image captioning.ACM Comput. Surv.2019516136 [CsUR]10.1145/3295748
    [Google Scholar]
  53. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/138161207780765954 17504169
    [Google Scholar]
  54. BlasiakA. KhongJ. KeeT. CURATE. AI: Optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/2472630319890316 31771394
    [Google Scholar]
  55. BaronzioG. ParmarG. BaronzioM. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid.Front. Oncol.2015516510.3389/fonc.2015.00165 26258072
    [Google Scholar]
  56. lvarez-Machancoses A, lvarez-Machancoses JL. Using artificial intelligence methods to speed up drug discovery.Expert Opin. Drug Discov.201914769777
    [Google Scholar]
  57. FlemingN. How artificial intelligence is changing drug discovery.Nature20185577707S55S5710.1038/d41586‑018‑05267‑x 29849160
    [Google Scholar]
  58. DanaD. GadhiyaS.V. St SurinL.G. Deep learning in drug discovery and medicine; scratching the surface.Molecules2018239238410.3390/molecules23092384 30231499
    [Google Scholar]
  59. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.014 30472429
    [Google Scholar]
  60. ZangQ. MansouriK. WilliamsA.J. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning.J. Chem. Inf. Model.2017571364910.1021/acs.jcim.6b00625 28006899
    [Google Scholar]
  61. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  62. HesslerG. BaringhausK.H. Artificial intelligence in drug design.Molecules20182310252010.3390/molecules23102520 30279331
    [Google Scholar]
  63. LusciA. PollastriG. BaldiP. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules.J. Chem. Inf. Model.20135371563157510.1021/ci400187y 23795551
    [Google Scholar]
  64. KumarR. SharmaA. SiddiquiM.H. TiwariR.K. Prediction of human intestinal absorption of compounds using artificial intelligence techniques.Curr. Drug Discov. Technol.201714424425410.2174/1570163814666170404160911 28382857
    [Google Scholar]
  65. RuppM. KörnerR. TetkoI.V. Estimation of acid dissociation constants using graph kernels.Mol. Inform.2010291073174010.1002/minf.201000072 27464016
    [Google Scholar]
  66. ChaiS. LiuQ. LiangX. A grand product design model for crystallization solvent design.Comput. Chem. Eng.202013510676410.1016/j.compchemeng.2020.106764
    [Google Scholar]
  67. ThafarM. RaiesA.B. AlbaradeiS. EssackM. BajicV.B. Comparison study of computational prediction tools for drug–target binding affinities.Front Chem.2019778210.3389/fchem.2019.00782 31824921
    [Google Scholar]
  68. ztu¨rk O. DeepDTA: Deep drug–target binding affinity prediction.Bioinformatics20183417821829
    [Google Scholar]
  69. LounkineE. KeiserM.J. WhitebreadS. Large-scale prediction and testing of drug activity on side-effect targets.Nature2012486740336136710.1038/nature11159 22722194
    [Google Scholar]
  70. MahmudSMH ChenW JahanH LiuY SujanNI AhmedS . iDTi-CSsmoteB: Identification of drug– target interaction based on drug chemical structure and protein sequence using XGBoost with oversampling technique SMOTE. IEEE Access 201974869971410.1109/ACCESS.2019.2910277
  71. GaoK.Y. FokveA. LuoH. LyengarA. DeyS. ZhangP. Interpretable drug target prediction using deep neural representation.In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence 201820183371710.24963/ijcai.2018/468
    [Google Scholar]
  72. FengQ. Padme: A deep learning-based framework for drug–target interaction prediction. arXiv:1807097412018
  73. KarimiM. WuD. WangZ. ShenY. DeepAffinity: Interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks.Bioinformatics201935183329333810.1093/bioinformatics/btz111 30768156
    [Google Scholar]
  74. PuL. NaderiM. LiuT. WuH.C. MukhopadhyayS. BrylinskiM. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates.BMC Pharmacol. Toxicol.2019201210.1186/s40360‑018‑0282‑6 30621790
    [Google Scholar]
  75. BasileA.O. YahiA. TatonettiN.P. Artificial intelligence for drug toxicity and safety.Trends Pharmacol. Sci.201940962463510.1016/j.tips.2019.07.005 31383376
    [Google Scholar]
  76. LysenkoA. SharmaA. BoroevichK.A. TsunodaT. An integrative machine learning approach for prediction of toxicity-related drug safety.Life Sci. Alliance201816e20180009810.26508/lsa.201800098 30515477
    [Google Scholar]
  77. GayvertK.M. MadhukarN.S. ElementoO. A data-driven approach to predicting successes and failures of clinical trials.Cell Chem. Biol.201623101294130110.1016/j.chembiol.2016.07.023 27642066
    [Google Scholar]
  78. Jimenez-CarreteroD. AbrishamiV. Fernández-de-ManuelL. Tox_(R)CNN: Deep learning-based nuclei profiling tool for drug toxicity screening.PLOS Comput. Biol.20181411e100623810.1371/journal.pcbi.1006238 30500821
    [Google Scholar]
  79. ZhuH. Big data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  80. CiallellaH.L. ZhuH. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity.Chem. Res. Toxicol.201932453654710.1021/acs.chemrestox.8b00393 30907586
    [Google Scholar]
  81. BrownN. Silico medicinal chemistry: Computational methods to support drug design.Royal Society of Chemistry20151232
    [Google Scholar]
  82. PereiraJ.C. CaffarenaE.R. dos SantosC.N. Boosting docking-based virtual screening with deep learning.J. Chem. Inf. Model.201656122495250610.1021/acs.jcim.6b00355 28024405
    [Google Scholar]
  83. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  84. MouchlisV.D. AfantitisA. SerraA. Advances in de Novo drug design: From conventional to machine learning methods.Int. J. Mol. Sci.2021224167610.3390/ijms22041676 33562347
    [Google Scholar]
  85. PopovaM. IsayevO. TropshaA. Deep reinforcement learning for de novo drug design.Sci. Adv.201847eaap788510.1126/sciadv.aap7885 30050984
    [Google Scholar]
  86. Gómez-BombarelliR. WeiJ.N. DuvenaudD. Automatic chemical design using a data-driven continuous representation of molecules.ACS Cent. Sci.20184226827610.1021/acscentsci.7b00572 29532027
    [Google Scholar]
  87. MercadoR. RastemoT. LindelöfE. Graph networks for molecular design.Mach. Learn. Sci. Technol.20212025023
    [Google Scholar]
  88. LiY. ZhangL. LiuZ. Multi-objective de novo drug design with conditional graph generative model.J. Cheminform.20181013310.1186/s13321‑018‑0287‑6 30043127
    [Google Scholar]
  89. WangM. WangZ. SunH. Deep learning approaches for de novo drug design: An overview.Curr. Opin. Struct. Biol.20227213514410.1016/j.sbi.2021.10.001 34823138
    [Google Scholar]
  90. CallawayE. It will change everything: DeepMind’s AI makes gigantic leap in solving protein structures.Nature2020588783720320410.1038/d41586‑020‑03348‑4 33257889
    [Google Scholar]
  91. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  92. PakhrinS.C. ShresthaB. AdhikariB. KcD.B. Deep learning-based advances in protein structure prediction.Int. J. Mol. Sci.20212211555310.3390/ijms22115553 34074028
    [Google Scholar]
  93. SeniorA.W. EvansR. JumperJ. Improved protein structure prediction using potentials from deep learning.Nature2020577779270671010.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  94. NagS BaidyaATK MandalA Deep learning tools for advancing drug discovery and development. 3 Biotech 2022121110
    [Google Scholar]
  95. HusainA. BegumN. KobayashiM. HonjoT. Native Co-immunoprecipitation assay to identify interacting partners of chromatin-associated proteins in mammalian cells.Bio Protoc.20201023e383710.21769/BioProtoc.3837 33659486
    [Google Scholar]
  96. NixonA.E. SextonD.J. LadnerR.C. Drugs derived from phage display.MAbs201461738510.4161/mabs.27240 24262785
    [Google Scholar]
  97. HamdiA. ColasP. Yeast two-hybrid methods and their applications in drug discovery.Trends Pharmacol. Sci.201233210911810.1016/j.tips.2011.10.008 22130009
    [Google Scholar]
  98. BagherianM. SabetiE. WangK. SartorM.A. Nikolovska-ColeskaZ. NajarianK. Machine learning approaches and databases for prediction of drug–target interaction: A survey paper.Brief. Bioinform.202122124726910.1093/bib/bbz157 31950972
    [Google Scholar]
  99. WenM. ZhangZ. NiuS. Deeplearning-based drug-target interaction prediction.J. Proteome Res.20171641401140910.1021/acs.jproteome.6b00618 28264154
    [Google Scholar]
  100. LeeI. KeumJ. NamH. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.PLOS Comput. Biol.2019156e100712910.1371/journal.pcbi.1007129 31199797
    [Google Scholar]
  101. ZhuJ. WangJ. WangX. Prediction of drug efficacy from transcriptional profiles with deep learning.Nat. Biotechnol.202139111444145210.1038/s41587‑021‑00946‑z 34140681
    [Google Scholar]
  102. MaX. ShuQ. XingX. WangC. KongF. Method for testing potential FASN inhibitor in drug compound library based on molecular docking and molecular dynamic simulation screening. CN114155918A2022
  103. PahikkalaT. AirolaA. PietiläS. Toward more realistic drug-target interaction predictions.Brief. Bioinform.201516232533710.1093/bib/bbu010 24723570
    [Google Scholar]
  104. HeT. HeidemeyerM. BanF. CherkasovA. EsterM. SimBoost: A read-across approach for predicting drug–target binding affinities using gradient boosting machines.J. Cheminform.2017912410.1186/s13321‑017‑0209‑z 29086119
    [Google Scholar]
  105. Al-LazikaniB. BanerjiU. WorkmanP. Combinatorial drug therapy for cancer in the post-genomic era.Nat. Biotechnol.201230767969210.1038/nbt.2284 22781697
    [Google Scholar]
  106. MurphyE.M. JimenezH.R. SmithS.M. Current clinical treatments of AIDS.Adv. Pharmacol.200856277310.1016/S1054‑3589(07)56002‑3 18086408
    [Google Scholar]
  107. TammaP.D. CosgroveS.E. MaragakisL.L. Combination therapy for treatment of infections with gram-negative bacteria.Clin. Microbiol. Rev.201225345047010.1128/CMR.05041‑11 22763634
    [Google Scholar]
  108. LiP. HuangC. FuY. Large-scale exploration and analysis of drug combinations.Bioinformatics201531122007201610.1093/bioinformatics/btv080 25667546
    [Google Scholar]
  109. WildenhainJ. SpitzerM. DolmaS. Prediction of synergism from chemical-genetic interactions by machine learning.Cell Syst.20151638339510.1016/j.cels.2015.12.003 27136353
    [Google Scholar]
  110. PreuerK. LewisR.P.I. HochreiterS. BenderA. BulusuK.C. KlambauerG. DeepSynergy: Predicting anti-cancer drug synergy with deep learning.Bioinformatics20183491538154610.1093/bioinformatics/btx806 29253077
    [Google Scholar]
  111. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑1211 17033654
    [Google Scholar]
  112. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  113. RoyU. RodríguezJ. BarberP. das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: From in vitro studies to clinical trials.Nanomedicine 201510243597360910.2217/nnm.15.160 26400459
    [Google Scholar]
  114. LiY. AbbaspourM.R. GrootendorstP.V. RauthA.M. WuX.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.Eur. J. Pharm. Biopharm.20159417017910.1016/j.ejpb.2015.04.028 25986587
    [Google Scholar]
  115. Muñiz CastroB ElbadawiM OngJJ Machine learning predicts 3D printing performance ofover 900 drug delivery systems. J Contr Release202133753045
    [Google Scholar]
  116. AlafeefM. SrivastavaI. PanD. Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization.ACS Sens.2020561689169810.1021/acssensors.0c00329 32466640
    [Google Scholar]
  117. MoumnéL. MarieA.C. CrouvezierN. Oligonucleotide therapeutics: From discovery and development to patentability.Pharmaceutics202214226010.3390/pharmaceutics14020260 35213992
    [Google Scholar]
  118. ChibaS. LimK.R.Q. SheriN. eSkip-Finder: A machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping.Nucleic Acids Res.202149W1W193-810.1093/nar/gkab442 34104972
    [Google Scholar]
  119. DarS.A. GuptaA.K. ThakurA. KumarM. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs.RNA Biol.201613111144115110.1080/15476286.2016.1229733 27603513
    [Google Scholar]
  120. MezianeF. VaderaS. KobbacyK. ProudloveN. Intelligent systems in manufacturing: Current developments and future prospects.Integrated Manuf. Syst.200011421823810.1108/09576060010326221
    [Google Scholar]
  121. SteinerS. WolfJ. GlatzelS. Organic synthesis in a modular robotic system driven by a chemical programming language.Science20193636423eaav221110.1126/science.aav2211 30498165
    [Google Scholar]
  122. FaureA. YorkP. RoweR.C. Process control and scale-up of pharmaceutical wet granulation processes: A review.Eur. J. Pharm. Biopharm.200152326927710.1016/S0939‑6411(01)00184‑9 11677069
    [Google Scholar]
  123. LandinM. Artificial intelligence tools for scaling up of high shear wet granulation process.J. Pharm. Sci.2017106127327710.1016/j.xphs.2016.09.022 27816264
    [Google Scholar]
  124. DasM.K. ChakrabortyT. ANN in pharmaceutical product and process development. In: In Artificial Neural Network for Drug Design, Delivery and Disposition.Elsevier201627729310.1016/B978‑0‑12‑801559‑9.00014‑4
    [Google Scholar]
  125. GamsM. HorvatM. OžekM. LuštrekM. GradišekA. Integrating artificial and human intelligence into tablet production process.AAPS PharmSciTech20141561447145310.1208/s12249‑014‑0174‑z 24970587
    [Google Scholar]
  126. KraftDL System and methods for the production of personalized drug products. US20120041778A1,2016
    [Google Scholar]
  127. AksuB. ParadkarA. de MatasM. ÖzerÖ. GüneriT. YorkP. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.Pharm. Dev. Technol.201318123624510.3109/10837450.2012.705294 22881350
    [Google Scholar]
  128. GohW.Y. LimC.P. PehK.K. SubariK. Application of a recurrent neural network to prediction of drug dissolution profiles.Neural Comput. Appl.200210431131710.1007/s005210200003
    [Google Scholar]
  129. DrăgoiE.N. CurteanuS. FissoreD. On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process.Dry. Technol.2013311728110.1080/07373937.2012.718308
    [Google Scholar]
  130. ReklaitisR. Towards intelligent decision support for pharmaceutical product development.PharmaHub2008
    [Google Scholar]
  131. WangX. Intelligent quality management using knowledge discovery in databases.International Conference on Computational Intelligence and Software EngineeringWuhan, China 11-13 December20091410.1109/CISE.2009.5364999
    [Google Scholar]
  132. HayM. ThomasD.W. CraigheadJ.L. EconomidesC. RosenthalJ. Clinical development success rates for investigational drugs.Nat. Biotechnol.2014321405110.1038/nbt.2786 24406927
    [Google Scholar]
  133. HarrerS. ShahP. AntonyB. HuJ. Artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.005 31326235
    [Google Scholar]
  134. FogelD.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.Contemp. Clin. Trials Commun.20181115616410.1016/j.conctc.2018.08.001 30112460
    [Google Scholar]
  135. PellatG. AnghelacheC. Towards intelligent decision support for pharmaceutical product development.J. Pharma. Innov.200612335
    [Google Scholar]
  136. Growth insight role of AI in the pharmaceutical industry, global 2019Available from: https://www.researchandmarkets.com/reports/4846380/growth-insight-role-of-ai-in-the
/content/journals/biot/10.2174/0118722083297406240313090140
Loading
/content/journals/biot/10.2174/0118722083297406240313090140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test