Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

The active ingredient in medicinal herbs has a considerable therapeutic impact. Historically, medicinal plants have been critical in helping people recover from unfavorable microbial infection-related illnesses. Therefore, we can use these plants as raw materials to make antibiotics.

Objectives

To summarize, several traditional herbs have antibacterial properties, and their use as a therapy option offers a successful treatment approach.

Methodology

A detailed study of literature was started by looking through many data sets from the Herbalist Library and well-known scientific databases like the Cochrane Library, PubMed, ScienceDirect, Web of Science, and Google Scholar. Literature focusing on herbs having antibiotic potential, specifically in the English language, from the years 1980 to 2023 was considered to be included in this review.

Results

In this review article, all the natural herbal antibiotics are summarised with their pharmacological effects as well as the active components responsible for their biological role. The current analysis provides thorough information on many medicinal plants examined over the last few decades in order to investigate possible herbal antibiotics for future treatment.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525302796240528080758
2024-07-08
2025-01-16
Loading full text...

Full text loading...

References

  1. National Center for Complementary and Integrative Health. Ayurvedic Medicine: In Depth.2019Available from: https://www.nccih.nih.gov/health/ayurvedic-medicine-in-depth [ cited on: 2023 Mar 21].
  2. Ahmad KhanM.S. AhmadI. Herbal Medicine.New Look to Phytomedicine201931310.1016/B978‑0‑12‑814619‑4.00001‑XAvailable from: https://www.sciencedirect.com/science/article/pii/B978012814619400001X [cited on: 2023 Mar 21].
    [Google Scholar]
  3. WHO global report on traditional and complementary medicine.2019Available from: https://www.who.int/publications/i/item/978924151536 [cited on: 2023 Mar 21].
  4. Traditional and Herbal Healing: Enhancing Allopathic Methods.Available from: https://pha.berkeley.edu/2021/04/10/traditional-and-herbal-healing-enhancing-allopathic-methods/ [cited on: 2023 Mar 21].
  5. LiuC. Overview on development of ASEAN traditional and herbal medicines.Chin. Herb. Med.202113444145010.1016/j.chmed.2021.09.002
    [Google Scholar]
  6. MathurA. PariharA.S. ModiS. KalraA. Photodynamic therapy for ESKAPE pathogens: An emerging approach to combat antimicrobial resistance (AMR).Microb. Pathog.202318310630710.1016/j.micpath.2023.106307
    [Google Scholar]
  7. SetzerS.M. RadS.J. SetzerW. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals.Antibiotics2016533010.3390/antibiotics5030030
    [Google Scholar]
  8. World Health Organisation World Health Organisation. Media Centre, Traditional Medicine 200820Available from: https://www.who.int/news-room/questions-and-answers/item/traditional-medicine
  9. ZhaoR. ZhangJ. GouQ. GaoJ. Popularity of Traditional Chinese Medicine Use Among Breast Cancer Patients in North China: A Cross-Sectional Study.Breast Cancer20231557758910.2147/BCTT.S416998
    [Google Scholar]
  10. AhmadS. ParveenA. ParveenB. ParveenR. Challenges and guidelines for clinical trial of herbal drugs.J. Pharm. Bioallied Sci.20157432933310.4103/0975‑7406.168035
    [Google Scholar]
  11. BanikD. BanikS. MondalM.K. The Challenge of Multi Drug Resistant Bacteria in Intensive Care Patient Management in Bangladesh.J. Bangladesh Society Anaesthesiol.2016271242610.3329/jbsa.v27i1.28995
    [Google Scholar]
  12. BhattacharyaS. BirR. MajumdarT. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a Tertiary Care Hospital, Tripura, Northeast India.J. Clin. Diagn. Res.201599DC0110.7860/JCDR/2015/13965.6417
    [Google Scholar]
  13. FrieriM. KumarK. BoutinA. Antibiotic resistance.J. Infect. Public Health201710436937810.1016/j.jiph.2016.08.007
    [Google Scholar]
  14. MacGowanA. MacnaughtonE. Antibiotic resistance.Medicine2017451062262810.1016/j.mpmed.2017.07.006
    [Google Scholar]
  15. MunitaJ.M. AriasC.A. Virulence mechanisms of bacterial pathogens.Mech. Antibiotic Res.20162248151110.1128/9781555819286.ch17
    [Google Scholar]
  16. GuptaR. SharmaS. Herbal antibiotics: A Review.Bull. Env. Pharmacol. Life Sci.20209136142
    [Google Scholar]
  17. RadS.J. Herbal Antibiotics: Moving back into the mainstream as an alternative for.Superbugs. Cell. Mol. Biol.201662912
    [Google Scholar]
  18. ChenH. LiS. Herbal Antibiotics for Treating Drug‐Resistant Bacteria.Herbal Drugs Manag. Infectious Dis.20221235310.1002/9781119818779.ch2
    [Google Scholar]
  19. WegenerT. Patterns and Trends in the Use of Herbal Products, Herbal Medicine and Herbal Medicinal Products.Int. J. Complement. Altern. Med.2017960031710.15406/ijcam.2017.09.00317
    [Google Scholar]
  20. IonescuM.I. Are Herbal Products an Alternative to Antibiotics?2017Available from: https://www.intechopen.com/chapters/57789
    [Google Scholar]
  21. NagS. SinghN. KumariaS. Phytochemicals as Antibacterial Agents: Current Status and Future Perspective: Alternatives to Antibiotics. Recent Trend.Future Pros.202293555
    [Google Scholar]
  22. BarbieriR. CoppoE. MarcheseA. DagliaM. SánchezS.E. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003
    [Google Scholar]
  23. AyazM. UllahF. SadiqA. UllahF. OvaisM. AhmedJ. DevkotaH.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance.Chem. Biol. Interact.201930829430310.1016/j.cbi.2019.05.050
    [Google Scholar]
  24. PatraA.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals.Dietary Phytochemicals and Microbes201213210.1007/978‑94‑007‑3926‑0_1
    [Google Scholar]
  25. Centers for Disease Control and Prevenation Centers for Disease Control and Prevenation. Biggest Threats and Data | Antibiotic/Antimicrobial Resistance| CDC.2019 Available from: https://www.cdc.gov/drugresistance/biggest-threats.html(Accessed on: march 21, 2023).
  26. World Health Organization. Antibiotic Resistance.2020 Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance[ cited on: 2023 Apr 25].
    [Google Scholar]
  27. SilhavyT.J. KahneD. WalkerS. The bacterial cell envelope.Cold Spring Harb. Perspect. Biol.201025a00041410.1101/cshperspect.a000414
    [Google Scholar]
  28. AlavI. KobylkaJ. KuthM.S. PosK.M. PicardM. BlairJ.M.A. BavroV.N. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria.Chem. Rev.202112195479559610.1021/acs.chemrev.1c00055
    [Google Scholar]
  29. KlenoticP.A. MorganC.E. YuE.W. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome.Fac. Rev.2021102410.12703/r/10‑24
    [Google Scholar]
  30. De PascaleG. WrightG.D. Antibiotic Resistance by Enzyme Inactivation: From Mechanisms to Solutions.ChemBioChem201011101325133410.1002/cbic.201000067
    [Google Scholar]
  31. WrightG. Bacterial resistance to antibiotics: Enzymatic degradation and modification.Adv. Drug Deliv. Rev.200557101451147010.1016/j.addr.2005.04.002
    [Google Scholar]
  32. LambertP. Bacterial resistance to antibiotics: Modified target sites.Adv. Drug Deliv. Rev.200557101471148510.1016/j.addr.2005.04.003
    [Google Scholar]
  33. WebberM.A. PiddockL.J. The importance of efflux pumps in bacterial antibiotic resistance.J. Antimicrob. Chemother.200351191110.1093/jac/dkg050
    [Google Scholar]
  34. SchaenzerA.J. WrightG.D. Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets.Trends Mol. Med.202026876878210.1016/j.molmed.2020.05.001
    [Google Scholar]
  35. UpmanyuN. MalviyaV.N. Antibiotics: Mechanisms of action and modern challenges.Microorganisms for Sustainable Environment and Health2020367382
    [Google Scholar]
  36. BraunerA. FridmanO. GefenO. BalabanN.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment.Nat. Rev. Microbiol.201614532033010.1038/nrmicro.2016.34
    [Google Scholar]
  37. DoiY. WachinoJ. ArakawaY. Aminoglycoside Resistance.Infect. Dis. Clin. North Am.201630252353710.1016/j.idc.2016.02.011
    [Google Scholar]
  38. RamirezM.S. TolmaskyM.E. Aminoglycoside modifying enzymes.Drug Resist. Updat.201013615117110.1016/j.drup.2010.08.003
    [Google Scholar]
  39. ZapunA. MartelC.C. VernetT. Penicillin-binding proteins and β-lactam resistance.FEMS Microbiol. Rev.200832236138510.1111/j.1574‑6976.2007.00095.x
    [Google Scholar]
  40. ZengD. DebabovD. HartsellT.L. CanoR.J. AdamsS. SchuylerJ.A. McMillanR. PaceJ.L. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance.Cold Spring Harb. Perspect. Med.2016612a02698910.1101/cshperspect.a026989
    [Google Scholar]
  41. PoehlsgaardJ. DouthwaiteS. The bacterial ribosome as a target for antibiotics.Nat. Rev. Microbiol.200531187088110.1038/nrmicro1265
    [Google Scholar]
  42. RobertsM.C. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes.FEMS Microbiol. Lett.2008282214715910.1111/j.1574‑6968.2008.01145.x
    [Google Scholar]
  43. SharkeyL.K.R. EdwardsT.A. O’NeillA.J. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.MBio201672e01975e1510.1128/mBio.01975‑15
    [Google Scholar]
  44. SchwarzS. ShenJ. KadlecK. WangY. MichaelB.G. FeßlerA.T. VesterB. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance.Cold Spring Harb. Perspect. Med.2016611a02703710.1101/cshperspect.a027037
    [Google Scholar]
  45. CorreiaS. PoetaP. HébraudM. CapeloJ.L. IgrejasG. Mechanisms of quinolone action and resistance: Where do we stand?J. Med. Microbiol.201766555155910.1099/jmm.0.000475
    [Google Scholar]
  46. SköldO. Sulfonamide resistance: mechanisms and trends.Drug Resist. Updat.20003315516010.1054/drup.2000.0146
    [Google Scholar]
  47. MarkleyJ.L. WencewiczT.A. Tetracycline-Inactivating Enzymes.Front. Microbiol.20189105810.3389/fmicb.2018.01058
    [Google Scholar]
  48. AnandU. HerreraJ.N. AltemimiA. LakhssassiN. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery.Metabolites201991125810.3390/metabo9110258
    [Google Scholar]
  49. ArseneMM JorelleAB SarraS ViktorovnaPI DavaresAK IngridNK SteveAA AndreevnaSL VyacheslavovnaYN CarimeBZ Short review on the potential alternatives to antibiotics in the era of antibiotic resistance.J Appl Pharm Sci202112102940
    [Google Scholar]
  50. BasappaK. Venu GopalJ. Natural Alternatives to Antibiotic Agents.AJBPS2013032414
    [Google Scholar]
  51. KhanalS. Mechanisms of Action of AntibioticsAn Overview.2023Available from: https://microbeonline.com/mechanisms-of-action-of-antibiotics-an-overview/ [cited on: 2023 Mar 24].
    [Google Scholar]
  52. BushK. Antimicrobial agents targeting bacterial cell walls and cell membranes.Rev. Sci. Tech.2012311435610.20506/rst.31.1.2096
    [Google Scholar]
  53. PancuD.F. ScurtuA. MacasoiI.G. MartiD. MiocM. SoicaC. CoricovacD. HorhatD. PoenaruM. DeheleanC. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening.Antibiotics202110440110.3390/antibiotics10040401
    [Google Scholar]
  54. GuptaR. SharmaS. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis.Indian J. Med. Res.2022156346447710.4103/ijmr.IJMR_3514_20
    [Google Scholar]
  55. ChaiebK. HajlaouiH. ZmantarT. NakbiK.A.B. RouabhiaM. MahdouaniK. BakhroufA. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review.Phytother. Res.200721650150610.1002/ptr.2124
    [Google Scholar]
  56. LomaratP. PhanthongP. WongsariyaK. ChomnawangM.T. BunyapraphatsaraN. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.Pak. J. Pharm. Sci.2013263473477
    [Google Scholar]
  57. BhatwalkarS.B. MondalR. KrishnaS.B.N. AdamJ.K. GovenderP. AnupamR. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum).Front. Microbiol.20211261307710.3389/fmicb.2021.613077
    [Google Scholar]
  58. GrzannaR. LindmarkL. FrondozaC.G. Ginger—An herbal medicinal product with broad anti-inflammatory actions.J. Med. Food200582125132
    [Google Scholar]
  59. ChmitM. KanaanH. HabibJ. AbbassM. McheikA. ChokrA. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon.Asian Pac. J. Trop. Med.2014S1546552
    [Google Scholar]
  60. MesomoM.C. CorazzaM.L. NdiayeP.M. SantaD.O.R. CardozoL. ScheerA.P. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity.J. Supercrit. Fluids201380444910.1016/j.supflu.2013.03.031
    [Google Scholar]
  61. WijesundaraN.M. RupasingheH.P.V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes.Microb. Pathog.2018117611812710.1016/j.micpath.2018.02.026
    [Google Scholar]
  62. MohammedW.F. SalehB.H. IbrahimR.N. HassanM.B. Antibacterial activity of Zingiber officinale (Ginger) against clinical bacterial isolates.South Asian J. Res. Microbiol.2019321710.9734/sajrm/2019/v3i230080
    [Google Scholar]
  63. JeenaK. LijuV.B. KuttanR. A preliminary 13-week oral toxicity study of ginger oil in male and female Wistar rats.Int. J. Toxicol.201130666267010.1177/1091581811419023
    [Google Scholar]
  64. NassanM.A. MohamedE.H. AbdelhafezS. IsmailT.A. Effect of clove and cinnamon extracts on experimental model of acute hematogenous pyelonephritis in albino rats: Immunopathological and antimicrobial study.Int. J. Immunopathol. Pharmacol.2015281606810.1177/0394632015572075
    [Google Scholar]
  65. BurtS. Essential oils: Their antibacterial properties and potential applications in foods—A review.Int. J. Food Microbiol.200494322325310.1016/j.ijfoodmicro.2004.03.022
    [Google Scholar]
  66. XuJ.G. LiuT. HuQ.P. CaoX.M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus.Molecules2016219119410.3390/molecules21091194
    [Google Scholar]
  67. BadeiA. FaheldS. El-AkelA. MahmoudB. Application of some spices in flavoring and preservation of cookies: 2-Antimicrobial and sensory properties of cardamom, cinnamon and clove.Dtsch. Lebensmitt. Rundsch.200298261265
    [Google Scholar]
  68. ShanB. CaiY.Z. BrooksJ.D. CorkeH. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork.J. Sci. Food Agric.200989111879188510.1002/jsfa.3667
    [Google Scholar]
  69. LiuG.Q. ZhangL.L. ZongK. WangA.M. YuX.F. Effects of spices essential oils on the spoilage-related microbiota in chilled pork stored in antimicrobial pack.Food Sci. Technol. Res.201218569570410.3136/fstr.18.695
    [Google Scholar]
  70. AssiriA.M.A. ElbannaK. AbulreeshH.H. RamadanM.F. Bioactive Compounds of Cold-pressed Thyme (<i>Thymus vulgaris</i>) Oil with Antioxidant and Antimicrobial Properties.J. Oleo Sci.201665862964010.5650/jos.ess16042
    [Google Scholar]
  71. Al MaqtariM. AlghalibiS.M. AlhamzyE.H. Chemical composition and antimicrobial activity of essential oil of Thymus vulgaris from Yemen.Turk. J. Biochem.201136342349
    [Google Scholar]
  72. VargaE. BardoczA. BelakA. Antimicrobial activity and chemical composition of thyme essential oils and the polyphenolic content of different thymus extracts.Farmacia201563357361
    [Google Scholar]
  73. ArmasR.J. AcevedoA.J. SnchezO.M. PachecoP.M. LunaC.A. CevallosR.N. GuerreroJ.H. VargasH.J. CaldernH.O. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats.Toxicol. Res.201935322523210.5487/TR.2019.35.3.225
    [Google Scholar]
  74. VasconcelosN.G. CrodaJ. SimionattoS. Antibacterial mechanisms of cinnamon and its constituents: A review.Microb. Pathog.201812019820310.1016/j.micpath.2018.04.036
    [Google Scholar]
  75. TungY.T. ChuaM.T. WangS.Y. ChangS.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs.Bioresour. Technol.20089993908391310.1016/j.biortech.2007.07.050
    [Google Scholar]
  76. VangalapatiM. SatyaN.S. PrakashD.S. AvanigaddaS. A review on pharmacological activities and clinical effects of cinnamon species.Res. J. Pharm. Biol. Chem. Sci.201231653663
    [Google Scholar]
  77. GuerraF.Q.S. MendesJ.M. SousaJ.P. BragaM.M.F.B. SantosB.H.C. CoutinhoM.H.D. LimaE.O. Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp by essential oils of Citrus limon and Cinnamomum zeylanicum.Nat. Prod. Res.201226232235223810.1080/14786419.2011.647019
    [Google Scholar]
  78. MaririA.A. SafiM. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria.Iran. J. Med. Sci.20143913643
    [Google Scholar]
  79. NabaviS. Di LorenzoA. IzadiM. SánchezS.E. DagliaM. NabaviS. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries.Nutrients2015797729774810.3390/nu7095359
    [Google Scholar]
  80. KwonJ.A. YuC.B. ParkH.D. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus.Lett. Appl. Microbiol.2003371616510.1046/j.1472‑765X.2003.01350.x
    [Google Scholar]
  81. MuñozM. PagánT.N. PeiróR. GuijarroR. MoreirasS.A.M. VerdeguerM. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops.Agronomy202010679110.3390/agronomy10060791
    [Google Scholar]
  82. RanasingheP. JayawardenaR. PigeraS. WathurapathaW.S. WeeratungaH.D. PremakumaraG.A.S. KatulandaP. ConstantineG.R. GalappaththyP. Evaluation of pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: A phase I clinical trial.BMC Complement. Altern. Med.201717155010.1186/s12906‑017‑2067‑7
    [Google Scholar]
  83. HelanderI.M. AlakomiH.L. Latva-KalaK. SandholmM.T. PolI. SmidE.J. GorrisL.G.M. von WrightA. Characterization of the action of selected essential oil components on Gram-negative bacteria.J. Agric. Food Chem.19984693590359510.1021/jf980154m
    [Google Scholar]
  84. BoualiN. HamadouW.S. BadraouiR. LajimiR.H. HamdiA. AlreshidiM. AdnanM. SouaZ. SiddiquiA.J. NoumiE. SnoussiM. Phytochemical composition, antioxidant, and anticancer activities of Sidr Honey: In vitro and in silico computational investigation.Life20221313510.3390/life13010035
    [Google Scholar]
  85. MolanP.C. The antibacterial activity of honey: 1. The nature of the antibacterial activity.Bee World199273152810.1080/0005772X.1992.11099109
    [Google Scholar]
  86. AlmasaudiS. The antibacterial activities of honey.Saudi J. Biol. Sci.20212842188219610.1016/j.sjbs.2020.10.017
    [Google Scholar]
  87. TsengJ.M. HuangJ.R. HuangH.C. TzenJ.T.C. ChouW.M. PengC.C. Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil‐body system.Biotechnol. Prog.201127115316110.1002/btpr.528
    [Google Scholar]
  88. WalA. WalP. GuptaD. Nutraceuticals: New perspective and approach to prevent dysmenorrhea.Curr. Nutr. Food Sci.2022818
    [Google Scholar]
  89. ArmentaV.F.J. EspinozaS.B.A. ValenzuelaC.M.R. AguilarG.G.A. NazzaroF. FratianniF. ZavalaA.J.F. Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables.J. Food Sci. Technol.201754103192320010.1007/s13197‑017‑2759‑5
    [Google Scholar]
  90. YamaniH.A. PangE.C. MantriN. DeightonM.A. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria.Front. Microbiol.2016768110.3389/fmicb.2016.00681
    [Google Scholar]
  91. LawalB. ShittuO.K. OibiokpaF.I. MohammedH. UmarS.I. HarunaG.M. Antimicrobial evaluation, acute and sub-acute toxicity studies of Allium sativum.J. Acute Dis.20165429630110.1016/j.joad.2016.05.002
    [Google Scholar]
  92. SharmaM. VohraS. ArnasonJ.T. HudsonJ.B. Echinacea. Extracts contain significant and selective activities against human pathogenic bacteria.Pharm. Biol.2008461-211111610.1080/13880200701734919
    [Google Scholar]
  93. HudsonJ.B. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases.BioMed Res. Int.20122012769896
    [Google Scholar]
  94. PleschkaS. SteinM. SchoopR. HudsonJ.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV).Virol. J.20096119710.1186/1743‑422X‑6‑197
    [Google Scholar]
  95. MandalS.K. MajiA.K. MishraS.K. IshfaqP.M. DevkotaH.P. SilvaA.S. DasN. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues.Pharmacol. Res.202016010508510.1016/j.phrs.2020.105085
    [Google Scholar]
  96. ScazzocchioF. CometaM.F. TomassiniL. PalmeryM. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids.Planta Med.200167656156410.1055/s‑2001‑16493
    [Google Scholar]
  97. MohamedA.A. AliS.I. EL-Baz, F.K.; Hegazy, A.K.; Kord, M.A. Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin.Ind. Crops Prod.201457101610.1016/j.indcrop.2014.03.017
    [Google Scholar]
  98. ShaikJ. K, V.; D, R. Evaluation of antibacterial activity of Commiphora myrrha against antibiotic resistant clinical pathogens.Indian J. Pharmaceutical Biol. Res.201533071110.30750/ijpbr.3.3.2
    [Google Scholar]
  99. AlhussainiM.S. SaadabiA.M. AlghonaimM.I. IbrahimK.E. An evaluation of the antimicrobial activity of Commiphora myrrha Nees (Engl.) oleo-gum resins from Saudi Arabia.J. Med. Sci.201515419820310.3923/jms.2015.198.203
    [Google Scholar]
  100. MiljkovićV. NikolićG. KrstevM.T.M. ArsićB. Antibacterial activities of fruits extracts of three mulberry species (Morus alba L., Morus rubra L. and Morus nigra L.) and bilberry (Vaccinium myrtillus L.).Acta Medica Med.2018573051210.5633/amm.2018.0301
    [Google Scholar]
  101. YangJ.Y. LeeH.S. Evaluation of antioxidant and antibacterial activities of morin isolated from mulberry fruits (Morus alba L.).J. Korean Soc. Appl. Biol. Chem.201255448548910.1007/s13765‑012‑2110‑9
    [Google Scholar]
  102. SuriyapromS. KaewkodT. PromputthaI. DesvauxM. TragoolpuaY. Evaluation of antioxidant and antibacterial activities of white mulberry (Morus alba L.) fruit extracts.Plants20211012273610.3390/plants10122736
    [Google Scholar]
  103. YimamM. JiaoP. HongM. BrownellL. KimH.J. LeeY.C. JiaQ. Repeated dose 28-day oral toxicity study of a botanical composition composed of Morus alba and Acacia catechu in rats.Regul. Toxicol. Pharmacol.20189411512310.1016/j.yrtph.2018.01.024
    [Google Scholar]
  104. PereiraA. FerreiraI. MarcelinoF. ValentãoP. AndradeP. SeabraR. EstevinhoL. BentoA. PereiraJ. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves.Molecules20071251153116210.3390/12051153
    [Google Scholar]
  105. MedinaE. BrenesM. GarcíaA. RomeroC. De CastroA. Bactericidal activity of glutaraldehyde-like compounds from olive products.J. Food Prot.200972122611261410.4315/0362‑028X‑72.12.2611
    [Google Scholar]
  106. MalikS.N. Antibacterial activity of olive (Olea europaea) leaves and arugula (Eruca sativa) seeds extract.Int. J. Pharmacogn. Phytochem. Res.201572307310
    [Google Scholar]
  107. GuexC.G. ReginatoF.Z. FigueredoK.C. da SilvaA.R.H. PiresF.B. JesusR.S. LhamasC.L. LopesG.H.H. BauermannL.F. Safety assessment of ethanolic extract of Olea europaea L. leaves after acute and subacute administration to Wistar rats.Regul. Toxicol. Pharmacol.20189539539910.1016/j.yrtph.2018.04.013
    [Google Scholar]
  108. LachmanJ. OrsákM. HejtmánkováA. KovářováE. Evaluation of antioxidant activity and total phenolics of selected Czech honeys.Lebensm. Wiss. Technol.2010431525810.1016/j.lwt.2009.06.008
    [Google Scholar]
  109. CollinsW. LowenN. BlakeD.J. Caffeic acid esters are effective bactericidal compounds against Paenibacillus larvae by altering intracellular oxidant and antioxidant levels.Biomolecules20199831210.3390/biom9080312
    [Google Scholar]
  110. SnuossiM. TrabelsiN. Ben TalebS. DehmeniA. FlaminiG. De FeoV. Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish.Molecules20162110141410.3390/molecules21101414
    [Google Scholar]
  111. StokesJ.M. YangK. SwansonK. JinW. RuizC.A. DonghiaN.M. MacNairC.R. FrenchS. CarfraeL.A. AckermannB.Z. TranV.M. PepeC.A. BadranA.H. AndrewsI.W. ChoryE.J. ChurchG.M. BrownE.D. JaakkolaT.S. BarzilayR. CollinsJ.J. A deep learning approach to antibiotic discovery.Cell20201804688702.e1310.1016/j.cell.2020.01.021
    [Google Scholar]
  112. NasutionA.K. WijayaS.H. GaoP. IslamR.M. HuangM. OnoN. KanayaS. AminA.U.M. Prediction of potential natural antibiotics plants based on jamu formula using random forest classifier.Antibiotics2022119119910.3390/antibiotics11091199
    [Google Scholar]
  113. KimJ.H. Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria.J. Nihon Univ. Sch. Dent.199739313614110.2334/josnusd1959.39.136
    [Google Scholar]
  114. RamosF.A. TakaishiY. ShirotoriM. KawaguchiY. TsuchiyaK. ShibataH. HigutiT. TadokoroT. TakeuchiM. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin.J. Agric. Food Chem.200654103551355710.1021/jf060251c
    [Google Scholar]
  115. AgrawalH. RanjanS. KishoreG. BhattJ.P. GuptaS. In vitro antibacterial activity of Alliumhumile.Academic Arena.201028386
    [Google Scholar]
  116. CechN. JunioH. AckermannL. KavanaughJ. HorswillA. Quorum Quenching and Antimicrobial Activity of Goldenseal (Hydrastis canadensis) against Methicillin-Resistant Staphylococcus aureus (MRSA).Planta Med.201278141556156110.1055/s‑0032‑1315042
    [Google Scholar]
  117. HuQ. ZhouM. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field.J. Food Sci.20188361476148310.1111/1750‑3841.14180
    [Google Scholar]
  118. KumarM. SaurabhV. TomarM. HasanM. ChanganS. SasiM. MaheshwariC. PrajapatiU. SinghS. PrajapatR.K. DhumalS. PuniaS. AmarowiczR. MekhemarM. Mango (Mangifera indica L.) Leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities.Antioxidants202110229910.3390/antiox10020299
    [Google Scholar]
  119. FeiP. AliM.A. GongS. SunQ. BiX. LiuS. GuoL. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii.Food Control20189428929410.1016/j.foodcont.2018.07.022
    [Google Scholar]
  120. LiuY. McKeeverL.C. MalikN.S.A. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens.Front. Microbiol.2017811310.3389/fmicb.2017.00113
    [Google Scholar]
  121. WylieM.R. MerrellD.S. The Antimicrobial Potential of the Neem Tree Azadirachta indica.Front. Pharmacol.20221389153510.3389/fphar.2022.891535
    [Google Scholar]
  122. BhattacharjeeM.K. AleneziT. Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria.Future Sci. OA202064FSO45810.2144/fsoa‑2019‑0121
    [Google Scholar]
  123. GarciaR.I. EspinozaS.B.A. RamirezO.L.A. LeyvaJ.M. SiddiquiM.W. ValenzuelaC.M.R. AguilarG.G.A. ZavalaA.J.F. Oregano essential oil as an antimicrobial and antioxidant additive in food products.Crit. Rev. Food Sci. Nutr.201656101717172710.1080/10408398.2013.800832
    [Google Scholar]
  124. NzeakoB.C. Al-KharousiZ.S. Al-MahrooquiZ. Antimicrobial activities of clove and thyme extracts.Sultan Qaboos Univ. Med. J.2006613339
    [Google Scholar]
  125. ParkM. BaeJ. LeeD.S. Antibacterial activity of [10]‐gingerol and [12]‐gingerol isolated from Ginger rhizome against periodontal bacteria.Phytother. Res.200822111446144910.1002/ptr.2473
    [Google Scholar]
  126. FirminoD.F. CavalcanteT.T.A. GomesG.A. FirminoN.C.S. RosaL.D. de CarvalhoM.G. CatundaF.E.A. Jr Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities.Scientific World J.201820181910.1155/2018/7405736
    [Google Scholar]
  127. IlićD. NikolićV. ĆirićA. SokovićM. StanojkovićT. KundakovićT. StankovićM. NikolićL. Cytotoxicity and antimicrobial activity of allicin and its transformation products.J. Med. Plants Res.2012615965
    [Google Scholar]
  128. HwangB.Y. RobertsS.K. ChadwickL.R. WuC.D. KinghornA.D. Antimicrobial constituents from goldenseal (the Rhizomes of Hydrastis canadensis) against selected oral pathogens.Planta Med.200369762362710.1055/s‑2003‑41115
    [Google Scholar]
  129. DeviK.P. NishaS.A. SakthivelR. PandianS.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella Typhi by disrupting the cellular membrane.J. Ethnopharmacol.20101301107115
    [Google Scholar]
  130. BisignanoG. TomainoA. CascioR.L. CrisafiG. UccellaN. SaijaA. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol.J. Pharm. Pharmacol.201051897197410.1211/0022357991773258
    [Google Scholar]
  131. KimD. KangK.H. Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms.Int. J. Environ. Res. Public Health2022199498410.3390/ijerph19094984
    [Google Scholar]
  132. da CunhaR.B. FonsecaL.P. CaladoC.R.C. Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning.Appl. Microbiol. Biotechnol.202110531269128610.1007/s00253‑021‑11102‑7
    [Google Scholar]
  133. TelesA.M. dos SantosB.A. FerreiraC.G. MouchreckA.N. CalabreseS.K. Abreu-SilvaA.L. SouzaA.F. Ginger (Zingiber officinale) antimicrobial potential: A review Ginger Cultivation Antimicr. Pharmacol. Potentials; Intechopen2019101
    [Google Scholar]
  134. JohnstonC.W. SkinniderM.A. DejongC.A. ReesP.N. ChenG.M. WalkerC.G. FrenchS. BrownE.D. BérdyJ. LiuD.Y. MagarveyN.A. Assembly and clustering of natural antibiotics guides target identification.Nat. Chem. Biol.201612423323910.1038/nchembio.2018
    [Google Scholar]
  135. BjarnsholtT. CiofuO. MolinS. GivskovM. HøibyN. Applying insights from biofilm biology to drug development — can a new approach be developed?Nat. Rev. Drug Discov.2013121079180810.1038/nrd4000
    [Google Scholar]
  136. BorgesA. AbreuA. DiasC. SaavedraM. BorgesF. SimõesM. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms.Molecules201621787710.3390/molecules21070877
    [Google Scholar]
  137. BergerR.G. Bioactivity of essential oils and their components. Flavors and Fragrances: Chemistry, Bioprocessing, and Sustainability.BerlinSpringer2007889010.1007/978‑3‑540‑49339‑6
    [Google Scholar]
/content/journals/aia/10.2174/0122113525302796240528080758
Loading
/content/journals/aia/10.2174/0122113525302796240528080758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test