Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

Antiviral compounds from plant origin have been the focus of researchers throughout the world for a long time as the potential alternative to classical antiviral therapies. The search for antiviral phytochemicals comes into the limelight amidst the recent COVID-19 pandemic. This tremendous surge in the hunt for effective and alternative treatment from the plant source is mainly due to the toxicity and inadequate responses of synthetic antiviral drugs to resistant viral strains.

Methods

A comprehensive literature survey on the antiviral activity of bioactive compounds from the genus was conducted using known and widely acknowledged scientific databases.

Results

This in-depth review is prepared to shed light on the promising effect of the bioactive phytochemicals isolated from different spp. against some of the most pathogenically relevant viruses such as Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Influenza Virus, Hepatitis C Virus (HCV), Herpes Simplex Virus (HSV), Japanese Encephalitis Virus (JEV), Dengue Virus (DENV), and Chikungunya Virus (CHIKV). Bioactive compounds such as ursolic acid, sugiol, and quercetin are reported to prevent virus-host cell adhesion. Harpagide is found to reduce intracellular Ca2+ and mitochondrial stress in infected cells, preventing viral infection. Researchers reported the efficacy of β-sitosterol in inhibiting immune responses RIG-I signalling and IFN production. Rengyolone is found to mitigate viral infection by preventing acute inflammation. Betulinic acid, tricin, and oleanolic acid are found to prevent IAV and HIV replication. Evidence has also suggested the possible action of kaempferol, acacetin and apigenin to inhibit mRNA and protein production in virus-infected cells.

Conclusion

Future research should be oriented towards the isolation and quantitation of these bioactive compounds from , along with their efficacy both and prior to their clinical applications in combating a variety of viral infections.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525305139240629084443
2024-07-23
2025-01-16
Loading full text...

Full text loading...

References

  1. IrwinK.K. RenzetteN. KowalikT.F. JensenJ.D. Antiviral drug resistance as an adaptive process.Virus Evol.201621vew01410.1093/ve/vew014 28694997
    [Google Scholar]
  2. RibeiroR.M. BonhoefferS. NowakM.A. The frequency of resistant mutant virus before antiviral therapy.AIDS199812546146510.1097/00002030‑199805000‑00006 9543443
    [Google Scholar]
  3. BiswasD. NandyS. MukherjeeA. PandeyD.K. DeyA. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review.S. Afr. J. Bot.202012927228210.1016/j.sajb.2019.07.049
    [Google Scholar]
  4. VaouN. StavropoulouE. VoidarouC. TsigalouC. BezirtzoglouE. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms9102041 34683362
    [Google Scholar]
  5. ThomasE. StewartL.E. DarleyB.A. PhamA.M. EstebanI. PandaS.S. Plant-based natural products and extracts: Potential source to develop new antiviral drug candidates.Molecules20212620619710.3390/molecules26206197 34684782
    [Google Scholar]
  6. AmbroseJ.M. KullappanM. PatilS. AlzahraniK.J. BanjerH.J. QashqariF.S.I. RajA.T. BhandiS. VeeraraghavanV.P. JayaramanS. SekarD. AgarwalA. SwapnavahiniK. Krishna MohanS. Plant-derived antiviral compounds as potential entry inhibitors against spike protein of sars-cov-2 wild-type and delta variant: An integrative in silico approach.Molecules2022276177310.3390/molecules27061773 35335139
    [Google Scholar]
  7. MohanS. Elhassan TahaM.M. MakeenH.A. AlhazmiH.A. Al BrattyM. SultanaS. AhsanW. NajmiA. KhalidA. Bioactive natural antivirals: An updated review of the available plants and isolated molecules.Molecules20202521487810.3390/molecules25214878 33105694
    [Google Scholar]
  8. PereraC. EfferthT. Antiviral medicinal herb and phytochemicals.J Pharmacogn201234548
    [Google Scholar]
  9. DagliaM. Polyphenols as antimicrobial agents.Curr. Opin. Biotechnol.201223217418110.1016/j.copbio.2011.08.007 21925860
    [Google Scholar]
  10. WinkM. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19.Diversity202012517510.3390/d12050175
    [Google Scholar]
  11. LoweH. SteeleB. BryantJ. FouadE. ToyangN. NgwaW. Antiviral activity of Jamaican medicinal plants and isolated bioactive compounds.Molecules202126360710.3390/molecules26030607 33503834
    [Google Scholar]
  12. KapoorR. SharmaB. KanwarS.S. Antiviral phytochemicals: An overview.Biochem. Physiol.2017621710.4172/2168‑9652.1000220
    [Google Scholar]
  13. WangJ.H. LuanF. HeX.D. WangY. LiM.X. Traditional uses and pharmacological properties of Clerodendrum phytochemicals.J. Tradit. Complement. Med.201881243810.1016/j.jtcme.2017.04.001 29321986
    [Google Scholar]
  14. ChangI.M. Antiviral activity of aucubin against hepatitis B virus replication.Phytother. Res.199711318919210.1002/(SICI)1099‑1573(199705)11:3<189::AID‑PTR67>3.0.CO;2‑R
    [Google Scholar]
  15. AbdullahF.O. HussainF.H.S. SardarA.S. GilardoniG. TosiS. VidariG. Iridoids isolation from a phytochemical study of the medicinal plant Teucrium parviflorum collected in Iraqi Kurdistan.Molecules20222718596310.3390/molecules27185963 36144699
    [Google Scholar]
  16. KwonE.B. YangH.J. KimY.S. LiW. ChoiJ.G. 8-O-(E-p-methoxycinnamoyl) harpagide inhibits influenza A virus infection by suppressing intracellular calcium.Molecules2021264102910.3390/molecules26041029 33672072
    [Google Scholar]
  17. BermejoP. AbadM.J. DíazA.M. FernándezL. SantosJ.D. SanchezS. VillaescusaL. CarrascoL. IrurzunA. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia.Planta Med.200268210611010.1055/s‑2002‑20238 11859457
    [Google Scholar]
  18. BajpaiV.K. KimN.H. KimK. KangS.C. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides.Pak. J. Pharm. Sci.2016293Suppl.10771080 27383486
    [Google Scholar]
  19. FadipeV.O. OpokuA.R. SinghM. PereiraA.R. RijoP. MongaloN.I. Antimycobacterial, antiplasmodial studies and cytotoxicity of oleanolic acid and its derivative from Syzygium aromaticum Linn (Myrtaceae).Biomed. Biopharm. Res. J.202017211210.19277/bbr.17.2.233
    [Google Scholar]
  20. CuiE.J. Hwang-BoJ. ParkJ.H. BaekN.I. KimJ. HongS.G. ChungI.S. 3-O-Acetyloleanolic acid exhibits anti-angiogenic effects and induces apoptosis in human umbilical vein endothelial cells.Biotechnol. Lett.201335111807181510.1007/s10529‑013‑1266‑7 23801119
    [Google Scholar]
  21. Siwe-NoundouX. NdintehD.T. OlivierD.K. MnkandhlaD. IsaacsM. MuganzaF.M. MbaforJ.T. Van VuurenS.F. PatnalaS. HoppeH. KrauseR.W.M. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation.S. Afr. J. Bot.201912249850310.1016/j.sajb.2018.08.010
    [Google Scholar]
  22. AlvesT. Souza-MoreiraT. ValentiniS. ZanelliC. FurlanM. Friedelin in Maytenus ilicifolia is produced by friedelin synthase isoforms.Molecules201823370010.3390/molecules23030700 29558378
    [Google Scholar]
  23. KarP. SharmaN.R. SinghB. SenA. RoyA. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation.J. Biomol. Struct. Dyn.202139134774478510.1080/07391102.2020.1780947 32552595
    [Google Scholar]
  24. UhomoibhiJ.O.O. ShodeF.O. IdowuK.A. SabiuS. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2.J. Mol. Graph. Model.202211410818510.1016/j.jmgm.2022.108185 35430474
    [Google Scholar]
  25. MusA.A. GohL.P.W. MarbawiH. GansauJ.A. The biosynthesis and medicinal properties of taraxerol.Biomedicines202210480710.3390/biomedicines10040807 35453556
    [Google Scholar]
  26. MujwarS. HarwanshR.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19.Struct. Chem.20223351517152810.1007/s11224‑022‑01943‑x 35502321
    [Google Scholar]
  27. Oliveira-CostaJ.F. MeiraC.S. NevesM.V.G. Dos ReisB.P.Z.C. SoaresM.B.P. das Neves MVGD, Dos Reis BPZC, Soares MBP. Anti-inflammatory activities of betulinic acid: A review.Front. Pharmacol.20221388385710.3389/fphar.2022.883857 35677426
    [Google Scholar]
  28. KazakovaO.B. SmirnovaI.E. BaltinaL.A. BorekoE.I. SavinovaO.V. PokrovskiiA.G. Antiviral activity of acyl derivatives of betulin and betulinic and Dihydroquinopimaric acids.Russ. J. Bioorganic Chem.201844674074410.1134/S1068162018050059
    [Google Scholar]
  29. HuangQ. ChenH. LuoX. ZhangY. YaoX. ZhengX. Structure and anti-HIV activity of betulinic acid analogues.Curr. Med. Sci.201838338739710.1007/s11596‑018‑1891‑4 30074203
    [Google Scholar]
  30. LoeM.W.C. HaoE. ChenM. LiC. LeeR.C.H. ZhuI.X.Y. TeoZ.Y. ChinW.X. HouX. DengJ. ChuJ.J.H. Betulinic acid exhibits antiviral effects against dengue virus infection.Antiviral Res.202018410495410.1016/j.antiviral.2020.104954 33080251
    [Google Scholar]
  31. PeyratL.A. EparvierV. EydouxC. GuillemotJ.C. LitaudonM. StienD. Betulinic acid, the first lupane-type triterpenoid isolated from both a Phomopsis sp. and its host plant diospyros Carbonaria benoist.Chem. Biodivers.2017141e160017110.1002/cbdv.201600171 27568476
    [Google Scholar]
  32. AlhadramiH.A. SayedA.M. SharifA.M. AzharE.I. RatebM.E. Olive-derived triterpenes suppress SARS CoV-2 main protease: A promising scaffold for future therapeutics.Molecules2021269265410.3390/molecules26092654 34062737
    [Google Scholar]
  33. WuH.F. Morris-NatschkeS.L. XuX.D. YangM.H. ChengY.Y. YuS.S. LeeK.H. Recent advances in natural anti‐HIV triterpenoids and analogs.Med. Res. Rev.20204062339238510.1002/med.21708 32666531
    [Google Scholar]
  34. ChrobakE. MarciniecK. DąbrowskaA. PęcakP. BębenekE. Kadela-TomanekM. BakA. JastrzębskaM. BoryczkaS. New phosphorus analogs of Bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study.Int. J. Mol. Sci.20192020520910.3390/ijms20205209 31640137
    [Google Scholar]
  35. XiaoS. TianZ. WangY. SiL. ZhangL. ZhouD. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives.Med. Res. Rev.201838395197610.1002/med.21484 29350407
    [Google Scholar]
  36. MlalaS. OyedejiA.O. GondweM. OyedejiO.O. Ursolic acid and its derivatives as bioactive agents.Molecules20192415275110.3390/molecules24152751 31362424
    [Google Scholar]
  37. CargninS.T. GnoattoS.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties.Food Chem.201722047748910.1016/j.foodchem.2016.10.029 27855928
    [Google Scholar]
  38. SunQ. HeM. ZhangM. ZengS. ChenL. ZhouL. XuH. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model.Fitoterapia202014710473510.1016/j.fitote.2020.104735 33010369
    [Google Scholar]
  39. YangX. ZhaoJ. MaC. HattoriM. Inhibition of HIV-1 protease in vitro with escins and ursolic acid derivatives.Zhongguo Xin Yao Zazhi200716366369
    [Google Scholar]
  40. KongL. LiS. LiaoQ. ZhangY. SunR. ZhuX. ZhangQ. WangJ. WuX. FangX. ZhuY. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity.Antiviral Res.2013981445310.1016/j.antiviral.2013.02.003 23422646
    [Google Scholar]
  41. SongG. ShenX. LiS. LiY. LiuY. ZhengY. LinR. FanJ. YeH. LiuS. Structure–activity relationships of 3-O-β-chacotriosyl ursolic acid derivatives as novel H5N1 entry inhibitors.Eur. J. Med. Chem.20159343144210.1016/j.ejmech.2015.02.029 25728024
    [Google Scholar]
  42. MengoniF. LichtnerM. BattinelliL. MarziM. MastroianniC.M. VulloV. MazzantiG. FanJ. YeH. LiuS. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells.Planta Med.200268211111410.1055/s‑2002‑20256 11859458
    [Google Scholar]
  43. KhwazaV. OyedejiO. AderibigbeB. Antiviral activities of oleanolic acid and its analogues.Molecules2018239230010.3390/molecules23092300 30205592
    [Google Scholar]
  44. YuF. WangQ. ZhangZ. PengY. QiuY. ShiY. ZhengY. XiaoS. WangH. HuangX. ZhuL. ChenK. ZhaoC. ZhangC. YuM. SunD. ZhangL. ZhouD. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors.J. Med. Chem.201356114300431910.1021/jm301910a 23662817
    [Google Scholar]
  45. LiJ.L. Mechanism of sovereign medicines in Sanren Decoction on COVID-19 based on network pharmacology and molecular docking.Chin. Tradit. Herbal Drugs2020512345235310.7501/j.issn.0253‑2670.2020.09.008
    [Google Scholar]
  46. LiuY. YangL. WangH. XiongY. Recent advances in antiviral activities of triterpenoids.Pharmaceuticals20221510116910.3390/ph15101169 36297280
    [Google Scholar]
  47. SiddiqueH.R. SaleemM. Beneficial health effects of lupeol triterpene: A review of preclinical studies.Life Sci.2011887-828529310.1016/j.lfs.2010.11.020 21118697
    [Google Scholar]
  48. EspositoF. MandroneM. Del VecchioC. CarliI. DistintoS. CoronaA. LianzaM. PianoD. TacchiniM. MaccioniE. CottigliaF. SacconE. PoliF. ParolinC. TramontanoE. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action.Pathog. Dis.20177561510.1093/femspd/ftx065 28637198
    [Google Scholar]
  49. SharmaN. PaliaP. ChaudharyA. Shalini; Verma, K.; Kumar, I. A review on pharmacological activities of lupeol and its triterpene derivatives.J. Drug Deliv. Ther.202010532533210.22270/jddt.v10i5.4280
    [Google Scholar]
  50. YeJ. WangZ. JiaJ. LiF. WangY. JiangY. WangY. RenZ. PuH. Lupeol impairs herpes simplex virus type 1 replication by inhibiting the promoter activity of the viral immediate early gene α0.Acta Virol.202165325426310.4149/av_2021_302 34565153
    [Google Scholar]
  51. Gómez-CalderónC. Mesa-CastroC. RobledoS. GómezS. Bolivar-AvilaS. Diaz-CastilloF. Martínez-GutierrezM. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.BMC Complement. Altern. Med.20171715710.1186/s12906‑017‑1562‑1 28100218
    [Google Scholar]
  52. SindhuT.J. ArathiK.N. AkhileshK.J. JoseA. BinsiyaK.P. ThomasB. WilsonE. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: In silico approaches.Asian Journal of Pharmacy and Technology20201026010.5958/2231‑5713.2020.00012.4
    [Google Scholar]
  53. LeeH. KimB.G. KimM. AhnJ.H. Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli.J. Microbiol. Biotechnol.20152591442144810.4014/jmb.1503.03011 25975614
    [Google Scholar]
  54. ShibataC. OhnoM. OtsukaM. KishikawaT. GotoK. MuroyamaR. KatoN. YoshikawaT. TakataA. KoikeK. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels.Virology2014462-463424810.1016/j.virol.2014.05.024 25092460
    [Google Scholar]
  55. ZhangW. QiaoH. LvY. WangJ. ChenX. HouY. TanR. LiE. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors.PLoS One2014910e11042910.1371/journal.pone.0110429 25330384
    [Google Scholar]
  56. HakobyanA. ArabyanE. AvetisyanA. AbroyanL. HakobyanL. ZakaryanH. Apigenin inhibits African swine fever virus infection in vitro.Arch. Virol.2016161123445345310.1007/s00705‑016‑3061‑y 27638776
    [Google Scholar]
  57. BacharS.C. MazumderK. BacharR. AktarA. Al MahtabM. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV.Front. Pharmacol.20211273289110.3389/fphar.2021.732891 34819855
    [Google Scholar]
  58. YazawaK. KurokawaM. ObuchiM. LiY. YamadaR. SadanariH. MatsubaraK. WatanabeK. KoketsuM. TuchidaY. MurayamaT. Anti-influenza virus activity of tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone.Antivir. Chem. Chemother.201122111110.3851/IMP1782 21860068
    [Google Scholar]
  59. LiH. ZhouC. PanY. GaoX. WuX. BaiH. ZhouL. ChenZ. ZhangS. ShiS. LuoJ. XuJ. ChenL. ZhengX. ZhaoY. Evaluation of antiviral activity of compounds isolated from Ranunculus sieboldii and Ranunculus sceleratus.Planta Med.200571121128113310.1055/s‑2005‑873169 16395649
    [Google Scholar]
  60. FanW. QianS. QianP. LiX. Antiviral activity of luteolin against Japanese encephalitis virus.Virus Res.201622011211610.1016/j.virusres.2016.04.021 27126774
    [Google Scholar]
  61. GoyalR.K. MajeedJ. TonkR. DhobiM. PatelB. SharmaK. ApparsundaramS. Current targets and drug candidates for prevention and treatment of SARS-CoV-2 (COVID-19) infection.Rev. Cardiovasc. Med.202021336538410.31083/j.rcm.2020.03.118 33070542
    [Google Scholar]
  62. NaithaniR. HumaL. HollandL. ShuklaD. McCormickD. MehtaR. MoriartyR. Antiviral activity of phytochemicals: A comprehensive review.Mini Rev. Med. Chem.20088111106113310.2174/138955708785909943 18855727
    [Google Scholar]
  63. SeoD.J. JeonS.B. OhH. LeeB.H. LeeS.Y. OhS.H. JungJ.Y. ChoiC. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus.Food Control201660253010.1016/j.foodcont.2015.07.023
    [Google Scholar]
  64. SemwalR.B. SemwalD.K. CombrinckS. TrillJ. GibbonsS. ViljoenA. Acacetin—A simple flavone exhibiting diverse pharmacological activities.Phytochem. Lett.201932566510.1016/j.phytol.2019.04.021
    [Google Scholar]
  65. HayashiK. HayashiT. ArisawaM. MoritaN. Antiviral agents of plant origin. Antiherpetic activity of acacetin.Antivir. Chem. Chemother.199341495310.1177/095632029300400106
    [Google Scholar]
  66. WuQ. YuC. YanY. ChenJ. ZhangC. WenX. Antiviral flavonoids from Mosla scabra.Fitoterapia201081542943310.1016/j.fitote.2009.12.005 20006976
    [Google Scholar]
  67. FormicaJ.V. RegelsonW. Review of the biology of quercetin and related bioflavonoids.Food Chem. Toxicol.199533121061108010.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  68. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  69. OjaV. ChenX. HajaligolM.R. ChanW.G. Sublimation thermodynamic parameters for cholesterol, ergosterol, β-sitosterol, and stigmasterol.J. Chem. Eng. Data200954373073410.1021/je800395m
    [Google Scholar]
  70. AmbavadeS.D. MisarA.V. AmbavadeP.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: A review.Orient. Pharm. Exp. Med.201414319321110.1007/s13596‑014‑0151‑9
    [Google Scholar]
  71. KhanS.L. SiddiquiF.A. Beta-sitosterol: As immunostimulant, antioxidant and inhibitor of SARS-CoV-2 spike glycoprotein, arch.Pharmacol. Ther.202021121610.33696/Pharmacol.2.014
    [Google Scholar]
  72. ChaudhariR.N. KhanS.L. ChaudharyR.S. JainS.P. SidduquiF.A. β-sitosterol: Isolation from Muntingia calabura linn bark extract, structural elucidation and molecular docking studies as potential inhibitor of SARS-CoV-2 Mpro (COVID-19).Asian J. Pharm. Clin. Res.20201320420910.22159/ajpcr.2020.v13i5.37909
    [Google Scholar]
  73. HaqueM.M. SultanaN. AbedinS.M.T. KabirS.E. Stigmasterol, rengyolone, 2-phenylethyl β-D-glucopyranoside and n-tetradecyl-β-D-glucopyranoside from the flowers of Nyctanthes arbor-tristis Linn.Bangladesh J. Sci. Ind. Res.201954327528210.3329/bjsir.v54i3.42680
    [Google Scholar]
  74. LeeG.H. HyunK.Y. KangY.J. Anti-inflammatory modulating effect of rengyolone in rat.Biomed. Sci. Lett.2019251545910.15616/BSL.2019.25.1.54
    [Google Scholar]
  75. HoT. WuS. ChenJ. LiC. HsiangC. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction.Antiviral Res.20077429210110.1016/j.antiviral.2006.04.014 16730806
    [Google Scholar]
  76. ChojnackaK. Witek-KrowiakA. SkrzypczakD. MikulaK. MłynarzP. Phytochemicals containing biologically active polyphenols as an effective agent against COVID-19-inducing coronavirus.J. Funct. Foods20207310414610.1016/j.jff.2020.104146 32834835
    [Google Scholar]
  77. PrasadV. SrivastavaS. VarshaH.N. VermaH.N. Two basic proteins isolated from Clerodendrum inerme Gaertn. are inducers of systemic antiviral resistance in susceptible plants.Plant Sci.19951101738210.1016/0168‑9452(95)04192‑W
    [Google Scholar]
  78. MehdiH. TanG.T. PezzutoJ.M. FongH.H.S. FarnsworthN.R. El-FeralyF.S. Al-YahyaM.A. MossaJ.S. PeeplesM.E. KernanM.R. RozhonE.J. Cell culture assay system for the evaluation of natural product-mediated anti-Hepatitis B virus activity.Phytomedicine19973436937710.1016/S0944‑7113(97)80011‑6 23195196
    [Google Scholar]
  79. UmerewenezaD. MolelJ.T. SaidJ. AtilawY. MuhiziT. TrybalaE. BergströmT. GogollA. ErdélyiM. Antiviral iridoid glycosides from Clerodendrum myricoides.Fitoterapia202115510505510.1016/j.fitote.2021.105055 34626739
    [Google Scholar]
  80. JoshiB. PandaS.K. JouneghaniR.S. LiuM. ParajuliN. LeyssenP. NeytsJ. LuytenW. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence.Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/1043471 32382275
    [Google Scholar]
  81. ChathurangaK. KimM.S. LeeH.C. KimT.H. KimJ.H. Gayan ChathurangaW.A. EkanayakaP. WijerathneH.M.S.M. ChoW.K. KimH.I. MaJ.Y. LeeJ.S. Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts in vitro and in vivo.Viruses201911760410.3390/v11070604 31277257
    [Google Scholar]
  82. NallusamyS. MannuJ. RavikumarC. AngamuthuK. NathanB. NachimuthuK. RamasamyG. MuthurajanR. SubbarayaluM. NeelakandanK. Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening.Front. Pharmacol.20211266770410.3389/fphar.2021.667704 34305589
    [Google Scholar]
  83. WaziriH.M.A. Plants as antiviral agents.J. Plant Pathol. Microbiol.2015621510.4172/2157‑7471.1000254
    [Google Scholar]
  84. OkaiyetoK. FaladeA.O. OguntibejuO.O. Traditional uses, nutritional and pharmacological potentials of Clerodendrum volubile.Plants2021109189310.3390/plants10091893 34579425
    [Google Scholar]
  85. RahmatullahM. AhammedS. PaulS. JahanR. FarzanaB. Clerodendrum infortunatum L.- A plant used for treatment of Hepatitis B and hepatic disorders in Jamalpur District, Bangladesh.J. Gastro Hepato2019213
    [Google Scholar]
  86. Caamal-HerreraI.O. Muñoz-RodríguezD. Madera-SantanaT. Azamar-BarriosJ.A. Identification of volatile compounds in essential oil and extracts of Ocimum micranthum willed leaves using GC/MS.Int. J. Appl. Res. Nat. Prod.201693140
    [Google Scholar]
  87. SilvaM.G.V. VieiraI.G.P. MendesF.N.P. AlbuquerqueI.L. Dos SantosR.N. SilvaF.O. MoraisS.M. Variation of ursolic acid content in eight Ocimum species from northeastern Brazil.Molecules200813102482248710.3390/molecules13102482 18923339
    [Google Scholar]
  88. Al-kuraishyH.M. Al-GareebA.I. NegmW.A. AlexiouA. BatihaG.E.S. Ursolic acid and SARS-CoV-2 infection: A new horizon and perspective.Inflammopharmacology20223051493150110.1007/s10787‑022‑01038‑3 35922738
    [Google Scholar]
  89. TshilandaD.D. NgoyiE.M. KabengeleC.N. MatondoA. BongoG.N. InkotoC.L. MbadikoC.M. GboloB.Z. LengbiyeE.M. KilembeJ.T. MwanangomboD.T. KasiamaG.N. TshibanguD.S.T. NgboluaK-N. MpianaP.T. Ocimum species as Potential Bioresources against COVID-19: A review of Their Phytochemistry and antiviral Activity.Int. J. Pathog. Res.202054425410.9734/ijpr/2020/v5i430143
    [Google Scholar]
  90. MutaiC. Effects of triterpenoids on herpes simplex virus Type1 (Hsv-1) in vitro.Med. Aromat. Plants20121S11410.4172/scientificreports.140
    [Google Scholar]
/content/journals/aia/10.2174/0122113525305139240629084443
Loading
/content/journals/aia/10.2174/0122113525305139240629084443
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral compounds; Clerodendrum spp.; dengue virus; HIV; SARS-CoV-2; viral pathogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test