Skip to content
2000
Volume 23, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Since 2019, the world's primary focus has been shifted towards the new virus, ., coronavirus. So, on a priority basis, the global interest shifts increasingly to fighting a battle against this pandemic, but what about other infectious diseases like malaria? In regions with limited resources (Sub-Saharan Africa, South Asia, and Southeast Asia), malaria remains a significant health threat, transmitted by mosquitoes and caused by the Plasmodium parasite. Approximately 6,08,000 deaths were associated with malaria in 2022, according to the World Health Organization (WHO). The severity of malaria depends upon the various stages of the malarial parasite life cycle (Transmission to humans, Exoerythrocytic Stage, Erythrocytic Stage, and Gametocyte Stage). Symptoms that appear within 7-10 days after a mosquito bite include discomfort, fever, chills, nausea, vomiting, diarrhea, and muscle pain. Today, to make and confirm the diagnosis of malaria, a variety of direct and indirect methods are used, which take us towards the early identification and prevention of disease. Healthy collaborations between pharmacological and non-pharmacological fields are essential to developing malaria therapeutic strategies, with artificial intelligence also playing a supportive role. Meanwhile, WHO launched Global Technical Strategy 2016-2030 for Malaria eradication, which serves as a crucial framework guiding efforts to control and eliminate the disease. This study targets the historical roots of malaria, pathophysiological grounds, advancements in diagnostics and new treatment regimens, and adherence to government guidelines. Additionally, it also focuses on the scenario of India for the upliftment of Malaria Eradication Programme.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525319708240606061352
2024-07-03
2025-01-16
Loading full text...

Full text loading...

References

  1. PoespoprodjoJ.R. DouglasN.M. AnsongD. KhoS. AnsteyN.M. Malaria.Lancet2023402104192328234510.1016/S0140‑6736(23)01249‑7 37924827
    [Google Scholar]
  2. SatoS. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology.J. Physiol. Anthropol.202140111310.1186/s40101‑020‑00251‑9 33413683
    [Google Scholar]
  3. CowmanA.F. HealerJ. MarapanaD. MarshK. Malaria: Biology and disease.Cell2016167361062410.1016/j.cell.2016.07.055 27768886
    [Google Scholar]
  4. PhillipsM.A. BurrowsJ.N. ManyandoC. van HuijsduijnenR.H. Van VoorhisW.C. WellsT.N.C. Malaria.Nat. Rev. Dis. Primers2017311705010.1038/nrdp.2017.50 28770814
    [Google Scholar]
  5. AdumP. AgyareV.A. Owusu-MarfoJ. AgyemanY.N. Knowledge, attitude and practices of malaria preventive measures among mothers with children under five years in a rural setting of Ghana.Malar. J.202322126810.1186/s12936‑023‑04702‑3 37700321
    [Google Scholar]
  6. OloweO.A. OloweR.A. AwaO.A. The burden of malaria with historical perspective in Nigerian concept and world view.El Mednifico J.20142326627210.18035/emj.v2i3.183
    [Google Scholar]
  7. MawsonA.R. The pathogenesis of malaria: A new perspective.Pathog. Glob. Health2013107312212910.1179/2047773213Y.0000000084 23683366
    [Google Scholar]
  8. RoyR.D. Malarial subjects: Empire, Medicine and Nonhumans in British India, 1820-1909.Cambridge, UKCambridge University Press2017
    [Google Scholar]
  9. MillerL.H. AckermanH.C. SuX. WellemsT.E. Malaria biology and disease pathogenesis: Insights for new treatments.Nat. Med.201319215616710.1038/nm.3073 23389616
    [Google Scholar]
  10. EscalanteA.A. CepedaA.S. PachecoM.A. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities.Malar. J.202221113910.1186/s12936‑022‑04130‑9 35505356
    [Google Scholar]
  11. PriceR.N. CommonsR.J. BattleK.E. ThriemerK. MendisK. Plasmodium vivax in the era of the shrinking P. falciparum map.Trends Parasitol.202036656057010.1016/j.pt.2020.03.009 32407682
    [Google Scholar]
  12. HabtamuK. PetrosB. YanG. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication.Trop. Dis. Travel Med. Vaccines2022812710.1186/s40794‑022‑00185‑3 36522671
    [Google Scholar]
  13. GraumansW. JacobsE. BousemaT. SinnisP. When Is a Plasmodium-infected mosquito an infectious mosquito?Trends Parasitol.202036870571610.1016/j.pt.2020.05.011 32620501
    [Google Scholar]
  14. WatersA.P. Epigenetic roulette in blood stream Plasmodium: gambling on sex.PLoS Pathog.2016122e100535310.1371/journal.ppat.1005353 26866803
    [Google Scholar]
  15. BhattacharjeeS. GhoshD. SahaR. SarkarR. KumarS. KhokharM. PandeyR.K. Mechanism of Immune Evasion in Mosquito-Borne Diseases.Pathogens202312563510.3390/pathogens12050635 37242305
    [Google Scholar]
  16. MatićZ. ŠantakM. Current view on novel vaccine technologies to combat human infectious diseases.Appl. Microbiol. Biotechnol.20221061255610.1007/s00253‑021‑11713‑0 34889981
    [Google Scholar]
  17. FrimpongA. AmponsahJ. AdjokatsehA.S. AgyemangD. Bentum-EnninL. OforiE.A. Kyei-BaafourE. Akyea-MensahK. AduB. MensahG.I. AmoahL.E. KusiK.A. Asymptomatic malaria infection is maintained by a balanced pro and Anti-inflammatory Response.Front. Microbiol.20201155925510.3389/fmicb.2020.559255 33281757
    [Google Scholar]
  18. WassmerS.C. GrauG.E.R. Severe malaria: what’s new on the pathogenesis front?Int. J. Parasitol.2017472-314515210.1016/j.ijpara.2016.08.002 27670365
    [Google Scholar]
  19. BernabeuM. SmithJ.D. EPCR and malaria severity: the center of a perfect storm.Trends Parasitol.201733429530810.1016/j.pt.2016.11.004 27939609
    [Google Scholar]
  20. Molina-FrankyJ. PatarroyoM.E. KalkumM. PatarroyoM.A. The cellular and molecular interaction between erythrocytes and Plasmodium falciparum merozoites.Front. Cell. Infect. Microbiol.20221281657410.3389/fcimb.2022.816574 35433504
    [Google Scholar]
  21. TalapkoJ. ŠkrlecI. AlebićT. JukićM. VčevA. Malaria: The Past and the Present.Microorganisms20197617910.3390/microorganisms7060179 31234443
    [Google Scholar]
  22. TangpukdeeN. DuangdeeC. WilairatanaP. KrudsoodS. Malaria diagnosis: a brief review.Korean J. Parasitol.20094729310210.3347/kjp.2009.47.2.93 19488414
    [Google Scholar]
  23. TrampuzA. JerebM. MuzlovicI. PrabhuR.M. Clinical review: Severe malaria.Crit. Care20037431532310.1186/cc2183 12930555
    [Google Scholar]
  24. OhJ.S. KimJ.S. LeeC.H. NamD.H. KimS.H. ParkD.W. LeeC.K. LimC.S. ParkG.H. Evaluation of a malaria antibody enzyme immunoassay for use in blood screening.Mem. Inst. Oswaldo Cruz20081031757810.1590/S0074‑02762008005000008 18345458
    [Google Scholar]
  25. SlaterL. AshrafS. ZahidO. AliQ. OneebM. AkbarM.H. RiazM.I. AfshanK. SargisonN. ChaudhryU. Current methods for the detection of Plasmodium parasite species infecting humans.Curr. Res. Parasitol. Vector Borne Dis.2022210008610008610.1016/j.crpvbd.2022.100086 35434694
    [Google Scholar]
  26. AksicJ.M. GencicM.S. RadulovicN.S. Recent updates in the development of mettallocenes with antimalarial activity.Facta Uni2022181137
    [Google Scholar]
  27. LandierJ. ParkerD.M. ThuA.M. CarraraV.I. LwinK.M. BonningtonC.A. PukrittayakameeS. DelmasG. NostenF.H. The role of early detection and treatment in malaria elimination.Malar. J.201615136310.1186/s12936‑016‑1399‑y 27421656
    [Google Scholar]
  28. VilayP. NonakaD. SenamontyP. LaoM. IwagamiM. KobayashiJ. HernandezP.M. PhrasisombathK. KounnavongS. HongvanthongB. BreyP.T. KanoS. Malaria prevalence, knowledge, perception, preventive and treatment behavior among military in Champasak and Attapeu provinces, Lao PDR: a mixed methods study.Trop. Med. Health20194711110.1186/s41182‑019‑0138‑9 30700970
    [Google Scholar]
  29. GachelinG. GarnerP. FerroniE. VerhaveJ.P. OpinelA. Evidence and strategies for malaria prevention and control: a historical analysis.Malar. J.20181719610.1186/s12936‑018‑2244‑2 29482556
    [Google Scholar]
  30. NalinyaS. MusokeD. DeaneK. Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low- and middle-income countries: a scoping review.Malar. J.20222113110.1186/s12936‑022‑04052‑6 35109848
    [Google Scholar]
  31. PatouillardE. GriffinJ. BhattS. GhaniA. CibulskisR. Global investment targets for malaria control and elimination between 2016 and 2030.BMJ Glob. Health201722e00017610.1136/bmjgh‑2016‑000176 29242750
    [Google Scholar]
  32. MwenesiH. MbogoC. CasamitjanaN. CastroM.C. ItoeM.A. OkonofuaF. TannerM. Rethinking human resources and capacity building needs for malaria control and elimination in Africa.PLOS Glob. Public Health202225e000021010.1371/journal.pgph.0000210 36962174
    [Google Scholar]
  33. MertensJ.E. A History of Malaria and Conflict.Parasitol. Res.2024123316510.1007/s00436‑024‑08167‑4 38504009
    [Google Scholar]
  34. NostenF. Richard-LenobleD. DanisM. A brief history of malaria.Presse Med.202251310413010.1016/j.lpm.2022.104130 35667599
    [Google Scholar]
  35. CoxF.E.G. History of the discovery of the malaria parasites and their vectors.Parasit. Vectors201031510.1186/1756‑3305‑3‑5 20205846
    [Google Scholar]
  36. MandalS. SarkarR.R. SinhaS. Mathematical models of malaria - a review.Malar. J.201110120210.1186/1475‑2875‑10‑202 21777413
    [Google Scholar]
  37. TseE.G. KorsikM. ToddM.H. The past, present and future of anti-malarial medicines.Malar. J.20191819310.1186/s12936‑019‑2724‑z 30902052
    [Google Scholar]
  38. NasirS.M.I. AmarasekaraS. WickremasingheR. FernandoD. UdagamaP. Prevention of re-establishment of malaria: historical perspective and future prospects.Malar. J.202019145210.1186/s12936‑020‑03527‑8 33287809
    [Google Scholar]
  39. BalmithM. BassonC. BrandS.J. The malaria burden: A South African perspective.J. Trop. Med.20242024661901011710.1155/2024/6619010 38434493
    [Google Scholar]
  40. GaoL. ShiQ. LiuZ. LiZ. DongX. Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis.Trop. Med. Infect. Dis.2023816710.3390/tropicalmed8010067 36668974
    [Google Scholar]
  41. González-SanzM. BerzosaP. NormanF.F. Updates on Malaria Epidemiology and Prevention Strategies.Curr. Infect. Dis. Rep.202325713113910.1007/s11908‑023‑00805‑9 37361492
    [Google Scholar]
  42. BadmosA.O. AlaranA.J. AdebisiY.A. BouaddiO. OnibonZ. DadaA. LinX. Lucero-PrisnoD.E. III What sub-Saharan African countries can learn from malaria elimination in China.Trop. Med. Health20214918610.1186/s41182‑021‑00379‑z 34689839
    [Google Scholar]
  43. KumarA. SinghP.P. TyagiS. HariR.K. SahuS.S. RahiM. Vivax malaria: a possible stumbling block for malaria elimination in India.Front. Public Health2024811122821710.3389/fpubh.2023.1228217
    [Google Scholar]
  44. NengnongC.B. PassahM. WilsonM.L. BellottiE. KesslerA. MarakB.R. CarltonJ.M. SarkarR. AlbertS. Community and health worker perspectives on malaria in Meghalaya, India: covering the last mile of elimination by 2030.Malar. J.20242318310.1186/s12936‑024‑04905‑2 38500097
    [Google Scholar]
  45. CastroM.C. Malaria transmission and prospects for malaria eradication: The role of the environment.Cold Spring Harb. Perspect. Med.2017710a02560110.1101/cshperspect.a025601 28490534
    [Google Scholar]
  46. AgyekumT.P. BotweP.K. Arko-MensahJ. IssahI. AcquahA.A. HogarhJ.N. DwomohD. RobinsT.G. FobilJ.N. A systematic review of the effects of temperature on anopheles mosquito development and survival: Implications for malaria control in a future warmer climate.Int. J. Environ. Res. Public Health20211814725510.3390/ijerph18147255 34299706
    [Google Scholar]
  47. AhmedT. HyderM.Z. LiaqatI. ScholzM. Climatic conditions: Conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues.Int. J. Environ. Res. Public Health20191617316510.3390/ijerph16173165 31480254
    [Google Scholar]
  48. RocklövJ. DubrowR. Climate change: an enduring challenge for vector-borne disease prevention and control.Nat. Immunol.202021547948310.1038/s41590‑020‑0648‑y 32313242
    [Google Scholar]
  49. SarkarS. GangareV. SinghP. DhimanR.C. Shift in potential malaria transmission areas in India, using the fuzzy-based climate suitability malaria transmission model under changing climatic conditions.Int. J. Environ. Res. Public Health20191618347410.3390/ijerph16183474 31540493
    [Google Scholar]
  50. TabassumS. KalsoomT. ZaheerZ. NaeemA. AfifiA. OhadiL. Reflections on the surge in malaria cases after unprecedented flooding in Pakistan—A commentary.Health Sci. Rep.2023610e162010.1002/hsr2.1620 37822844
    [Google Scholar]
  51. NkirukaO. PrasadR. ClementO. Prediction of malaria incidence using climate variability and machine learning.Inform. Med. Unlocked2021221910050810.1016/j.imu.2020.100508
    [Google Scholar]
  52. BucşanA.N. WilliamsonK.C. Setting the stage: The initial immune response to blood-stage parasites.Virulence20201118810310.1080/21505594.2019.1708053 31900030
    [Google Scholar]
  53. PohlK. CockburnI.A. Innate immunity to malaria: The good, the bad and the unknown.Front. Immunol.20221391459810.3389/fimmu.2022.914598 36059493
    [Google Scholar]
  54. PradhanV. GhoshK. Immunological disturbances associated with malarial infection.J. Parasit. Dis.20133711115
    [Google Scholar]
  55. LongC.A. ZavalaF. Immune Responses in Malaria.Cold Spring Harb. Perspect. Med.201778a02557710.1101/cshperspect.a025577 28389518
    [Google Scholar]
  56. BejonP. WilliamsT.N. LiljanderA. NoorA.M. WambuaJ. OgadaE. OlotuA. OsierF.H.A. HayS.I. FärnertA. MarshK. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya.PLoS Med.201077e100030410.1371/journal.pmed.1000304 20625549
    [Google Scholar]
  57. GbedandeK. CarpioV.H. StephensR. Using two phases of the CD 4 T cell response to blood‐stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection.Immunol. Rev.202029318811410.1111/imr.12835 31903675
    [Google Scholar]
  58. GazzinelliR.T. KalantariP. FitzgeraldK.A. GolenbockD.T. Innate sensing of malaria parasites.Nat. Rev. Immunol.2014141174475710.1038/nri3742 25324127
    [Google Scholar]
  59. MilnerD.A. Jr Malaria Pathogenesis.Cold Spring Harb. Perspect. Med.201881a02556910.1101/cshperspect.a025569 28533315
    [Google Scholar]
  60. VallishB.N. DangD. DangA. Nature and mechanism of immune boosting by Ayurvedic medicine: A systematic review of randomized controlled trials.World J. Methodol.202212313214710.5662/wjm.v12.i3.132 35721243
    [Google Scholar]
  61. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  62. NigussieG. WaleM. Medicinal plants used in traditional treatment of malaria in Ethiopia: A review of ethnomedicine, anti-malarial and toxicity studies.Malar. J.202221126210.1186/s12936‑022‑04264‑w 36088324
    [Google Scholar]
  63. SarkarS. SinghR.P. BhattacharyaG. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach.3 Biotech202111417810.1007/s13205‑021‑02745‑4 33927969
    [Google Scholar]
  64. JamilS.N.H. AliA.H. FerozS.R. LamS.D. AgustarH.K. Mohd Abd RazakM.R. LatipJ. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure-activity relationship and mechanism of action.Pharmaceuticals202316460910.3390/ph16040609 37111366
    [Google Scholar]
  65. PontesK.A.O. SilvaL.S. SantosE.C. PinheiroA.S. TeixeiraD.E. PeruchettiD.B. Silva-AguiarR.P. WendtC.H.C. MirandaK.R. Coelho-de-SouzaA.N. Leal-CardosoJ.H. Caruso-NevesC. PinheiroA.A.S. Eugenol disrupts Plasmodium falciparum intracellular development during the erythrocytic cycle and protects against cerebral malaria.Biochim. Biophys. Acta, Gen. Subj.20211865312981310.1016/j.bbagen.2020.129813 33321150
    [Google Scholar]
  66. Sanei-DehkordiA. HatamiS. ZarenezhadE. MontaseriZ. OsanlooM. Efficacy of nanogels containing carvacrol, cinnamaldehyde, thymol, and a mix compared to a standard repellent against Anopheles stephensi.Ind. Crops Prod.202218911588310.1016/j.indcrop.2022.115883
    [Google Scholar]
  67. ZhangS. KouX. ZhaoH. MakK.K. BalijepalliM.K. PichikaM.R. Zingiber officinale var.rubrum: Red ginger’s medicinal uses.Molecules202227377510.3390/molecules27030775 35164040
    [Google Scholar]
  68. HabibiP. ShiY. Fatima Grossi-de-SaM. KhanI. Plants as sources of natural and recombinant antimalaria agents.Mol. Biotechnol.202264111177119710.1007/s12033‑022‑00499‑9 35488142
    [Google Scholar]
  69. UddinT.M. ChakrabortyA.J. KhusroA. ZidanB.M.R.M. MitraS. EmranT.B. DhamaK. RiponM.K.H. GajdácsM. SahibzadaM.U.K. HossainM.J. KoiralaN. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  70. AlaithanH. KumarN. IslamM.Z. LiappisA.P. NavaV.E. Novel therapeutics for malaria.Pharmaceutics2023157180010.3390/pharmaceutics15071800 37513987
    [Google Scholar]
  71. MishraM. MishraV.K. KashawV. IyerA.K. KashawS.K. Comprehensive review on various strategies for antimalarial drug discovery.Eur. J. Med. Chem.20171251300132010.1016/j.ejmech.2016.11.025 27886547
    [Google Scholar]
  72. DuruV. WitkowskiB. MénardD. Plasmodium falciparum resistance to artemisinin derivatives and piperaquine: A major challenge for malaria elimination in Cambodia.Am. J. Trop. Med. Hyg.20169561228123810.4269/ajtmh.16‑0234 27928074
    [Google Scholar]
  73. NandakumarD.N. NagarajV.A. VathsalaP.G. RangarajanP. PadmanabanG. Curcumin-artemisinin combination therapy for malaria.Antimicrob. Agents Chemother.20065051859186010.1128/AAC.50.5.1859‑1860.2006 16641461
    [Google Scholar]
  74. NiuY. WangK. ZhuX. ZhangS. CherepanoffS. ConwayR.M. MadiganM.C. LimL.A. ZhuL. MurrayM. ZhouF. The application of natural compounds in uveal melanoma drug discovery.J. Pharm. Pharmacol.202274566068010.1093/jpp/rgac009 35532546
    [Google Scholar]
  75. GlennonE.K.K. DankwaS. SmithJ.D. KaushanskyA. Opportunities for host-targeted therapies for malaria.Trends Parasitol.2018341084386010.1016/j.pt.2018.07.011 30122551
    [Google Scholar]
  76. AnyanwuP.E. FultonJ. EvansE. PagetT. Exploring the role of socioeconomic factors in the development and spread of anti-malarial drug resistance: A qualitative study.Malar. J.201716120310.1186/s12936‑017‑1849‑1 28521791
    [Google Scholar]
  77. BlanshardA. HineP. Atovaquone-proguanil for treating uncomplicated Plasmodium falciparum malaria.Cochrane Database Syst. Rev.202111CD004529 33459345
    [Google Scholar]
  78. WojnarskiM. LonC. VanachayangkulP. GosiP. SokS. RachmatA. HarrisonD. BerjohnC.M. SpringM. ChaoratanakaweeS. IttiverakulM. BuathongN. ChannS. WongarunkochakornS. WaltmannA. KuntawunginnW. FukudaM.M. BurklyH. HeangV. HengT.K. KongN. BoonchanT. ChumB. SmithP. VaughnA. PromS. LinJ. LekD. SaundersD. Atovaquone-Proguanil in combination with Artesunate to treat multidrug-resistant P. falciparum malaria in Cambodia: An open-label randomized trial.Open Forum Infect. Dis.201969ofz31410.1093/ofid/ofz314 31660398
    [Google Scholar]
  79. NaserrudinN.A. LinP.Y.P. MonroeA. CulletonR. BaumannS.E. SatoS. AdhikariB. FornaceK.M. HodR. JeffreeM.S. AhmedK. HassanM.R. Exploring barriers to and facilitators of malaria prevention practices: A photovoice study with rural communities at risk to Plasmodium knowlesi malaria in Sabah, Malaysia.BMC Public Health2023231131610.1186/s12889‑023‑16173‑x 37430300
    [Google Scholar]
  80. CalderP.C. Foods to deliver immune-supporting nutrients.Curr. Opin. Food Sci.20224313614510.1016/j.cofs.2021.12.006 34976746
    [Google Scholar]
  81. OnyinyechiO.M. Mohd NazanA.I.N. IsmailS. Effectiveness of health education interventions to improve malaria knowledge and insecticide-treated nets usage among populations of sub-Saharan Africa: Systematic review and meta-analysis.Front. Public Health202311121705210.3389/fpubh.2023.1217052 37601202
    [Google Scholar]
  82. PereraR. WickremasingheR. NewbyG. CalderaA. FernandoD. MendisK. Malaria control, elimination, and prevention as components of health security: A review.Am. J. Trop. Med. Hyg.2022107474775310.4269/ajtmh.22‑0038 36067989
    [Google Scholar]
  83. DhimanS. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead.Infect. Dis. Poverty2019811410.1186/s40249‑019‑0524‑x 30760324
    [Google Scholar]
  84. ShahandehK. BasseriH.R. Challenges and the path forward on malaria elimination intervention: A systematic review.Iran. J. Public Health201948610041013 31341841
    [Google Scholar]
  85. DraperS.J. SackB.K. KingC.R. NielsenC.M. RaynerJ.C. HigginsM.K. LongC.A. SederR.A. Malaria Vaccines: Recent advances and new horizons.Cell Host Microbe2018241435610.1016/j.chom.2018.06.008 30001524
    [Google Scholar]
  86. LaurensM.B. RTS, S/AS01 vaccine (Mosquirix™): An overview.Hum. Vaccin. Immunother.202016348048910.1080/21645515.2019.1669415 31545128
    [Google Scholar]
  87. NadeemA.Y. ShehzadA. IslamS.U. Al-SuhaimiE.A. LeeY.S. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy.Vaccines202210571310.3390/vaccines10050713 35632469
    [Google Scholar]
  88. NosakiS. HoshikawaK. EzuraH. MiuraK. Transient protein expression systems in plants and their applications.Plant Biotechnol.202138329730410.5511/plantbiotechnology.21.0610a 34782815
    [Google Scholar]
  89. Fus-KujawaA. PrusP. Bajdak-RusinekK. TeperP. GawronK. KowalczukA. SieronA.L. An overview of methods and tools for transfection of eukaryotic cells in vitro.Front. Bioeng. Biotechnol.2021970103110.3389/fbioe.2021.701031 34354988
    [Google Scholar]
  90. PollariM. Initiation of plant virus infections by agroinfiltration of infectious viral cDNAs (icDNAs).Methods Mol. Biol.20242724334610.1007/978‑1‑0716‑3485‑1_3 37987896
    [Google Scholar]
  91. ZahmanovaG. AljabaliA.A. TakovaK. TonevaV. TambuwalaM.M. AndonovA.P. LukovG.L. MinkovI. The plant viruses and molecular farming: How beneficial they might be for human and animal health?Int. J. Mol. Sci.2023242153310.3390/ijms24021533 36675043
    [Google Scholar]
  92. LaiH. HeJ. EngleM. DiamondM.S. ChenQ. Robust production of virus‐like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce.Plant Biotechnol. J.20121019510410.1111/j.1467‑7652.2011.00649.x 21883868
    [Google Scholar]
  93. Value of the global malaria vaccines market from 2021 to 2028. Available from: https://www.statista.com/statistics/1100425/global-malaria-vaccines-market-value/ (accessed on 24-5-2024)
  94. DaniellH. LinC.S. YuM. ChangW.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering.Genome Biol.201617113410.1186/s13059‑016‑1004‑2 27339192
    [Google Scholar]
  95. DebnathN. ThakurM. Khushboo; Negi, N.P.; Gautam, V.; Kumar Yadav, A.; Kumar, D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges.Biotechnol. Bioeng.2022119232734610.1002/bit.27987 34755343
    [Google Scholar]
  96. MumtazH. NadeemA. BilalW. AnsarF. SaleemS. KhanQ.A. TangoT. FarkouhC. BelayN.F. VermaR. FarkouhM. SaqibM. Acceptance, availability, and feasibility of RTS, S/AS01 malaria vaccine: A review.Immun. Inflamm. Dis.2023116e89910.1002/iid3.899 37382251
    [Google Scholar]
  97. Malaria: The malaria vaccine implementation programme (MVIP).Available from: https://www.who.int/news-room/questions-and-answers/item/malaria-vaccine-implementation-programme (accessed on 24-5-2024)
  98. 18 million doses of first-ever malaria vaccine allocated to 12 African countries for 2023–2025: Gavi, WHO and UNICEF. Available from: https://www.unicef.org/press-releases/18-million-doses-first-ever-malaria-vaccine-allocated-12-african-countries-20232025 (accessed on 24-5-2024)
  99. SalamM.A. Al-AminM.Y. SalamM.T. PawarJ.S. AkhterN. RabaanA.A. AlqumberM.A.A. Antimicrobial resistance: A growing serious threat for global public health.Health Care20231113194610.3390/healthcare11131946 37444780
    [Google Scholar]
  100. AldewachiH. Al-ZidanR.N. ConnerM.T. SalmanM.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases.Bioengineering2021823010.3390/bioengineering8020030 33672148
    [Google Scholar]
  101. Keshavarzi ArshadiA. SalemM. CollinsJ. YuanJ.S. ChakrabartiD. DeepMalaria: Artificial intelligence driven discovery of potent antiplasmodials.Front. Pharmacol.202010152610.3389/fphar.2019.01526 32009951
    [Google Scholar]
  102. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.21764 33295676
    [Google Scholar]
  103. ParijaS.C. PoddarA. Artificial intelligence in parasitic disease control: A paradigm shift in health care.Trop. Parasitol.20241412710.4103/tp.tp_66_23 38444798
    [Google Scholar]
  104. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  105. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. Conde-TorresD. Antelo-RiveiroP. PiñeiroÁ. Garcia-FandinoR. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph16060891 37375838
    [Google Scholar]
  106. SharmaS. VermaR. YadavB. KumarA. RahiM. SharmaA. What India can learn from globally successful malaria elimination programmes.BMJ Glob. Health202276e00843110.1136/bmjgh‑2022‑008431 35760440
    [Google Scholar]
  107. NarainJ. NathL. Eliminating malaria in India by 2027: The countdown begins!Indian J. Med. Res.2018148212312610.4103/ijmr.IJMR_1175_18 30381533
    [Google Scholar]
  108. RahiM. SharmaA. Malaria control initiatives that have the potential to be gamechangers in India’s quest for malaria elimination.Lancet Regional Heal.2022210000910000910.1016/j.lansea.2022.04.005 37383297
    [Google Scholar]
  109. WangdiK. GattonM.L. KellyG.C. BanwellC. DevV. ClementsA.C.A. Malaria elimination in India and regional implications.Lancet Infect. Dis.20161610e214e22410.1016/S1473‑3099(16)30123‑2 27527748
    [Google Scholar]
  110. GithureJ.I. YewhalawD. AtieliH. Hemming-SchroederE. LeeM.C. WangX. ZhouG. ZhongD. KingC.L. DentA. MukabanaW.R. DegefaT. HsuK. GithekoA.K. OkomoG. DayoL. TushuneK. OmondiC.O. TaffeseH.S. KazuraJ.W. YanG. Enhancing malaria research, surveillance, and control in endemic areas of Kenya and Ethiopia.Am. J. Trop. Med. Hyg.20221074Suppl.142010.4269/ajtmh.21‑1303 36228905
    [Google Scholar]
/content/journals/aia/10.2174/0122113525319708240606061352
Loading
/content/journals/aia/10.2174/0122113525319708240606061352
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test