Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

The Toll-like Receptors (TLRs) family has significantly enhanced the understanding of innate immune responses by identifying and responding to various microbes or host-derived organisms. TLRs contribute to these responses by increasing the levels of cytokines, interleukins, and other inflammatory mediators through multiple pathways. Located both intracellularly and on the surface of various cells and tissues, including vascular smooth muscles (VSMs) and myocardium cells, TLRs play distinct roles in innate immune activation, such as recognizing pathogen-associated molecular patterns (PAMPs) and activating downstream signaling pathways. In the context of COVID-19, TLRs are critically involved in the pathophysiology by mediating excessive inflammatory responses that exacerbate disease severity, influencing both the acute phase and long-term outcomes. It has been observed that inflammatory diseases such as atherosclerosis, viral myocarditis, and other comorbidities associated with the spread of COVID-19 have increased, although the exact mechanisms remain not fully understood. Nonetheless, there is evidence of TLR-mediated increased pro-inflammatory signaling by different mechanisms in these diseases. This review explains the role of TLRs in various inflammatory diseases related to COVID-19, including viral myocarditis, acute lung infections, and atherosclerosis. Furthermore, the review discusses various herbal drugs, such as and and their mechanisms of action on TLRs, including NF-κB, MyD88-dependent, MyD88-independent pathways, and Plasmacytoid DCs. Enhanced clarity on TLRs' specific contributions to COVID-19 pathophysiology and stronger evidence supporting herbal interventions targeting TLRs could improve the impact and applicability of these findings in clinical settings.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708329138240926073013
2024-10-08
2026-02-20
Loading full text...

Full text loading...

References

  1. VallejoJ.G. Role of toll-like receptors in cardiovascular diseases.Clin. Sci.2011121111010.1042/CS2010053921413930
    [Google Scholar]
  2. XuM. LiuP.P. LiH. Innate immune signaling and its role in metabolic and cardiovascular diseases.Physiol. Rev.201999189394810.1152/physrev.00065.201730565509
    [Google Scholar]
  3. AhmadR. ShihabP.K. ThomasR. AlghanimM. HasanA. SindhuS. BehbehaniK. Increased expression of the interleukin-1 receptor-associated kinase (IRAK)-1 is associated with adipose tissue inflammatory state in obesity.Diabetol. Metab. Syndr.2015717110.1186/s13098‑015‑0067‑726312071
    [Google Scholar]
  4. SharmaS. GargI. AshrafM.Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases.Vascul. Pharmacol.201687303710.1016/j.vph.2016.10.00827826031
    [Google Scholar]
  5. ScheibnerK.A. LutzM.A. BoodooS. FentonM.J. PowellJ.D. HortonM.R. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2.J. Immunol.200617721272128110.4049/jimmunol.177.2.127216818787
    [Google Scholar]
  6. FrantzS. ErtlG. BauersachsJ. Mechanisms of disease: Toll-like receptors in cardiovascular disease.Nat. Clin. Pract. Cardiovasc. Med.20074844445410.1038/ncpcardio093817653117
    [Google Scholar]
  7. ZhouY. LittleP.J. DowneyL. AfrozR. WuY. TaH.T. XuS. KamatoD. The role of toll-like receptors in atherothrombotic cardiovascular disease.ACS Pharmacol. Transl. Sci.20203345747110.1021/acsptsci.9b0010032566912
    [Google Scholar]
  8. DagenaisG.R. LeongD.P. RangarajanS. LanasF. Lopez-JaramilloP. GuptaR. DiazR. AvezumA. OliveiraG.B.F. WielgoszA. ParambathS.R. MonyP. AlhabibK.F. TemizhanA. IsmailN. ChifambaJ. YeatesK. KhatibR. RahmanO. ZatonskaK. KazmiK. WeiL. ZhuJ. RosengrenA. VijayakumarK. KaurM. MohanV. YusufaliA. KelishadiR. TeoK.K. JosephP. YusufS. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study.Lancet20203951022678579410.1016/S0140‑6736(19)32007‑031492501
    [Google Scholar]
  9. MadanM. AmarS. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: Proteomic findings.PLoS One200839e320410.1371/journal.pone.000320418787704
    [Google Scholar]
  10. FrazãoJ.B. ErranteP.R. Condino-NetoA. Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans.Arch. Immunol. Ther. Exp.201361642744310.1007/s00005‑013‑0243‑024057516
    [Google Scholar]
  11. Wicherska-PawłowskaK. WróbelT. RybkaJ. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases.Int. J. Mol. Sci.202122241339710.3390/ijms22241339734948194
    [Google Scholar]
  12. MedzhitovR. Toll-like receptors and innate immunity.Nat. Rev. Immunol.20011213514510.1038/3510052911905821
    [Google Scholar]
  13. de VicenteL.G. PintoA.P. da RochaA.L. PauliJ.R. de MouraL.P. CintraD.E. RopelleE.R. da SilvaA.S.R. Role of TLR4 in physical exercise and cardiovascular diseases.Cytokine202013615527310.1016/j.cyto.2020.15527332932194
    [Google Scholar]
  14. FrantzS. BauersachsJ. KellyR. Innate immunity and the heart.Curr. Pharm. Des.200511101279129010.2174/138161205350751215853684
    [Google Scholar]
  15. VinaJ. Sanchis-GomarF. Martinez-BelloV. Gomez-CabreraM.C. Exercise acts as a drug; The pharmacological benefits of exercise.Br. J. Pharmacol.2012167111210.1111/j.1476‑5381.2012.01970.x22486393
    [Google Scholar]
  16. NarayananK.B. ParkH.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways.Apoptosis201520219620910.1007/s10495‑014‑1073‑125563856
    [Google Scholar]
  17. O’NeillL.A.J. BowieA.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.Nat. Rev. Immunol.20077535336410.1038/nri207917457343
    [Google Scholar]
  18. MedzhitovR. Preston-HurlburtP. KoppE. StadlenA. ChenC. GhoshS. JanewayC.A.Jr MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways.Mol. Cell19982225325810.1016/S1097‑2765(00)80136‑79734363
    [Google Scholar]
  19. VilahurG. BadimonL. Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor.Front. Physiol.2014549610.3389/fphys.2014.0049625566092
    [Google Scholar]
  20. FrantzS. KobzikL. KimY.D. FukazawaR. MedzhitovR. LeeR.T. KellyR.A. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium.J. Clin. Invest.1999104327128010.1172/JCI670910430608
    [Google Scholar]
  21. WrightS.D. Toll, a new piece in the puzzle of innate immunity.J. Exp. Med.1999189460560910.1084/jem.189.4.6059989974
    [Google Scholar]
  22. KawasakiT. KawaiT. Toll-like receptor signaling pathways.Front. Immunol.2014546110.3389/fimmu.2014.0046125309543
    [Google Scholar]
  23. SalehH.A. YousefM.H. AbdelnaserA. The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation.Front. Immunol.20211260606910.3389/fimmu.2021.60606933868227
    [Google Scholar]
  24. MullickA.E. SoldauK. KiossesW.B. BellT.A.III TobiasP.S. CurtissL.K. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events.J. Exp. Med.2008205237338310.1084/jem.2007109618250194
    [Google Scholar]
  25. SinghM.V. CichaM.Z. NunezS. MeyerholzD.K. ChapleauM.W. AbboudF.M. Angiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways.Am. J. Physiol. Heart Circ. Physiol.20193165H1027H103810.1152/ajpheart.00697.201830793936
    [Google Scholar]
  26. OgusA.C. YoldasB. OzdemirT. UguzA. OlcenS. KeserI. CoskunM. CilliA. YeginO. The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease.Eur. Respir. J.200423221922310.1183/09031936.03.0006170314979495
    [Google Scholar]
  27. MüllerM. ScheelO. LindnerB. GutsmannT. SeydelU. The role of membrane-bound LBP, endotoxin aggregates, and the MaxiK channel in LPS-induced cell activation.J. Endotoxin Res.20039318118610.1177/0968051903009003070112831460
    [Google Scholar]
  28. KapelouzouA. GiaglisS. PeroulisM. KatsimpoulasM. MoustardasP. AravanisC.V. KostakisA. KarayannakosP.E. CokkinosD.V. Overexpression of toll-like receptors 2, 3, 4, and 8 is correlated to the vascular atherosclerotic process in the hyperlipidemic rabbit model: the effect of statin treatment.J. Vasc. Res.201754315616910.1159/00045779728478461
    [Google Scholar]
  29. GorbeaC. MakarK.A. PauschingerM. PrattG. BersolaJ.L.F. VarelaJ. DavidR.M. BanksL. HuangC.H. LiH. SchultheissH.P. TowbinJ.A. VallejoJ.G. BowlesN.E. A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy.J. Biol. Chem.201028530232082322310.1074/jbc.M109.04746420472559
    [Google Scholar]
  30. IshibashiM. SayersS. D’ArmientoJ.M. TallA.R. WelchC.L. TLR3 deficiency protects against collagen degradation and medial destruction in murine atherosclerotic plaques.Atherosclerosis20132291526110.1016/j.atherosclerosis.2013.03.03523676255
    [Google Scholar]
  31. AmezianeN. BeillatT. VerpillatP. Chollet-MartinS. AumontM.C. SeknadjiP. LamotteM. LebretD. OllivierV. de ProstD. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events.Arterioscler. Thromb. Vasc. Biol.20032312e61e6410.1161/01.ATV.0000101191.92392.1D14563652
    [Google Scholar]
  32. MillerY.I. ChoiS.H. WiesnerP. BaeY.S. The SYK side of TLR4: Signalling mechanisms in response to LPS and minimally oxidized LDL.Br. J. Pharmacol.2012167599099910.1111/j.1476‑5381.2012.02097.x22776094
    [Google Scholar]
  33. KoulisC. ChenY.C. HausdingC. AhrensI. KyawT.S. TayC. AllenT. Jandeleit-DahmK. SweetM.J. AkiraS. BobikA. PeterK. AgrotisA. Protective role for Toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E-deficient mice.Arterioscler. Thromb. Vasc. Biol.201434351652510.1161/ATVBAHA.113.30240724436372
    [Google Scholar]
  34. ZhangY. ZhangY. Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice.Biomed. Pharmacother.20168134535510.1016/j.biopha.2016.04.03127261612
    [Google Scholar]
  35. FuY. HuX. CaoY. ZhangZ. ZhangN. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.Free Radic. Biol. Med.20158977778510.1016/j.freeradbiomed.2015.10.40726475038
    [Google Scholar]
  36. KimJ. YooJ.Y. SuhJ.M. ParkS. KangD. JoH. BaeY.S. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis.Exp. Mol. Med.201951711310.1038/s12276‑019‑0275‑631292433
    [Google Scholar]
  37. LeeY.H. BaeS.C. KimJ.H. SongG.G. Toll-like receptor polymorphisms and rheumatoid arthritis: A systematic review.Rheumatol. Int.201434111111610.1007/s00296‑013‑2666‑723325096
    [Google Scholar]
  38. SalesM.L. SchreiberR. Ferreira-SaeM.C.S. FernandesM.N. PivetaC.S.C. CipolliJ.A.A. CardosoC.C. Matos-SouzaJ.R. GelonezeB. FranchiniK.G. NadruzW.Jr Toll-like receptor 6 Ser249Pro polymorphism is associated with lower left ventricular wall thickness and inflammatory response in hypertensive women.Am. J. Hypertens.201023664965410.1038/ajh.2010.2420224557
    [Google Scholar]
  39. HamannL. KochA. SurS. HoeferN. GlaeserC. SchulzS. GrossM. FrankeA. NöthlingsU. ZacharowskiK. SchumannR.R. Association of a common TLR-6 polymorphism with coronary artery disease – Implications for healthy ageing?Immun. Ageing20131014310.1186/1742‑4933‑10‑4324498948
    [Google Scholar]
  40. HaT. LiuL. KelleyJ. KaoR. WilliamsD. LiC. Toll-like receptors: New players in myocardial ischemia/reperfusion injury.Antioxid. Redox Signal.20111571875189310.1089/ars.2010.372321091074
    [Google Scholar]
  41. BreaD. SobrinoT. Rodríguez-YáñezM. Ramos-CabrerP. AgullaJ. Rodríguez-GonzálezR. CamposF. BlancoM. CastilloJ. Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke.Clin. Immunol.2011139219319810.1016/j.clim.2011.02.00121354862
    [Google Scholar]
  42. BaxanN. PapanikolaouA. Salles-CrawleyI. LotaA. ChowdhuryR. DuboisO. BrancaJ. HashamM.G. RosenthalN. PrasadS.K. ZhaoL. HardingS.E. SattlerS. Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multiparametric quantitative cardiac magnetic resonance imaging.Dis. Model. Mech.2019128dmm04072510.1242/dmm.04072531324689
    [Google Scholar]
  43. ZhangQ. RaoofM. ChenY. SumiY. SursalT. JungerW. BrohiK. ItagakiK. HauserC.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury.Nature2010464728510410710.1038/nature0878020203610
    [Google Scholar]
  44. HeilF. HemmiH. HochreinH. AmpenbergerF. KirschningC. AkiraS. LipfordG. WagnerH. BauerS. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8.Science200430356631526152910.1126/science.109362014976262
    [Google Scholar]
  45. ColeJE GeorgiouE MonacoC The expression and functions of toll-like receptors in atherosclerosis.Mediators Inflamm2010201039394610.1155/2010/393946
    [Google Scholar]
  46. NiessnerA. SatoK. ChaikofE.L. ColmegnaI. GoronzyJ.J. WeyandC.M. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-α.Circulation2006114232482248910.1161/CIRCULATIONAHA.106.64280117116765
    [Google Scholar]
  47. GuiducciC. CoffmanR.L. BarratF.J. Signalling pathways leading to IFN‐α production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications.J. Intern. Med.20092651435710.1111/j.1365‑2796.2008.02050.x19093959
    [Google Scholar]
  48. SaberM.M. MonirN. AwadA.S. ElsherbinyM.E. ZakiH.F. TLR9: A friend or a foe.Life Sci.202230712087410.1016/j.lfs.2022.12087435963302
    [Google Scholar]
  49. Root-BernsteinR. Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: A review and model making novel predictions and therapeutic suggestions.Int. J. Mol. Sci.2021224210810.3390/ijms2204210833672738
    [Google Scholar]
  50. KhanmohammadiS. RezaeiN. Role of Toll-like receptors in the pathogenesis of COVID-19.J. Med. Virol.20219352735273910.1002/jmv.2682633506952
    [Google Scholar]
  51. RaiSN TiwariN SinghP SinghAK MishraD ImranM Exploring the paradox of covid-19 in neurological complications with emphasis on parkinson’s and alzheimer’s disease.Oxid Med Cell Longev20222022.
    [Google Scholar]
  52. JingH. ChenX. ZhangS. LiuH. ZhangC. DuJ. LiY. WuX. LiM. XiangM. LiuL. ShiJ. Neutrophil extracellular traps (NETs): The role of inflammation and coagulation in COVID-19.Am. J. Transl. Res.20211388575858834539980
    [Google Scholar]
  53. YounessA. CenacC. Faz-LópezB. GrunenwaldS. BarratF.J. ChaumeilJ. MejíaJ.E. GuéryJ.C. TLR8 escapes X chromosome inactivation in human monocytes and CD4+ T cells.Biol. Sex Differ.20231416010.1186/s13293‑023‑00544‑537723501
    [Google Scholar]
  54. JiangY. ZhaoT. ZhouX. XiangY. Gutierrez-CastrellonP. MaX. Inflammatory pathways in COVID‐19: Mechanism and therapeutic interventions.MedComm202233e15410.1002/mco2.15435923762
    [Google Scholar]
  55. XiangM FanJ FanJ. Association of Toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury.Mediators Inflamm2010201010.1155/2010/916425
    [Google Scholar]
  56. SahuA. RatheeS. JainS.K. PatilU.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis.Curr. Rheumatol. Rev.202420546948710.2174/011573397128098424010111520338284718
    [Google Scholar]
  57. JiangH. XuH. JiangH. ZhangY. SunY. The role of TLR4 in the pathogenesis of indirect acute lung injury.Front. Biosci.20131841244125510.2741/417623747880
    [Google Scholar]
  58. ThirietM. ThirietM. Hyperlipidemias and obesity. Vasculopathies: Behavioral.Chemical, Environmental, and Genetic FactorsSpringer2018331548
    [Google Scholar]
  59. AmmiratiE. FrigerioM. AdlerE.D. BassoC. BirnieD.H. BrambattiM. FriedrichM.G. KlingelK. LehtonenJ. MoslehiJ.J. PedrottiP. RimoldiO.E. SchultheissH.P. TschöpeC. CooperL.T.Jr CamiciP.G. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document.Circ. Heart Fail.20201311e00740510.1161/CIRCHEARTFAILURE.120.00740533176455
    [Google Scholar]
  60. KemballC.C. FujinamiR.S. WhittonJ.L. Adaptive immune responses.The Picornaviruses2010303319
    [Google Scholar]
  61. YajimaT. KnowltonK.U. Viral Myocarditis.Circulation2009119192615262410.1161/CIRCULATIONAHA.108.76602219451363
    [Google Scholar]
  62. FrantzS. Falcao-PiresI. BalligandJ.L. BauersachsJ. BrutsaertD. CiccarelliM. DawsonD. de WindtL.J. GiaccaM. HamdaniN. Hilfiker-KleinerD. HirschE. Leite-MoreiraA. MayrM. ThumT. TocchettiC.G. van der VeldenJ. VarricchiG. HeymansS. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC.Eur. J. Heart Fail.201820344545910.1002/ejhf.113829333691
    [Google Scholar]
  63. TamP.E. Coxsackievirus myocarditis: Interplay between virus and host in the pathogenesis of heart disease.Viral Immunol.200619213314610.1089/vim.2006.19.13316817756
    [Google Scholar]
  64. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer20212012810.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  65. HarrisS.M. HarveyE.J. HughesT.R. RamjiD.P. The interferon-γ-mediated inhibition of lipoprotein lipase gene transcription in macrophages involves casein kinase 2- and phosphoinositide-3-kinase-mediated regulation of transcription factors Sp1 and Sp3.Cell. Signal.200820122296230110.1016/j.cellsig.2008.08.01618793716
    [Google Scholar]
  66. KhakpourS. WilhelmsenK. HellmanJ. Vascular endothelial cell Toll-like receptor pathways in sepsis.Innate Immun.201521882784610.1177/175342591560652526403174
    [Google Scholar]
  67. WuX. IroegbuC.D. PengJ. GuoJ. YangJ. FanC. Cell death and exosomes regulation after myocardial infarction and ischemia-reperfusion.Front. Cell Dev. Biol.2021967367710.3389/fcell.2021.67367734179002
    [Google Scholar]
  68. HuC. LiL. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo.J. Cell. Mol. Med.20182231428144210.1111/jcmm.1349229392844
    [Google Scholar]
  69. SinghaiH. RatheeS. JainS.K. PatilU.K. The potential of natural products in the management of cardiovascular disease.Curr. Pharm. Des.202430862463810.2174/011381612829505324020709092838477208
    [Google Scholar]
  70. Evaristo-MendonçaF Sardella-SilvaG Kasai-BrunswickTH CamposRMP DomiziP SantiagoMF Preconditioning of rat bone marrow-derived Mesenchymal stromal cells with toll-like receptor agonists.Stem Cells Int20192019.10.1155/2019/7692973
    [Google Scholar]
  71. De MeyerS.F. SavchenkoA.S. HaasM.S. SchatzbergD. CarrollM.C. SchivizA. DietrichB. RottensteinerH. ScheiflingerF. WagnerD.D. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice.Blood2012120265217522310.1182/blood‑2012‑06‑43993522915644
    [Google Scholar]
  72. KoushkiK. ShahbazS.K. MashayekhiK. SadeghiM. ZayeriZ.D. TabaM.Y. BanachM. Al-RasadiK. JohnstonT.P. SahebkarA. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways.Clin. Rev. Allergy Immunol.202160217519910.1007/s12016‑020‑08791‑932378144
    [Google Scholar]
  73. LiuX. ZhengJ. ZhouH. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases.Int. Immunopharmacol.201111101451145610.1016/j.intimp.2011.04.02721586344
    [Google Scholar]
  74. RatheeS. PatilU.K. JainS.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review.J. Explor. Res. Pharmacol.202491516410.14218/JERP.2023.00050
    [Google Scholar]
  75. ChoiC.Y. KimJ.Y. KimY.S. ChungY.C. SeoJ.K. JeongH.G. Aqueous extract isolated from Platycodon grandiflorum elicits the release of nitric oxide and tumor necrosis factor-α from murine macrophages.Int. Immunopharmacol.2001161141115110.1016/S1567‑5769(01)00047‑911407308
    [Google Scholar]
  76. ÖbergF. HaseebA. AhnfeltM. PonténF. WestermarkB. El-ObeidA. Herbal melanin activates TLR4/NF-κB signaling pathway.Phytomedicine200916547748410.1016/j.phymed.2008.10.00819103478
    [Google Scholar]
  77. ChahalD.S. SivamaniR.K. Rivkah IsseroffR. DasuM.R. Plant-based modulation of Toll-like receptors: An emerging therapeutic model.Phytother. Res.201327101423143810.1002/ptr.488623147906
    [Google Scholar]
  78. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  79. ShitanN. YazakiK. Accumulation and membrane transport of plant alkaloids.Curr. Pharm. Biotechnol.20078424425210.2174/13892010778138742917691993
    [Google Scholar]
  80. ManikishoreM. MauryaS.K. RatheeS. PatilU.K. Genome editing approaches using zinc finger nucleases (ZFNs) for the treatment of motor neuron diseases.Curr. Pharm. Biotechnol.202425.10.2174/011389201030728824052607181038847163
    [Google Scholar]
  81. VerstakB. HertzogP. MansellA. Toll-like receptor signalling and the clinical benefits that lie within.Inflamm. Res.200756111010.1007/s00011‑007‑6093‑717334664
    [Google Scholar]
  82. SenD. RatheeS. PandeyV. JainS.K. PatilU.K. Comprehensive insights into pathophysiology of alzheimer’s disease: Herbal approaches for mitigating neurodegeneration.Curr. Alzheimer Res.202410.2174/011567205030905724040407500338623983
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708329138240926073013
Loading
/content/journals/raiad/10.2174/0127722708329138240926073013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test