Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Phytomedicines represent a diverse array of plant-derived compounds renowned for their therapeutic potential. Traditionally, these mixtures were extracted using water or ethanol, but simpler methods like tea infusions are gaining prominence. However, ensuring the efficacy and safety of phytomedicines demands high-quality plant material and stringent production processes. Advancements in biological screening techniques have shed light on the mechanisms of action of phytomedicines, emphasizing the significance of synergistic interactions among their constituents. Ten widely-used phytomedicines are outlined, detailing their applications, efficacy, and safety profiles, underscoring their global importance in healthcare. Moreover, ongoing research in phytomedicine development showcases the rich biodiversity's capacity to yield novel medicinal compounds. These studies highlight the potential of untapped plant sources in providing innovative solutions to medical challenges, offering promising avenues for future therapeutics. In essence, the utilization of phytomedicines underscores a fusion of traditional knowledge with modern scientific approaches, emphasizing both the importance of respecting ancient remedies and harnessing contemporary advancements for improved healthcare outcomes.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X324849240912071511
2024-10-28
2026-02-20
Loading full text...

Full text loading...

References

  1. ChanP.C. XiaQ. FuP.P. Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200725321124410.1080/10590500701569414 17763047
    [Google Scholar]
  2. El-SabbanF. AbouazraH. Effect of garlic on atherosclerosis and its factors.East. Mediterr. Health J.2008141195205 18557469
    [Google Scholar]
  3. EmendörferF. EmendörferF. BellatoF. Evaluation of the relaxant action of some Brazilian medicinal plants in isolated guinea-pig ileum and rat duodenum.J. Pharm. Pharm. Sci.2005816368 15946599
    [Google Scholar]
  4. World Health OrganizationTraditional medicine.GenevaWHO2024Available from: https://www.who.int/news-room/questions-and-answers/item/traditional-medicine [Accessed 26 Aug 2024].
    [Google Scholar]
  5. HesT. ValešováL. ŽiakováM. Proposed institutionalization of a global pro-conservationist second-floor microfinancing system inspired by the nexus between biodiversity, poverty, and population growth: Example of Toba Samosir and Samosir Regency in North Sumatra, Indonesia.Int. J. Ecol. Econ. Stat.2017382840Available from: https://ceser.in/ceserp/index.php/ijees/article/view/4754
    [Google Scholar]
  6. AnkeJ. RamzanI. Pharmacokinetic and pharmacodynamic drug interactions with Kava (Piper methysticum Forst. f.).J. Ethnopharmacol.2004932-315316010.1016/j.jep.2004.04.009 15234747
    [Google Scholar]
  7. FitzpatrickL.A. Soy isoflavones: Hope or hype?Maturitas200344Suppl. 1S21S2910.1016/S0378‑5122(02)00345‑6 12609556
    [Google Scholar]
  8. ButterweckV. SchmidtM.St. John’s wort: Role of active compounds for its mechanism of action and efficacy.Wien. Med. Wochenschr.200715713-1435636110.1007/s10354‑007‑0440‑8 17704987
    [Google Scholar]
  9. AlvesR.J.V. JotzG.P. do AmaralV.S. MontesT.M.H. MenezesH.S. de AndradeH.H.R. The evaluation of maté (Ilex paraguariensis) genetic toxicity in human lymphocytes by the cytokinesis-block in the micronucleus assay.Toxicol. In Vitro 200822369569810.1016/j.tiv.2007.11.005 18083001
    [Google Scholar]
  10. SwiderskiF. DabrowskaM. RusaczonekA. Waszkiewicz-RobakB. Bioactive substances of garlic and their role in dietoprophylaxis and dietotherapy.Rocz. Panstw. Zakl. Hig.20075814146 17711089
    [Google Scholar]
  11. BiliaA.R. GalloriS. VincieriF.F. Kava-kava and anxiety: Growing knowledge about the efficacy and safety.Life Sci.200270222581259710.1016/S0024‑3205(02)01555‑2 12269386
    [Google Scholar]
  12. BagalkotkarG. SagineeduS.R. SaadM.S. StanslasJ. Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: A review.J. Pharm. Pharmacol.200658121559157010.1211/jpp.58.12.0001 17331318
    [Google Scholar]
  13. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  14. CalixtoJ.B. SantosA.R.S. FilhoV.C. YunesR.A. A review of the plants of the genus Phyllanthus: Their chemistry, pharmacology, and therapeutic potential.Med. Res. Rev.1998184225258https://pubmed.ncbi.nlm.nih.gov/9664291/
    [Google Scholar]
  15. CalixtoJ.B. "Cordia verbenacea." [Cordia verbenacea].Arquivos Brasileiros de Fitomedicina Científica. (Brazilian Archives of Scientific Phytomedicine)2005258
    [Google Scholar]
  16. EmendörferF. EmendörferF. BellatoF. Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum.Biol. Pharm. Bull.200528590290410.1248/bpb.28.902 15863902
    [Google Scholar]
  17. HemaiswaryaS. KruthiventiA.K. DobleM. Synergism between natural products and antibiotics against infectious diseases.Phytomedicine200815863965210.1016/j.phymed.2008.06.008 18599280
    [Google Scholar]
  18. HeckC.I. De MejiaE.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations.J. Food Sci.2007729R138R15110.1111/j.1750‑3841.2007.00535.x 18034743
    [Google Scholar]
  19. Cechinel FilhoV. YunesR.A. Novas perspectivas dos produtos naturais na química medicinal" .[New perspectives on natural products in medicinal chemistry].In: Química de produtos naturais, novos fármacos e a moderna farmacognosia. (In: Chemistry of natural products, new drugs, and modern pharmacognosy),UNIVALI: Itajaí-SC, Brazil20071132
    [Google Scholar]
  20. CarliniE.L.A. "Estudo da ação antiúlcera gástrica de plantas brasileiras: Maytenus ilicifolia (Espinheira Santa)."[Study of the gastric anti-ulcer action of Brazilian plants: Maytenus ilicifolia (Espinheira Santa).] Brasília, DF, Brazil: CEME/AFIP1988https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/1988/01/estudo-de-acao-antiulcera-gastrica-de-plantas-brasileiras-maytenus-ilicifolia-espinheira-santa-e-outras/
    [Google Scholar]
  21. GathirwaJ.W. RukungaG.M. MwitariP.G. Traditional herbal antimalarial therapy in Kilifi district, Kenya.J. Ethnopharmacol.2011134243444210.1016/j.jep.2010.12.043 21211554
    [Google Scholar]
  22. LamprontiI. KhanM. BianchiN. Bangladeshi medicinal plant extracts inhibiting molecular interactions between nuclear factors and target DNA sequences mimicking NF-kappaB binding sites.Med. Chem.20051432733310.2174/1573406054368684 16789890
    [Google Scholar]
  23. KonkimallaV.S. WangG. KainaB. EfferthT. Microarray-based expression of DNA repair genes does not correlate with growth inhibition of cancer cells by natural products derived from traditional Chinese medicine.Cancer Genomics Proteomics2008527984 18460736
    [Google Scholar]
  24. CravottoG. BoffaL. GenziniL. GarellaD. Phytotherapeutics: an evaluation of the potential of 1000 plants.J. Clin. Pharm. Ther.2010351114810.1111/j.1365‑2710.2009.01096.x 20175810
    [Google Scholar]
  25. MattoliL. CangiF. MaidecchiA. Metabolomic fingerprinting of plant extracts.J. Mass Spectrom.200641121534154510.1002/jms.1099 17051519
    [Google Scholar]
  26. van der KooyF. MalteseF. ChoiY.H. KimH.K. VerpoorteR. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting.Planta Med.200975776377510.1055/s‑0029‑1185450 19288400
    [Google Scholar]
  27. LangfieldR.D. ScaranoF.J. HeitzmanM.E. KondoM. HammondG.B. NetoC.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides.J. Ethnopharmacol.2004942-327928110.1016/j.jep.2004.06.013 15325731
    [Google Scholar]
  28. McKayD.L. BlumbergJ.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.).Phytother. Res.200620751953010.1002/ptr.1900 16628544
    [Google Scholar]
  29. Piper methysticum (Kava kava) Monograph.Alternative Medicine Review199836458460Available from: https://altmedrev.com/wp-content/uploads/2019/02/v3-6-458.pdf
    [Google Scholar]
  30. LemberkovicsE. KéryA. MarczalG. SimándiB. SzökeE. Phytochemical evaluation of essential oils, medicinal plants and their preparations.Acta Pharm. Hung.1998683141149 9703700
    [Google Scholar]
  31. LiuK. Soybeans: Chemistry, Technology and Utilization.New York, NYChapman & Hall199710.1007/978‑1‑4615‑1763‑4
    [Google Scholar]
  32. ChengY. WangY. WangX. A causal relationship discovery-based approach to identifying active components of herbal medicine.Comput. Biol. Chem.200630214815410.1016/j.compbiolchem.2005.11.003 16542877
    [Google Scholar]
  33. WangY WangX ChengY. A computational approach to botanical drug design by modeling quantitative composition-activity relationship.Chem Biol Drug Des2006683166172https://pubmed.ncbi.nlm.nih.gov/17062014/ 17062014
    [Google Scholar]
  34. MessinaM.J. WoodC.E. Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary.Nutr. J.200871710.1186/1475‑2891‑7‑17 18522734
    [Google Scholar]
  35. MariotM.P. BarbieriR.L. "Metabólitos secundários e propriedades medicinais da espinheira-santa (Maytenus ilicifolia Mart. ex Reiss. e M. aquifolium Mart.)."[Secondary metabolites and medicinal properties of Espinheira Santa (Maytenus ilicifolia Mart. ex Reiss. and M. aquifolium Mart.)] Revista Brasileira de Plantas Medicinais (Braz J Medl Plants)200798999https://www1.ibb.unesp.br/Home/Departamentos/Botanica/RBPMRevistaBrasileiradePlantasMedicinais/artigo13_v9_n3.pdf
    [Google Scholar]
  36. MillsS.Y. SteinhoffB. Kava-kava: A lesson for the phytomedicine community.Phytomedicine2003102-326126210.1078/094471103321660003 12725583
    [Google Scholar]
  37. QueirozM.L.S. ValadaresM.C. TorelloC.O. Comparative studies of the effects of Tabebuia avellanedae bark extract and β-lapachone on the hematopoietic response of tumour-bearing mice.J. Ethnopharmacol.2008117222823510.1016/j.jep.2008.01.034 18343063
    [Google Scholar]
  38. RizzoI. VedoyaG. MauruttoS. HaidukowskiM. VarsavskyE. Assessment of toxigenic fungi on Argentinean medicinal herbs.Microbiol. Res.2004159211312010.1016/j.micres.2004.01.013 15293944
    [Google Scholar]
  39. PittlerM.H. ErnstE. Clinical effectiveness of garlic (Allium sativum).Mol. Nutr. Food Res.200751111382138510.1002/mnfr.200700073 17918163
    [Google Scholar]
  40. SetchellK.D.R. Lydeking-OlsenE. Dietary phytoestrogens and their effect on bone: Evidence from in vitro and in vivo, human observational, and dietary intervention studies.Am. J. Clin. Nutr.2003783Suppl.593S609S10.1093/ajcn/78.3.593S 12936954
    [Google Scholar]
  41. SantosA.R.S. FilhoV.C. YunesR.A. CalixtoJ.B. Analysis of the mechanisms underlying the antinociceptive effect of the extracts of plants from the genus Phyllanthus.Gen. Pharmacol.19952671499150610.1016/0306‑3623(95)00030‑5 8690236
    [Google Scholar]
  42. SharangiA.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) - A review.Food Res. Int.2009425-652953510.1016/j.foodres.2009.01.007
    [Google Scholar]
  43. TrevisanM.T.S. MacedoF.V.V. van de MeentM. RheeI.K. VerpoorteR. “Seleção de plantas com atividade anticolinasterase para tratamento da doença de Alzheimer.” Selection of plants with anticholinesterase activity for the treatment of Alzheimer’s disease.Química Nova (New Chem)20032330130410.1590/S0100‑40422003000300002
    [Google Scholar]
  44. PredigerR.D.S. FernandesM.S. RialD. Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory.J. Ethnopharmacol.2008120346547310.1016/j.jep.2008.09.018 18948179
    [Google Scholar]
  45. NoldinV.F. Cechinel FilhoV. MonacheF.D. Composição química e atividades biológicas das folhas de Cynara scolymus L. (alcachofra) cultivada no Brasil.” [Chemical composition and biological activities of the leaves of Cynara scolymus L. (artichoke) cultivated in Brazil.Química. Nova (New Chem)200326333133410.1590/S0100‑40422003000300008
    [Google Scholar]
  46. PeterJ.H. Valerian: The Genus Valeriana.Amsterdam, NetherlandsHarwood Academic Publishers1997
    [Google Scholar]
  47. SinghY.N. Potential for interaction of kava and St. John’s wort with drugs.J. Ethnopharmacol.20051001-210811310.1016/j.jep.2005.05.014 16005588
    [Google Scholar]
  48. ShaleT.L. StirkW.A. van StadenJ. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity.J. Ethnopharmacol.199967334735410.1016/S0378‑8741(99)00035‑5 10617071
    [Google Scholar]
  49. WhitingDR GuariguataL WeilC ShawJ IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030.Diabetes Res Clin Pract.20119433112110.1016/j.diabres.2011.10.029
    [Google Scholar]
  50. PeerN KengneAP MotalaAA MbanyaJC Diabetes in the Africa region: An update.Diabetes Res Clin Pract2014103219720510.1016/j.diabres.2013.11.006
    [Google Scholar]
  51. TuriákG. FarkasnéT.I. Problems involved in standardization of flavonoids in crude drugs and extracts from medicinal plants.Acta Pharm. Hung.1987575193198 3434288
    [Google Scholar]
  52. WiltT. IshaniA. StarkG. MacDonaldR. MulrowC. LauJ. Serenoa repens for treatment of benign prostatic hyperplasia (Cochrane Review).The Cochrane Library.OxfordThe Cochrane1999
    [Google Scholar]
  53. WurglicsM. Schubert-ZsilaveczM. Hypericum perforatum: A ‘modern’ herbal antidepressant: Pharmacokinetics of active ingredients.Clin. Pharmacokinet.200645544946810.2165/00003088‑200645050‑00002 16640452
    [Google Scholar]
  54. ZuinV.G. VilegasJ.H. Pesticide residues in medicinal plants and phytomedicines.Phytother. Res.20001427388https://pubmed.ncbi.nlm.nih.gov/10685102/ 10685102
    [Google Scholar]
  55. WangY. TangH. NicholsonJ.K. Metabolomic strategy for the classification and quality control of phytomedicine: A case study of chamomile flower (Matricaria recutita L.).Planta Med.200470325025510.1055/s‑2004‑815543 15114503
    [Google Scholar]
  56. WagnerH. New targets in phytopharmacology of plants.In: Herbal Medicine: A Concise Overview for Professionals.BritainButterworth-Heinemann2000
    [Google Scholar]
  57. YadavN.P. PalA. ShankerK. Synergistic effect of silymarin and standardized extract of Phyllanthus amarus against CCl4-induced hepatotoxicity in Rattus norvegicus.Phytomedicine200815121053106110.1016/j.phymed.2008.08.002 18848770
    [Google Scholar]
  58. VacekJ. KlejdusB. KubánV. Hypericin and hyperforin: Bioactive components of St. John’s Wort (Hypericum perforatum). Their isolation, analysis and study of physiological effect.Ceska Slov. Farm.20075626266 17619301
    [Google Scholar]
  59. WagnerH. Ulrich-MerzenichG. Synergy research: Approaching a new generation of phytopharmaceuticals.Phytomedicine2009162-39711010.1016/j.phymed.2008.12.018 19211237
    [Google Scholar]
  60. WegenerT. FintelmannV. Pharmacological properties and therapeutic profile of artichoke (Cynara scolymus L.).Wien. Med. Wochenschr.19991498-10241247 10483691
    [Google Scholar]
  61. GroverJ.K. YadavS. VatsV. Medicinal plants of India with anti-diabetic potential.J. Ethnopharmacol.20028118110010.1016/S0378‑8741(02)00059‑4 12020931
    [Google Scholar]
  62. ScartezziniP. SperoniE. Review on some plants of Indian traditional medicine with antioxidant activity.J. Ethnopharmacol.2000711-2234310.1016/S0378‑8741(00)00213‑0 10904144
    [Google Scholar]
  63. SethS.D. SharmaB. Medicinal plants in India.Indian J. Med. Res.20041201911 15299226
    [Google Scholar]
  64. RamachandranA. SnehalathaC. ViswanathanV. Burden of type 2 diabetes and its complications- The Indian scenario.Curr. Sci.20028314711476
    [Google Scholar]
  65. MatteucciE. GiampietroO. Oxidative stress in families of type 1 diabetic patients.Diabetes Care20002381182118610.2337/diacare.23.8.1182 10937519
    [Google Scholar]
  66. OberleyL.W. Free radicals and diabetes.Free Radic. Biol. Med.19885211312410.1016/0891‑5849(88)90036‑6 3075947
    [Google Scholar]
  67. BaynesJ.W. ThorpeS.R. The role of oxidative stress in diabetic complications.Curr. Opin. Endocrinol. Diabetes19963427728410.1097/00060793‑199608000‑00001
    [Google Scholar]
  68. LipinskiB. Pathophysiology of oxidative stress in diabetes mellitus.J. Diabetes Complications200115420321010.1016/S1056‑8727(01)00143‑X 11457673
    [Google Scholar]
  69. VasudevanM. ParleM. Pharmacological actions of Thespesia populnea relevant to Alzheimer’s disease.Phytomedicine2006139-1067768710.1016/j.phymed.2006.01.007 16860552
    [Google Scholar]
  70. KupfermannI. Learning and memory. In: Principles of Neural Science. Kandel ER, Schwartz JH, Jessell TM, eds.London: Prentice Hall International1993
    [Google Scholar]
  71. FrancisP.T. PalmerA.M. SnapeM. WilcockG.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress.J. Neurol. Neurosurg. Psychiatry199966213714710.1136/jnnp.66.2.137 10071091
    [Google Scholar]
  72. JoshiH. MegeriK. BidcholM.A. KulkarniV.H. Clerodendron phlomidis Linn improves short term memory of chemically and naturally induced amnesia in mice.Nat Prod200733166170
    [Google Scholar]
  73. KimD.H. YoonB.H. KimY.W. The seed extract of Cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice.J. Pharmacol. Sci.20071051829310.1254/jphs.FP0061565 17895591
    [Google Scholar]
  74. BeersM.H. The Merck manual of medical information.2nd edNew JerseyMerck and Co, INC2003
    [Google Scholar]
  75. OliveiraD.R. SanadaP.F. SaragossaF.A.C. Neuromodulatory property of standardized extract Ginkgo biloba L. (EGb 761) on memory: Behavioral and molecular evidence.Brain Res.20091269688910.1016/j.brainres.2008.11.105 19146837
    [Google Scholar]
  76. HowesM.J.R. HoughtonP.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function.Pharmacol. Biochem. Behav.200375351352710.1016/S0091‑3057(03)00128‑X 12895669
    [Google Scholar]
  77. OhM.S. HuhY. BaeH. AhnD.K. ParkS.K. The multi-herbal formula Guibi-tang enhances memory and increases cell proliferation in the rat hippocampus.Neurosci. Lett.2005379320520810.1016/j.neulet.2004.12.077 15843064
    [Google Scholar]
  78. GovindarajanR. VijayakumarM. PushpangadanP. Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda.J. Ethnopharmacol.200599216517810.1016/j.jep.2005.02.035 15894123
    [Google Scholar]
  79. JoshiH. ParleM. Zingiber officinale: Evaluation of its nootropic effect in mice.Afr. J. Tradit. Complement. Altern. Med.2006316474
    [Google Scholar]
  80. TopicB. TaniE. TsiakitzisK. Enhanced maze performance and reduced oxidative stress by combined extracts of Zingiber officinale and Ginkgo biloba in the aged rat.Neurobiol. Aging200223113514310.1016/S0197‑4580(01)00241‑X 11755028
    [Google Scholar]
  81. GrzannaR. PhanP. PolotskyA. LindmarkL. FrondozaC.G. Ginger extract inhibits beta-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes.J. Altern. Complement. Med.20041061009101310.1089/acm.2004.10.1009 15673995
    [Google Scholar]
  82. AbdelazimA. KhaterS. AliH. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5′ adenosine monophosphate kinase up-regulation.Saudi J. Biol. Sci.20192671436144110.1016/j.sjbs.2018.06.001 31762606
    [Google Scholar]
  83. Abdel-ZaherA.O. FarghalyH.S.M. El-RefaiyA.E.M. Abd-EldayemA.M. Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats.Clin. Exp. Hypertens.201840870371410.1080/10641963.2018.1425421 29351002
    [Google Scholar]
  84. AbegazT.M. TeferaY.G. Befekadu AbebeT. Target organ damage and the long term effect of nonadherence to clinical practice guidelines in patients with hypertension: A retrospective cohort study.Int. J. Hypertens.201720171810.1155/2017/2637051 28695006
    [Google Scholar]
  85. AdayA.W. RidkerP.M. Antiinflammatory therapy in clinical care: The CANTOS trial and beyond.Front. Cardiovasc. Med.201856210.3389/fcvm.2018.00062 29922680
    [Google Scholar]
  86. AhmadM.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement.Biomed. Pharmacother.201810750751910.1016/j.biopha.2018.08.036 30114634
    [Google Scholar]
  87. LeveyA.S. CoreshJ. Chronic kidney disease.Lancet2012379981116518010.1016/S0140‑6736(11)60178‑5 21840587
    [Google Scholar]
  88. ChenT.K. KnicelyD.H. GramsM.E. Chronic kidney disease diagnosis and management: A review.JAMA2019322131294130410.1001/jama.2019.14745 31573641
    [Google Scholar]
  89. LeveyA.S. EckardtK.U. DormanN.M. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) consensus conference.Kidney Int.20209761117112910.1016/j.kint.2020.02.010
    [Google Scholar]
  90. XieY. BoweB. MokdadA.H. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016.Kidney Int.201894356758110.1016/j.kint.2018.04.011 30078514
    [Google Scholar]
  91. JhaV. Garcia-GarciaG. IsekiK. Chronic kidney disease: Global dimension and perspectives.Lancet2013382988826027210.1016/S0140‑6736(13)60687‑X 23727169
    [Google Scholar]
  92. GlassockR.J. WarnockD.G. DelanayeP. The global burden of chronic kidney disease: Estimates, variability and pitfalls.Nat. Rev. Nephrol.201713210411410.1038/nrneph.2016.163 27941934
    [Google Scholar]
  93. HoyW.E. Kincaid-SmithP. HughsonM.D. CKD in Aboriginal Australians.Am. J. Kidney Dis.201056598399310.1053/j.ajkd.2010.05.010 20728257
    [Google Scholar]
  94. ZhongY. DengY. ChenY. ChuangP.Y. Cijiang HeJ. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases.Kidney Int.20138461108111810.1038/ki.2013.276 23868014
    [Google Scholar]
  95. GobeG.C. WojcikowskiK. Nontraditional (non-Western pharmaceutical) treatments for chronic kidney disease.Clin. Nephrol.2020931495410.5414/CNP92S108 31829927
    [Google Scholar]
  96. WojcikowskiJ. NowickiM. GulecM. The effect of Astragalus membranaceus and enalapril on renal fibrosis in rats with unilateral ureteral obstruction.Planta Med.201682Suppl. 1S1S38110.1055/s‑0036‑1596330
    [Google Scholar]
  97. SchnaperH.W. The tubulointerstitial pathophysiology of progressive kidney disease.Adv. Chronic Kidney Dis.201724210711610.1053/j.ackd.2016.11.011 28284376
    [Google Scholar]
  98. MengX.M. Nikolic-PatersonD.J. LanH.Y. Inflammatory processes in renal fibrosis.Nat. Rev. Nephrol.201410949350310.1038/nrneph.2014.114 24981817
    [Google Scholar]
  99. DjudjajS. BoorP. Cellular and molecular mechanisms of kidney fibrosis.Mol. Aspects Med.201965163610.1016/j.mam.2018.06.002 29909119
    [Google Scholar]
  100. ThorpeK.E. The role of chronic disease and multiple chronic conditions on the level and change in per capita health care spending, 2010-2021.J. Chronic Dis. Manag.2024811035https://www.jscimedcentral.com/public/assets/articles/chronicdiseases-8-1035.pdf
    [Google Scholar]
  101. AshandeM.C. MpianaP.T. Ethno-botany and pharmacognosy of Ageratum conyzoides L.J. Adv. Med. Life Sci.20152416
    [Google Scholar]
  102. de BoerI.H. KhuntiK. SaduskyT. Diabetes management in chronic kidney disease: A consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO).Diabetes Care202245123075309010.2337/dci22‑0027 36189689
    [Google Scholar]
  103. RojasJ.C. ChokkaraS. ZhuM. LindenauerP.K. PressV.G. Care quality for patients with chronic obstructive pulmonary disease in the readmission penalty era.Am. J. Respir. Crit. Care Med.20232071293710.1164/rccm.202203‑0496OC 35916652
    [Google Scholar]
  104. AlbogamiY. CusiK. DanielsM.J. WeiY.J.J. WintersteinA.G. Response to comment on Albogami et al. Glucagon-like peptide-1 receptor agonists and chronic lower respiratory disease exacerbations among patients with type 2 diabetes.Diabetes Care2021448e16710.2337/dci21‑0024 34285101
    [Google Scholar]
  105. LukmanN.A. LeibingA. MerryL. Self-care experiences of adults with chronic disease in Indonesia: An integrative review.Int. J. Chronic Dis.2020202011710.1155/2020/1379547 32908858
    [Google Scholar]
  106. AlkaffFF IllaviF SalamahS The impact of the Indonesian Chronic Disease Management Program (PROLANIS) on metabolic control and renal function of type 2 diabetes mellitus patients in primary care setting.J Prim Care Community Health20211210.1177/2150132720984409 33472499
    [Google Scholar]
  107. GalloA. CovinoM. LipariA. Increase in chronic medications and polypharmacy-the multifaceted burden of COVID-19 disease on public health care.J. Pers. Med.2023139132110.3390/jpm13091321 37763088
    [Google Scholar]
  108. LinC.Y. GentileN.L. BaleL. Implementation of a physical activity vital sign in primary care: Associations between physical activity, demographic characteristics, and chronic disease burden.Prev. Chronic Dis.20221921045710.5888/pcd19.210457 35749145
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X324849240912071511
Loading
/content/journals/rafna/10.2174/012772574X324849240912071511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test