Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

A metabolic disease that requires insulin and is marked by consistently high blood sugar levels is known as diabetes mellitus. Many healthcare systems throughout the world have long relied on medicinal herbs as a means of addressing diabetes and its complications. Traditional medicine derived from plant extracts has several advantages over contemporary pharmaceuticals, including lower costs, greater clinical efficacy, and fewer side effects. Primarily, the condition has been managed by a range of synthetic medications that improve the altered glycemic state in individuals with diabetes. Synthetic medications work well, but along with their benefits, they come with noticeable adverse effects. Due to the lack of knowledge regarding their chemical composition, preparation method, active bio-actives, potential side effects, and the optimal way to administer them, medicinal plants have not been fully utilised as acceptable drugs in the treatment of diabetes, despite their long history of use as primary health care. Because of a lack of sufficient data on the parameters described earlier, most medicinal plants that show promise as anti-diabetic agents do not make it to the clinical trial phase. Medicinal plants that have been studied in humans with diabetes and shown promise as a treatment for the disease, either alone or in conjunction with other plants, are summarised in this review. Pharmacologically active phytomolecules with an antidiabetic action that are derived from medicinal plants were the primary topic of this review article. Its goal was to discuss their importance in diabetes management and therapy. These all-natural substances have the potential to be successful and alternative diabetes treatments, as well as a new method of approaching the disease.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X351036241122040415
2024-12-23
2026-02-20
Loading full text...

Full text loading...

References

  1. GoyalR. SinghalM. JialalI. Type 2 diabetes.StatPearls.StatPearls PublishingTreasure Island, FL2024 30020625
    [Google Scholar]
  2. DilworthL. FaceyA. OmoruyiF. Diabetes mellitus and its metabolic complications: The role of adipose tissues.Int. J. Mol. Sci.20212214764410.3390/ijms22147644 34299261
    [Google Scholar]
  3. International Diabetes Federation. IDF Diabetes Atlas.9th ed. Brussels: International Diabetes Federation2019Available from: https://www.spd.pt/images/idf_atlas_9th_edition_2019.pdf
    [Google Scholar]
  4. MedagamaA.B. BandaraR. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: Is continued use safe and effective?Nutr. J.201413110210.1186/1475‑2891‑13‑102 25331834
    [Google Scholar]
  5. AlqathamaA. AlluhiabiG. BaghdadiH. Herbal medicine from the perspective of type II diabetic patients and physicians: What is the relationship?BMC Complement. Med. Ther.20202016510.1186/s12906‑020‑2854‑4 32111222
    [Google Scholar]
  6. KesavadevJ. SabooB. SadikotS. Unproven therapies for diabetes and their implications.Adv. Ther.2017341607710.1007/s12325‑016‑0439‑x 27864668
    [Google Scholar]
  7. World Health OrganizationGlobal report on diabetes 2016. Geneva:WHO2016Available from: https://www.who.int/publications/i/item/9789241565257
    [Google Scholar]
  8. NaveenY.P. UroojA. ByrappaK. A review on medicinal plants evaluated for anti-diabetic potential in clinical trials: Present status and future perspective.J. Herb. Med.20212810043610.1016/j.hermed.2021.100436
    [Google Scholar]
  9. NandaM. SharmaR. Financial burden of seeking diabetes mellitus care in India: Evidence from a Nationally Representative Sample Survey.Health Care Science20232529130510.1002/hcs2.65 38938589
    [Google Scholar]
  10. GordonA. BuchZ. BauteV. CoeytauxR. Use of ayurveda in the treatment of type 2 diabetes mellitus.Glob. Adv. Health Med.20198216495611986109410.1177/2164956119861094 31431828
    [Google Scholar]
  11. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑1 34421444
    [Google Scholar]
  12. SallehN.H. ZulkipliI.N. Mohd YasinH. Systematic review of medicinal plants used for treatment of diabetes in human clinical trials: An ASEAN perspective.Evid. Based Complement. Alternat. Med.20212021111010.1155/2021/5570939 34691218
    [Google Scholar]
  13. AggarwalN. Shishu. A review of recent investigations on medicinal herbs possessing anti-diabetic properties.J. Nutr. Disord. Ther.20111102210.4172/2161‑0509.1000102
    [Google Scholar]
  14. KayarohanamS. KavimaniS. Current trends of plants having antidiabetic activity: A review.J. Bioanal. Biomed.201572556510.4172/1948‑593X.1000124
    [Google Scholar]
  15. SidhuM.C. SharmaT. Medicinal plants from twelve families having antidiabetic activity: A review.Am J PharmTech Res201333652
    [Google Scholar]
  16. World Health OrganizationDefinition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization.1999Available from: https://iris.who.int/handle/10665/66040
    [Google Scholar]
  17. American Diabetes Association2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2019.Diabetes Care201942Suppl. 1S13S2810.2337/dc19‑S002 30559228
    [Google Scholar]
  18. HeiseT. NosekL. RønnB.B. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes.Diabetes20045361614162010.2337/diabetes.53.6.1614 15161770
    [Google Scholar]
  19. McIntyreH.D. CatalanoP. ZhangC. DesoyeG. MathiesenE.R. DammP. Gestational diabetes mellitus.Nat. Rev. Dis. Primers2019514710.1038/s41572‑019‑0098‑8 31296866
    [Google Scholar]
  20. FaselisC. KatsimardouA. ImprialosK. DeligkarisP. KallistratosM. DimitriadisK. Microvascular complications of type 2 diabetes mellitus.Curr. Vasc. Pharmacol.202018211712410.2174/1570161117666190502103733 31057114
    [Google Scholar]
  21. MayfieldJ. Diagnosis and classification of diabetes mellitus: New criteria.Am. Fam. Physician199858613551362, 1369-1370 9803200
    [Google Scholar]
  22. KnightK. BadamgaravE. HenningJ.M. A systematic review of diabetes disease management programs.Am. J. Manag. Care2005114242250 15839184
    [Google Scholar]
  23. ColbergS.R. SigalR.J. YardleyJ.E. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association.Diabetes Care201639112065207910.2337/dc16‑1728 27926890
    [Google Scholar]
  24. KhanM.U. Lifestyle modification in the prevention of type II diabetes mellitus.Oman Med. J.201227217017110.5001/omj.2012.36 22496947
    [Google Scholar]
  25. DeFronzoR.A. Pharmacologic therapy for type 2 diabetes mellitus.Ann. Intern. Med.1999131428130310.7326/0003‑4819‑131‑4‑199908170‑00008 10454950
    [Google Scholar]
  26. GoldbergR.B. KendallD.M. DeegM.A. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia.Diabetes Care20052871547155410.2337/diacare.28.7.1547 15983299
    [Google Scholar]
  27. HomeP.D. PocockS.J. Beck-NielsenH. Rosiglitazone evaluated for cardiovascular outcomes - An interim analysis.N. Engl. J. Med.20073571283810.1056/NEJMoa073394 17551159
    [Google Scholar]
  28. SinghS. LokeY.K. FurbergC.D. Thiazolidinediones and heart failure: A teleo-analysis.Diabetes Care20073082148215310.2337/dc07‑0141 17536074
    [Google Scholar]
  29. Siconolfi-BaezL. BanerjiM.A. LebovitzH.E. Characterization and significance of sulfonylurea receptors.Diabetes Care199013Suppl. 32810.2337/diacare.13.3.2 2209340
    [Google Scholar]
  30. SimonsonD.C. FerranniniE. BevilacquaS. Mechanism of improvement in glucose metabolism after chronic glyburide therapy.Diabetes198433983884510.2337/diab.33.9.838 6432610
    [Google Scholar]
  31. SahuB. Comprehensive review on non-alcoholic fatty liver disease (NAFLD): Clinical advancement and drug treatments.Prob Sci20241117
    [Google Scholar]
  32. MishraA. Impact of sewage water on behavioral response and oxygen consumption of fish Clarius batrachus.Prob Sci202411814
    [Google Scholar]
  33. SinhaL. JainS.K. ChoudharyR. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement.Prob Sci2024112433
    [Google Scholar]
  34. KumarM.K. NarayanS. SinghP.K. A review on advancement of mouth dissolving tablets.Prob Sci2024113449
    [Google Scholar]
  35. KhanM.F. RawatA.K. KhatoonS. HussainM.K. MishraA. NegiD.S. In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum.Integr. Med. Res.20187217618310.1016/j.imr.2018.03.004 29984178
    [Google Scholar]
  36. WangW. XuJ. FangH. LiZ. LiM. Advances and challenges in medicinal plant breeding.Plant Sci.202029811057310.1016/j.plantsci.2020.110573 32771174
    [Google Scholar]
  37. WuJ.Y. WangT.Y. DingH.Y. ZhangY.R. LinS.Y. ChangT.S. Enzymatic synthesis of novel vitexin glucosides.Molecules20212620627410.3390/molecules26206274 34684855
    [Google Scholar]
  38. DwitiyantiD.D. HarahapY. ElyaB. BahtiarA. Study of molecular docking of vitexin in binahong (Anredera cordifolia (Ten.) Steenis) leaves extract on glibenclamide-CYP3A4 interaction.Pharmacogn. J.2019116s1471147610.5530/pj.2019.11.227
    [Google Scholar]
  39. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology (Basel)20209925210.3390/biology9090252 32872226
    [Google Scholar]
  40. MelianiN. DibM.E.A. AllaliH. TabtiB. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats.Asian Pac. J. Trop. Biomed.20111646847110.1016/S2221‑1691(11)60102‑0 23569815
    [Google Scholar]
  41. El BarkyA. HusseinS. Alm-EldeenA. HafezA. MohamedT. Saponins and their potential role in diabetes mellitus.Diabetes Manag.20177148158
    [Google Scholar]
  42. PhilpottD.J. ButznerJ.D. MeddingsJ.B. Regulation of intestinal glucose transport.Can. J. Physiol. Pharmacol.19927091201120710.1139/y92‑167 1493588
    [Google Scholar]
  43. KumariM. JainS. Tannins: An antinutrient with positive effect to manage diabetes.Res. J. Recent Sci.20121127073
    [Google Scholar]
  44. KimM.J. RyuG.R. ChungJ.S. Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: In vivo and in vitro.Pancreas200326329229910.1097/00006676‑200304000‑00014 12657957
    [Google Scholar]
  45. KumarD. GhoshR. PalB.C. α-glucosidase inhibitory terpenoids from Potentilla fulgens and their quantitative estimation by validated HPLC method.J. Funct. Foods2013531135114110.1016/j.jff.2013.03.010
    [Google Scholar]
  46. MbazeL.M. PoumaleH.M.P. WansiJ.D. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae).Phytochemistry200768559159510.1016/j.phytochem.2006.12.015 17270224
    [Google Scholar]
  47. ElizaJ. DaisyP. IgnacimuthuS. DuraipandiyanV. Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats.Chem. Biol. Interact.20091792-332933410.1016/j.cbi.2008.10.017 19007766
    [Google Scholar]
  48. PrasadS. KalraN. ShuklaY. Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice.Mol. Nutr. Food Res.200751335235910.1002/mnfr.200600113 17340578
    [Google Scholar]
  49. ZaharudinN. StaerkD. DragstedL.O. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin.Food Chem.201927048148610.1016/j.foodchem.2018.07.142 30174076
    [Google Scholar]
  50. Sok YenF. Shu QinC. Tan Shi XuanS. Hypoglycemic efects of plant flavonoids: A review.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/2057333 34925525
    [Google Scholar]
  51. KapoorR. KakkarP. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.PLoS One201278e4166310.1371/journal.pone.0041663 22899998
    [Google Scholar]
  52. YongchaiyudhaS. RungpitarangsiV. BunyapraphatsaraN. ChokechaijaroenpornO. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus.Phytomedicine19963324124310.1016/S0944‑7113(96)80060‑2 23195077
    [Google Scholar]
  53. AgarwalR. SulaimanS.A. MohamedM. Open label clinical trial to study adverse effects and tolerance to dry powder of the aerial part of Andrographis paniculata in patients type 2 with diabetes mellitus.Malays. J. Med. Sci.20051211319 22605942
    [Google Scholar]
  54. LouJ.S. DimitrovaD.M. MurchisonC. Centella asiatica triterpenes for diabetic neuropathy: A randomized, double-blind, placebo-controlled, pilot clinical study.Esperienze Dermatol.2018202Suppl. 1122210.23736/S1128‑9155.18.00455‑7 31080345
    [Google Scholar]
  55. ChusakC. ThilavechT. HenryC.J. AdisakwattanaS. Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: A randomized crossover trial.BMC Complement. Altern. Med.2018181610.1186/s12906‑017‑2075‑7 29310631
    [Google Scholar]
  56. ChengS.H. IsmailA. AnthonyJ. NgO.C. HamidA.A. Barakatun-NisakM.Y. Eight weeks of Cosmos caudatus (Ulam Raja) supplementation improves glycemic status in patients with type 2 diabetes: A randomized controlled trial.Evid. Based Complement. Alternat. Med.201520151710.1155/2015/405615 26713097
    [Google Scholar]
  57. GutiérrezR.M.P. MitchellS. SolisR.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology.J. Ethnopharmacol.2008117112710.1016/j.jep.2008.01.025 18353572
    [Google Scholar]
  58. NeelakantanN. NarayananM. de SouzaR.J. van DamR.M. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials.Nutr. J.2014131710.1186/1475‑2891‑13‑7 24438170
    [Google Scholar]
  59. LiW.L. ZhengH.C. BukuruJ. De KimpeN. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus.J. Ethnopharmacol.200492112110.1016/j.jep.2003.12.031 15099842
    [Google Scholar]
  60. RathiS.S. GroverJ.K. VatsV. The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism.Phytother. Res.200216323624310.1002/ptr.842 12164268
    [Google Scholar]
  61. SaeedF. AfzaalM. NiazB. Bitter melon (Momordica charantia): A natural healthy vegetable.Int. J. Food Prop.20182111270129010.1080/10942912.2018.1446023
    [Google Scholar]
  62. DandawateP.R. SubramaniamD. PadhyeS.B. AnantS. Bitter melon: A panacea for inflammation and cancer.Chin. J. Nat. Med.20161428110010.1016/S1875‑5364(16)60002‑X 26968675
    [Google Scholar]
  63. IbrahimT.A. El-HefnawyH.M. El-HelaA.A. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt.Nat. Prod. Res.201024161537154510.1080/14786419.2010.489049 20835955
    [Google Scholar]
  64. TanS. StathopoulosC. ParksS. RoachP. An optimised aqueous extract of phenolic compounds from bitter melon with high antioxidant capacity.Antioxidants20143481482910.3390/antiox3040814 26785242
    [Google Scholar]
  65. PopovichD.G. LiL. ZhangW. Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells.Food Chem. Toxicol.20104861619162610.1016/j.fct.2010.03.035 20347917
    [Google Scholar]
  66. ChuangC.Y. HsuC. ChaoC.Y. WeinY.S. KuoY.H. HuangC. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.).J. Biomed. Sci.200613676377210.1007/s11373‑006‑9109‑3 16955349
    [Google Scholar]
  67. AhmadZ. ZamhuriK.F. YaacobA. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd).Molecules20121789631964010.3390/molecules17089631 22885359
    [Google Scholar]
  68. KellerA.C. MaJ. KavalierA. HeK. BrillantesA.M.B. KennellyE.J. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro.Phytomedicine2011191323710.1016/j.phymed.2011.06.019 22133295
    [Google Scholar]
  69. SasaM. InoueI. ShinodaY. Activating effect of momordin, extract of bitter melon (Momordica charantia L.), on the promoter of human PPARdelta.J. Atheroscler. Thromb.200916688889210.5551/jat.2790 20032574
    [Google Scholar]
  70. KhannaP. JainS.C. PanagariyaA. DixitV.P. Hypoglycemic activity of polypeptide-p from a plant source.J. Nat. Prod.198144664865510.1021/np50018a002 7334382
    [Google Scholar]
  71. DansA.M.L. VillarruzM.V.C. JimenoC.A. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies.J. Clin. Epidemiol.200760655455910.1016/j.jclinepi.2006.07.009 17493509
    [Google Scholar]
  72. JiangB. JiM. LiuW. Antidiabetic activities of a cucurbitane-type triterpenoid compound from Momordica charantia in alloxan-induced diabetic mice.Mol. Med. Rep.20161454865487210.3892/mmr.2016.5800 27748816
    [Google Scholar]
  73. AtteleA.S. ZhouY.P. XieJ.T. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component.Diabetes20025161851185810.2337/diabetes.51.6.1851 12031973
    [Google Scholar]
  74. ParkJ.D. RheeD.K. LeeY.H. Biological activities and chemistry of saponins from Panax ginseng C.A. meyer.Phytochem. Rev.200542-315917510.1007/s11101‑005‑2835‑8
    [Google Scholar]
  75. RatanZ.A. HaidereM.F. HongY.H. Pharmacological potential of ginseng and its major component ginsenosides.J. Ginseng Res.2021452199210 33841000
    [Google Scholar]
  76. ChohachiK. MikiM. YoshiteruO. HiroshiH. Isolation and hypoglycemic activity of Panaxans Q, R, S, T and U, glycans of Panax ginseng roots.J. Ethnopharmacol.1985141697410.1016/0378‑8741(85)90030‑3 4087924
    [Google Scholar]
  77. KimuraM. WakiI. TanakaO. NagaiY. ShibataS. Pharmacological sequential trials for the fractionation of components with hypoglycemic activity in alloxan diabetic mice from ginseng radix.J. Pharmacobiodyn.19814640240910.1248/bpb1978.4.402 7288557
    [Google Scholar]
  78. YokozawaT. KobayashiT. OuraH. KawashimaY. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats.Chem. Pharm. Bull. (Tokyo)198533286987210.1248/cpb.33.869 4017130
    [Google Scholar]
  79. SharmaP. DubeyG. KaushikS. Chemical and Medico-biological profile of Cyamopsis tetragonoloba (L) Taub: An overview.J. Appl. Pharm. Sci.201113237
    [Google Scholar]
  80. Atta-Ur-Rahman ZamanK. Medicinal plants with hypoglycemic activity.J. Ethnopharmacol.198926115510.1016/0378‑8741(89)90112‑8 2664356
    [Google Scholar]
  81. MukhtarH.M. AnsariS.H. BhatZ.A. NavedT. Antihyperglycemic activity of Cyamopsis tetragonoloba. beans on blood glucose levels in alloxan-induced diabetic rats.Pharm. Biol.2006441101310.1080/13880200500509025
    [Google Scholar]
  82. GandhiG.R. VanlalhruaiaP. StalinA. IrudayarajS.S. IgnacimuthuS. PaulrajM.G. Polyphenols-rich Cyamopsis tetragonoloba (L.) Taub. beans show hypoglycemic and β-cells protective effects in type 2 diabetic rats.Food Chem. Toxicol.20146635836510.1016/j.fct.2014.02.001 24525096
    [Google Scholar]
  83. AjabnoorM.A. Effect of aloes on blood glucose levels in normal and alloxan diabetic mice.J. Ethnopharmacol.199028221522010.1016/0378‑8741(90)90031‑N 2109811
    [Google Scholar]
  84. PatelD.K. PatelK. DhanabalS.P. Phytochemical standardization of Aloe vera extract by HPTLC techniques.J. Acute Dis.201211475010.1016/S2221‑6189(13)60011‑6
    [Google Scholar]
  85. DasS.K. VasudevanD.M. Tulsi: The Indian holy power plant.Nat Prod Rad20065279283
    [Google Scholar]
  86. VermaS. Chemical constituents and pharmacological action of Ocimum sanctum (Indian holy basil-Tulsi).J Phytopharmacol20165520520710.31254/phyto.2016.5507
    [Google Scholar]
  87. RahmanS. IslamR. KamruzzamanM. AlamK. JamalA.R.M. Ocimum sanctum L.: A review of phytochemical and pharmacological profile.Am J Drug Discov Develop201111510.3923/ajdd.2011
    [Google Scholar]
  88. SinghD. ChaudhuriP.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.).Ind. Crops Prod.201811836738210.1016/j.indcrop.2018.03.048
    [Google Scholar]
  89. HannanJ.M.A. MarenahL. AliL. RokeyaB. FlattP.R. Abdel-WahabY.H.A. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells.J. Endocrinol.2006189112713610.1677/joe.1.06615 16614387
    [Google Scholar]
  90. HannanJ. OjoO. RokeyaL. Actions underlying antidiabetic effects of Ocimum sanctum leaf extracts in animal models of type 1 and type 2 diabetes.European J. Med. Plants20155111210.9734/EJMP/2015/11840
    [Google Scholar]
  91. World Health Organization. WHO monographs on selected medicinal plants. Geneva: WHO; 2006. Report No.: WHO/EMP/MIE/20 06.1.Available from: https://www.who.int/publications/i/item/92 41545178
    [Google Scholar]
  92. KumariK. MathewB.C. AugustiK.T. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn.Indian J. Biochem. Biophys.19953214954 7665195
    [Google Scholar]
  93. LakshmiM.S. RaniK.S.S. ReddyU.T.K. A review on diabetes mellitus and the herbal plants used for its treatment.Asian J. Pharm. Clin. Res.201251521
    [Google Scholar]
  94. GalalE.E. GawadM.A. Antidiabetic activity of Egyptian onion “Allium cepa” extract.J. Egypt. Med. Assoc.1965481445 5873670
    [Google Scholar]
  95. KumariK. AugustiK.T. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats.Indian J. Exp. Biol.200240910051009 12587728
    [Google Scholar]
  96. DasS. Garlic - A natural source of cancer preventive compounds.Asian Pac. J. Cancer Prev.200234305311 12716288
    [Google Scholar]
  97. DeviR. GM A. A comprehensive review on Costus pictus D. Don.Int. J. Pharm. Sci. Res.20191031873195
    [Google Scholar]
  98. RaoH.A. RaoP. HegdeP.K. RaoP.N. A review on insulin plant (Costus igneus Nak).Pharmacogn. Rev.2014815677210.4103/0973‑7847.125536 24600198
    [Google Scholar]
  99. JothivelN. PonnusamyS.P. AppachiM. Anti-diabetic activity of methanol leaf extract of Costus pictus D. Don in alloxan-induced diabetic rats.J. Health Sci.200753665566310.1248/jhs.53.655
    [Google Scholar]
  100. PeasariJ. MotamarryS. VarmaK.S. AnithaP. PottiR.B. Chromatographic analysis of phytochemicals in Costus igneus and computational studies of flavonoids.Informat Med. Unlocked201813344010.1016/j.imu.2018.10.004
    [Google Scholar]
  101. SidhuA.K. WaniS. TamboliP.S. PatilS.N. In vitro evaluation of anti-diabetic activity of leaf and callus extracts of Costus pictus.Int. J. Recent Sci. Res.2014316221625
    [Google Scholar]
  102. KwonY.I. ApostolidisE. KimY.C. ShettyK. Health benefits of traditional corn, beans, and pumpkin: In vitro studies for hyperglycemia and hypertension management.J. Med. Food200710226627510.1089/jmf.2006.234 17651062
    [Google Scholar]
  103. KazeemM.I. AshafaA.O.T. In vitro antioxidant and antidiabetic potentials of Dianthus basuticus Burtt Davy whole plant extracts.J. Herb. Med.20155315816410.1016/j.hermed.2015.06.003
    [Google Scholar]
  104. BhutkarM. BhiseS.B. In vitro assay of alpha amylase inhibitory activity of some indigenous plants.Int. J. Chem. Sci.201210457462
    [Google Scholar]
  105. MahmoodN. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes.Comp. Clin. Pathol.20162561253126410.1007/s00580‑014‑1967‑x
    [Google Scholar]
  106. SouzaP.M. MagalhãesP.O. Application of microbial α-amylase in industry - A review.Braz. J. Microbiol.201041485086110.1590/S1517‑83822010000400004 24031565
    [Google Scholar]
  107. JayasriM.A. GunasekaranS. RadhaA. MathewT.L. Anti-diabetic effect of Costus pictus leaves in normal and streptozotocin-induced diabetic rats.Int. J. Diabetes Metab.200816311712210.1159/000497662
    [Google Scholar]
  108. RadhaJ.M.A. MathewT.L. α-amylase and α-glucosidase inhibitory activity of Costus pictus D. Don in the management of diabetes.J Herb Med Toxicol200939194https://www.scirp.org/reference/referencespapers?referenceid=711597
    [Google Scholar]
  109. FerosekhanM. RamuA. RavikumarS. Scientific evaluation of traditionally known insulin plant Costus species for the treatment of diabetes in human.Int. J. Curr. Res. Biosci. Plant Biol.201636879110.20546/ijcrbp.2016.306.011
    [Google Scholar]
  110. GireeshG. ThomasS.K. JosephB. PauloseC.S. Antihyperglycemic and insulin secretory activity of Costus pictus leaf extract in streptozotocin induced diabetic rats and in in vitro pancreatic islet culture.J. Ethnopharmacol.2009123347047410.1016/j.jep.2009.03.026 19501280
    [Google Scholar]
  111. Al-RomaiyanA. JayasriM.A. MathewT.L. Costus pictus extracts stimulate insulin secretion from mouse and human islets of langerhans in vitro.Cell. Physiol. Biochem.20102661051105810.1159/000324007 21220936
    [Google Scholar]
  112. DhanabalS.P. KokateC.K. RamanathanM. KumarE.P. SureshB. Hypoglycaemic activity of Pterocarpus marsupium Roxb.Phytother. Res.20062014810.1002/ptr.1819 16397913
    [Google Scholar]
  113. ManickamM. RamanathanM. Farboodniay JahromiM.A. ChansouriaJ.P.N. RayA.B. Antihyperglycemic activity of phenolics from Pterocarpus marsupium.J. Nat. Prod.199760660961010.1021/np9607013 9214733
    [Google Scholar]
  114. MoqbelF.S. NaikP.R. NajmaH.M. SelvarajS. Antidiabetic properties of Hibiscus rosa sinensis L. leaf extract fractions on nonobese diabetic (NOD) mouse.Indian J. Exp. Biol.20114912429 21365992
    [Google Scholar]
  115. SinghR. RajasreeP.H. SankarC. Screening for anti diabetic activity of the ethanolic extract of Barleria cristata seeds.Int J Pharm Life Sci201231020442047
    [Google Scholar]
  116. NainP. SainiV. SharmaS. NainJ. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats.J. Ethnopharmacol.20121421657110.1016/j.jep.2012.04.014 22855943
    [Google Scholar]
  117. PalanisamyS. SudhaS. PrakashS. Antidiabetic activity of aqueous extract of Padina boergesenii in streptozotocin-induced diabetic rats.Int. J. Pharma Sci.20146418422
    [Google Scholar]
  118. VijayanandS. WeselyE.G. Evaluation of antidiabetic activity of Melia azadirach on alloxan induced diabetic rats.Int. J. Curr. Pharm. Res.201133740
    [Google Scholar]
  119. AhmadF. AvanapuS.R. ShaikR.A. IbrahimM. Phytochemical studies and antioxidant activity of Melia azedarach linn leaves by DPPH scavenging Assay.Int J Pharma Appl201231271276https://www.researchgate.net/publication/267857371_Phytochemical_studies_and_antioxidant_activity_of_Melia_azedarach_linn_leaves_by_DPPH_scavenging_Assay
    [Google Scholar]
  120. GorelickJ. RosenbergR. SmotrichA. HanušL. BernsteinN. Hypoglycemic activity of withanolides and elicitated Withania somnifera.Phytochemistry201511628328910.1016/j.phytochem.2015.02.029 25796090
    [Google Scholar]
  121. JenaS. Anti-diabetic effects of Withania somnifera root and leaf extracts on streptozotocin induced diabetic rats.J Cell Tissue Res201813135973601
    [Google Scholar]
  122. OzougwuJ. Anti-diabetic efects of Allium cepa (onions) aqueous extracts on alloxan-induced diabetic Rattus novergicus.Pharmacologyonline20111270281
    [Google Scholar]
  123. Rotman-PikielnyP. Ness-AbramofR. CharachG. RoitmanA. ZissinR. LevyY. Efficacy and safety of the dietary supplement DBCare® in patients with type 2 diabetes mellitus and inadequate glycemic control.J. Am. Coll. Nutr.2014331556210.1080/07315724.2014.870008 24533608
    [Google Scholar]
  124. SenadheeraS.P.A. EkanayakeS. WanigatungeC. Anti-hyperglycaemic effects of herbal porridge made of Scoparia dulcis leaf extract in diabetics - A randomized crossover clinical trial.BMC Complement. Altern. Med.201515141010.1186/s12906‑015‑0935‑6 26582144
    [Google Scholar]
  125. MirfeiziM. Mehdizadeh TourzaniZ. MirfeiziS.Z. Asghari JafarabadiM. RezvaniH.R. AfzaliM. Controlling type 2 diabetes mellitus with herbal medicines: A triple-blind randomized clinical trial of efficacy and safety.J. Diabetes20168564765610.1111/1753‑0407.12342 26362826
    [Google Scholar]
  126. HosseiniS. JamshidiL. MehrzadiS. Effects of Juglans regia L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: A randomized double-blind, placebo-controlled clinical trial.J. Ethnopharmacol.2014152345145610.1016/j.jep.2014.01.012 24462785
    [Google Scholar]
  127. Campbell-TofteJ.I.A. MølgaardP. JosefsenK. Randomized and double-blinded pilot clinical study of the safety and anti-diabetic efficacy of the Rauvolfia-Citrus tea, as used in Nigerian Traditional Medicine.J. Ethnopharmacol.2011133240241110.1016/j.jep.2010.10.013 20955771
    [Google Scholar]
  128. Gul-e-Rana KarimS, KhurhsidR Hypoglycemic activity of Ficus racemosa bark in combination with oral hypoglycemic drug in diabetic human.Acta Pol. Pharm.201370610451049 24383328
    [Google Scholar]
  129. KianbakhtS DabaghianFH Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: A randomized placebo. Controlled clinical trial.Complement Ther Med20132154416a10.1016/j.ctim.2013.07.004 24050577
    [Google Scholar]
  130. Frati MunariA.C. Benítez PintoW. Raúl Ariza AndracaC. CasarrubiasM. Lowering glycemic index of food by acarbose and Plantago psyllium mucilage.Arch. Med. Res.1998292137141 9650328
    [Google Scholar]
  131. HuseiniH. KianbakhtS. HajiaghaeeR. DabaghianF. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial.Planta Med.201278431131610.1055/s‑0031‑1280474 22198821
    [Google Scholar]
  132. RussoE.M. ReicheltA.A. De-SáJ.R. Clinical trial of Myrcia uniflora and Bauhinia forficata leaf extracts in normal and diabetic patients.Braz. J. Med. Biol. Res.19902311120 2201413
    [Google Scholar]
  133. SaidO. FulderS. KhalilK. AzaizehH. KassisE. SaadB. Maintaining a physiological blood glucose level with ‘glucolevel’, a combination of four anti-diabetes plants used in the traditional arab herbal medicine.Evid. Based Complement. Alternat. Med.20085442142810.1093/ecam/nem047 18955212
    [Google Scholar]
  134. KalitaP. DekaS. SahariaB.J. ChakrabortyA. BasakM. DekaM. An overview and future scope on traditionally used herbal plants of Assam having antidiabetic activity.Int J Adv Pharm Biol Chem20143299304
    [Google Scholar]
  135. OsadebeP.O. OdohE.U. UzorP.F. Natural products as potential sources of antidiabetic drugs.J. Pharm. Res. Int.2014420752095
    [Google Scholar]
  136. RoutS.P. ChowdaryK. KarD. DasL. Plants as source of novel anti-diabetic drug: Present scenario and future perspectives.Curr. Trends Biotechnol. Pharm.20083614632
    [Google Scholar]
  137. VermaS. SinghS. Current and future status of herbal medicines.Vet. World200811134710.5455/vetworld.2008.347‑350
    [Google Scholar]
  138. KifleZ.D. AbdelwuhabM. MelakA.D. GenetG.M. MeseretT. AdugnaM. Pharmacological evaluation of medicinal plants with antidiabetic activities in Ethiopia: A review.Metabolism Open20221310017410.1016/j.metop.2022.100174 35296054
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X351036241122040415
Loading
/content/journals/rafna/10.2174/012772574X351036241122040415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test