Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Introduction

Bio-cellulose is a type of cellulose that is produced by some particular group of bacteria, for example, (previously known as ), due to their natural ability to synthesize exopolysaccharide as a byproduct. is mostly employed for the production of bio-cellulose throughout the world. Therefore, exploring other commonly available strains, such as (), is needed for cellulose production.

Methods

Bio-cellulose is one of the most reliable biomaterials in the limelight because it is highly pure, crystalline, and biocompatible. Hence, it is necessary to enhance the industrial manufacturing of bio-cellulose with low costs. Different media such as fruit waste, milk whey, coconut water, sugarcane juice, mannitol broth, and H&S (Hestrin and Schramm’s) broth were utilized as a medium for culture growth. Other factors like temperature, pH, and time were also optimized to achieve the highest yield of bio-cellulose. Moreover, after the synthesis of bio-cellulose, its physicochemical and structural properties were evaluated.

Results

The results depicted that the highest yield of bio-cellulose (45.735 mg/mL) was found at 30 °C, pH 5, and on the 7th day of incubation. Though every culture media experimented with synthesized bio-cellulose, the maximum production (90.25 mg/mL) was reported in fruit waste media. The results also indicated that bio-cellulose has high water-holding capacity and moisture content. XRD results showed that bio-cellulose is highly crystalline in nature (54.825% crystallinity). SEM micrograph demonstrated that bio-cellulose exhibited rod-shaped, highly porous fibers. The FTIR results demonstrated characteristic and broad peaks for O-H at 3336.25 cm-1, which indicated strong O-H bonding. The thermal tests, such as DSC and TGA, indicated that bio-cellulose is a thermally stable material that can withstand temperatures even beyond 500 °C.

Conclusion

The findings demonstrated that the peel of fruits could be utilized as a substrate for synthesizing bio-cellulose by a rather cheap and easily available strain, ( MTCC 3347). This alternative culture media reduces environmental pollution, promotes economic advantages, and initiates research on sustainable science.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X284979231231102050
2024-01-19
2024-11-18
Loading full text...

Full text loading...

References

  1. SharmaA. ThakurM. BhattacharyaM. MandalT. GoswamiS. Commercial application of cellulose nano-composites - A review.Biotechnol. Rep.201921e0031610.1016/j.btre.2019.e00316 30847286
    [Google Scholar]
  2. DayalM.S. GoswamiN. SahaiA. JainV. MathurG. MathurA. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623.Carbohydr. Polym.2013941121610.1016/j.carbpol.2013.01.018 23544503
    [Google Scholar]
  3. SheykhnazariS. TabarsaT. AshoriA. ShakeriA. GolalipourM. Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics.Carbohydr. Polym.20118631187119110.1016/j.carbpol.2011.06.011
    [Google Scholar]
  4. FernandesI.A.A. PedroA.C. RibeiroV.R. BortoliniD.G. OzakiM.S.C. MacielG.M. HaminiukC.W.I. Bacterial cellulose: From production optimization to new applications.Int. J. Biol. Macromol.20201642598261110.1016/j.ijbiomac.2020.07.255 32750475
    [Google Scholar]
  5. JozalaA.F. PértileR.A.N. dos SantosC.A. de Carvalho Santos-EbinumaV. SecklerM.M. GamaF.M. PessoaA. Jr Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.Appl. Microbiol. Biotechnol.20159931181119010.1007/s00253‑014‑6232‑3 25472434
    [Google Scholar]
  6. CastroC. ZuluagaR. PutauxJ.L. CaroG. MondragonI. GañánP. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes.Carbohydr. Polym.20118419610210.1016/j.carbpol.2010.10.072
    [Google Scholar]
  7. KamalT. Ul-IslamM. FatimaA. UllahM.W. MananS. Cost-effective synthesis of bacterial cellulose and its applications in the food and environmental sectors.Gels20228955210.3390/gels8090552 36135264
    [Google Scholar]
  8. LinD. LiuZ. ShenR. ChenS. YangX. Bacterial cellulose in food industry: Current research and future prospects.Int. J. Biol. Macromol.20201581007101910.1016/j.ijbiomac.2020.04.230 32387361
    [Google Scholar]
  9. KlemmD. SchumannD. KramerF. HeßlerN. HornungM. SchmauderH.P. MarschS. Nanocelluloses as innovative polymers in research and application.Adv. Polym. Sci.2006205499610.1007/12_097
    [Google Scholar]
  10. AhmedM. SainiP. IqbalU. Microbial cellulose based films and composites for food packaging: A review.An. Univ. Dunarea de Jos Galati Fasc. VI Food Technol.202145117819810.35219/foodtechnology.2021.1.12
    [Google Scholar]
  11. ChoiS.M. RaoK.M. ZoS.M. ShinE.J. HanS.S. Bacterial cellulose and its applications.Polymers 2022146108010.3390/polym14061080 35335411
    [Google Scholar]
  12. NakagaitoA.N. NogiM. YanoH. Displays from transparent films of natural nanofibers.MRS Bull.201035321421810.1557/mrs2010.654
    [Google Scholar]
  13. MohiteB.V. PatilS.V. A novel biomaterial: Bacterial cellulose and its new era applications.Biotechnol. Appl. Biochem.201461210111010.1002/bab.1148 24033726
    [Google Scholar]
  14. DoniniÍ.A. De SalviD.T. FukumotoF.K. LustriW.R. BarudH.S. MarchettoR. Biosynthesis and recent advances in production of bacterial cellulose.Eclét. Quím.20103516517810.1590/S0100‑46702010000400021
    [Google Scholar]
  15. JungH.I. LeeO.M. JeongJ.H. JeonY.D. ParkK.H. KimH.S. AnW.G. SonH.J. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium.Appl. Biochem. Biotechnol.2010162248649710.1007/s12010‑009‑8759‑9 19730823
    [Google Scholar]
  16. PanesarP.S. ChavanY.V. BeraM.B. ChandO. KumarH. Evaluation of Acetobacter strain for the production of microbial cellulose.Asian J. Chem.2009211099102
    [Google Scholar]
  17. BaeS. ShodaM. Bacterial cellulose production by fed-batch fermentation in molasses medium.Biotechnol. Prog.20042051366137110.1021/bp0498490 15458319
    [Google Scholar]
  18. KongruangS. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products.Appl. Biochem. Biotechnol.200814824525610.1007/s12010‑007‑8119‑6
    [Google Scholar]
  19. YousefiA. Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste.Iran. J. Biotechnol.20119294101
    [Google Scholar]
  20. CarreiraP. MendesJ.A.S. TrovattiE. SerafimL.S. FreireC.S.R. SilvestreA.J.D. NetoC.P. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose.Bioresour. Technol.2011102157354736010.1016/j.biortech.2011.04.081 21601445
    [Google Scholar]
  21. VazquezA. ForestiM.L. CerruttiP. GalvagnoM. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus.J. Polym. Environ.201321254555410.1007/s10924‑012‑0541‑3
    [Google Scholar]
  22. KurosumiA. SasakiC. YamashitaY. NakamuraY. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693.Carbohydr. Polym.200976233333510.1016/j.carbpol.2008.11.009
    [Google Scholar]
  23. AhmedM. SainiP. IqbalU. Kirti, Bio cellulose-based edible composite coating for shelf-life extension of tomatoes.Food Human.2023197398410.1016/j.foohum.2023.08.016
    [Google Scholar]
  24. CostaA.F.S. AlmeidaF.C.G. VinhasG.M. SarubboL.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources.Front. Microbiol.20178202710.3389/fmicb.2017.02027 29089941
    [Google Scholar]
  25. AOACOfficial methods of analysis of the Association of Official Analytical Chemists.Gaithersburg, MDAssociation of Official Analytical Chemists2006
    [Google Scholar]
  26. FengX. UllahN. WangX. SunX. LiC. BaiY. ChenL. LiZ. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917.J. Food Sci.20158010E2217E222710.1111/1750‑3841.13010 26352877
    [Google Scholar]
  27. DechojarassriD. OkadaT. TamuraH. FuruikeT. Evaluation of cytotoxicity of hyaluronic acid/chitosan/bacterial cellulose-based membrane.Materials 20231614518910.3390/ma16145189 37512462
    [Google Scholar]
  28. GüzelM. AkpınarÖ. Production and characterization of bacterial cellulose from citrus peels.Waste Biomass Valoriz.20191082165217510.1007/s12649‑018‑0241‑x
    [Google Scholar]
  29. FangL. CatchmarkJ.M. Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly.Cellulose20142163965397810.1007/s10570‑014‑0443‑8
    [Google Scholar]
  30. HermansP.H. WeidingerA. Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis.J. Appl. Phys.194819549150610.1063/1.1698162
    [Google Scholar]
  31. JittautP. HongsachartP. AudtaratS. DasriT. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus BNKC 19 using agricultural waste products as nutrient source.Arab J. Basic Appl. Sci.202330122123010.1080/25765299.2023.2172844
    [Google Scholar]
  32. Faroun AhmedE. Shawkat AliW. Hasan HeiderN. Description and determination of the nanocellulose components produced from acetic acid bacteria.Revis Bionatura202383112
    [Google Scholar]
  33. KumariR. SakhireM. KumarM. VivekanandV. PareekN. Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource.Braz. J. Microbiol.202319
    [Google Scholar]
  34. Ul-IslamM. KhanT. ParkJ.K. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.Carbohydr. Polym.20128941189119710.1016/j.carbpol.2012.03.093 24750931
    [Google Scholar]
  35. JurkeviczC.S. PortoF.V.A. TischerC.A. FronzaM. EndringerD.C. Ribeiro-VianaR.M. Papain covalent immobilization in bacterial cellulose films as a wound dressing.J. Pharm. Sci.2023410.1016/j.xphs.2023.11.015 38008178
    [Google Scholar]
  36. Surma-ŚlusarskaB. PreslerS. DanielewiczD. Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking.Fibres Text. East. Eur.2008164108111
    [Google Scholar]
  37. ZahanK.A. Pa’eN. MuhamadI.I. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor.Arab. J. Sci. Eng.20154071881188510.1007/s13369‑015‑1712‑z
    [Google Scholar]
  38. ÇobanE.P. BiyikH. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium.Afr. J. Microbiol. Res.20115910371045
    [Google Scholar]
  39. TantratianS. TammarateP. KrusongW. BhattarakosolP. PhunsriA. Effect of dissolved oxygen on cellulose production by Acetobacter sp.J. Sci. Res. Chula. Univ.2005302179186
    [Google Scholar]
  40. KlemmD. SchumannD. UdhardtU. MarschS. Bacterial synthesized cellulose - artificial blood vessels for microsurgery.Prog. Polym. Sci.20012691561160310.1016/S0079‑6700(01)00021‑1
    [Google Scholar]
  41. LapuzM.M. GallardoE.G. PaloM.A. The nata organism-cultural requirements, characteristics and identity.Philipp. J. Sci.196796291108
    [Google Scholar]
  42. HongF. QiuK. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770.Carbohydr. Polym.200872354554910.1016/j.carbpol.2007.09.015
    [Google Scholar]
  43. WangJ. TavakoliJ. TangY. Bacterial cellulose production, properties and applications with different culture methods - A review.Carbohydr. Polym.2019219637610.1016/j.carbpol.2019.05.008 31151547
    [Google Scholar]
  44. TrovattiE. SerafimL.S. FreireC.S.R. SilvestreA.J.D. NetoC.P. Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory.Carbohydr. Polym.20118631417142010.1016/j.carbpol.2011.06.046
    [Google Scholar]
  45. MohiteB.V. SalunkeB.K. PatilS.V. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.Appl. Biochem. Biotechnol.201316951497151110.1007/s12010‑013‑0092‑7 23319186
    [Google Scholar]
  46. LinS.P. Loira CalvarI. CatchmarkJ.M. LiuJ.R. DemirciA. ChengK.C. Biosynthesis, production and applications of bacterial cellulose.Cellulose20132052191221910.1007/s10570‑013‑9994‑3
    [Google Scholar]
  47. SantosoS.P. ChouC.C. LinS.P. SoetaredjoF.E. IsmadjiS. HsiehC.W. ChengK.C. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling.Cellulose20202752497250910.1007/s10570‑019‑02961‑5
    [Google Scholar]
  48. BiyikH. CobanE.P. Evaluation of different carbon, nitrogen sources and industrial wastes for bacterial cellulose production.Eur. J. Biotechnol. Biosci2017517480
    [Google Scholar]
  49. HizaniM.H. AliasN. Shaiful BahriS.C. ApendiK.A. Optimization and characterization of biocellulose production from bacteria isolated from passion fruits.J. Agrobiotechnol.2021121S213010.37231/jab.2021.12.1S.267
    [Google Scholar]
  50. Raiszadeh-JahromiY. Rezazadeh-BariM. AlmasiH. AmiriS. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design.J. Food Sci. Technol.20205772524253310.1007/s13197‑020‑04289‑6 32549603
    [Google Scholar]
  51. MuangratR. NuankhamC. Production of flour film from waste flour during noodle production and its application for preservation of fresh strawberries.CYTA J. Food201816152553610.1080/19476337.2018.1424741
    [Google Scholar]
  52. PangM. CaoL. CaoL. SheY. WangH. Properties of nisin incorporated ZrO 2/poly (vinyl alcohol)-wheat gluten antimicrobial barrier films.CYTA J. Food201917140040710.1080/19476337.2019.1587517
    [Google Scholar]
  53. López-PalestinaC.U. Aguirre-MancillaC.L. Raya-PérezJ.C. Ramirez-PimentelJ.G. Vargas-TorresA. Hernández-FuentesA.D. Physicochemical and antioxidant properties of gelatin-based films containing oily tomato extract (Solanum lycopersicum L.).CYTA J. Food201917114215010.1080/19476337.2018.1564793
    [Google Scholar]
  54. LudwiczakS. MuchaM. Modeling of water sorption isotherms of chitosan blends.Carbohydr. Polym.2010791343910.1016/j.carbpol.2009.07.014
    [Google Scholar]
  55. CazónP. VelázquezG. VázquezM. Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical properties.Food Hydrocoll.202010310565710.1016/j.foodhyd.2020.105657
    [Google Scholar]
  56. NisarT. WangZ.C. AlimA. IqbalM. YangX. SunL. GuoY. Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging.CYTA J. Food201917169570510.1080/19476337.2019.1640798
    [Google Scholar]
  57. KhattakW.A. KhanT. Ul-IslamM. WahidF. ParkJ.K. Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes.J. Polym. Environ.2015231455310.1007/s10924‑014‑0663‑x
    [Google Scholar]
  58. HeydornR.L. LammersD. GottschlingM. DohntK. Effect of food industry by-products on bacterial cellulose production and its structural properties.Cellulose20233074159417910.1007/s10570‑023‑05097‑9
    [Google Scholar]
  59. MohammadkazemiF. AzinM. AshoriA. Production of bacterial cellulose using different carbon sources and culture media.Carbohydr. Polym.201511751852310.1016/j.carbpol.2014.10.008 25498666
    [Google Scholar]
  60. IbrahimM.M. El-ZawawyW.K. JüttkeY. KoschellaA. HeinzeT. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization.Cellulose20132052403241610.1007/s10570‑013‑9992‑5
    [Google Scholar]
  61. AvciogluN.H. BirbenM. Seyis BilkayI. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium.Process Biochem.2021108606810.1016/j.procbio.2021.06.005
    [Google Scholar]
  62. SalamaA. SalehA.K. Cruz-MayaI. GuarinoV. Bacterial cellulose/cellulose imidazolium bio-hybrid membranes for in vitro and antimicrobial applications.J. Funct. Biomater.20231426010.3390/jfb14020060 36826859
    [Google Scholar]
  63. GaudreaultR. van de VenT.G. WhiteheadM.A. Salt necessary for PEO-cofactor association: The role of molecular modelling in PEO flocculation mechanisms. First Applied Pulp & Paper Molecular Modelling Symposium (FAPPMMS 2005),, Montreal, Canada,2005
    [Google Scholar]
  64. NeelimaS. SreejithS. ShajahanS. RajA. VidyaL. AparnaV.M. RadhakrishnanE.K. SudarsanakumarC. Highly crystalline bacterial cellulose production by Novacetimonas hansenii strain isolated from rotten fruit.Mater. Lett.202333313362210.1016/j.matlet.2022.133622
    [Google Scholar]
  65. Ul-IslamM. HaJ.H. KhanT. ParkJ.K. Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose.Carbohydr. Polym.201392136036610.1016/j.carbpol.2012.09.060 23218306
    [Google Scholar]
  66. ShahN. HaJ.H. ParkJ.K. Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK.Biotechnol. Bioprocess Eng.; BBE201015111011810.1007/s12257‑009‑3064‑6
    [Google Scholar]
  67. CiolacuD. CiolacuF. PopaV.I. Amorphous cellulose-structure and characterization.Cellul. Chem. Technol.201145113
    [Google Scholar]
  68. IbrahimM.M. AgblevorF.A. El-ZawawyW.K. Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass.BioResources20105139741810.15376/biores.5.1.397‑418
    [Google Scholar]
  69. GeorgeJ. RamanaK.V. BawaA.S. Siddaramaiah, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites.Int. J. Biol. Macromol.2011481505710.1016/j.ijbiomac.2010.09.013 20920524
    [Google Scholar]
  70. UllahM.W. Ul-IslamM. KhanS. KimY. ParkJ.K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system.Carbohydr. Polym.201613690891610.1016/j.carbpol.2015.10.010 26572428
    [Google Scholar]
  71. GaoQ. ShenX. LuX. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process.Carbohydr. Polym.20118331253125610.1016/j.carbpol.2010.09.029
    [Google Scholar]
  72. KumarM. KumarV. SaranS. Efficient production of bacterial cellulose based composites using zein protein extracted from corn gluten meal.J. Food Sci. Technol.20236031026103510.1007/s13197‑022‑05443‑y 36908356
    [Google Scholar]
  73. GomesR.J. IdaE.I. SpinosaW.A. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture.Braz. J. Microbiol.202354270371310.1007/s42770‑023‑00910‑w 36800074
    [Google Scholar]
  74. GeorgeJ. RamanaK.V. SabapathyS.N. JagannathJ.H. BawaA.S. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties.Int. J. Biol. Macromol.200537418919410.1016/j.ijbiomac.2005.10.007 16321434
    [Google Scholar]
  75. AzubuikeC.P. OkhamafeA.O. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs.Int. J. Recycl. Org. Waste Agric.201211910.1186/2251‑7715‑1‑9
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X284979231231102050
Loading
/content/journals/rafna/10.2174/012772574X284979231231102050
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acetobacter aceti; bio-cellulose; DSC; FTIR; Komagataeibacter; SEM; TGA; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test