Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Background

The present study investigates the effect of conventional and organic farming systems on the nutritional profile of crops. Different crops, namely–millet, sorghum, sesame, mustard, fenugreek, berseem, pea, potato, and onion were cultivated through conventional agriculture in which chemical fertilizers like urea, DAP (Diammonium Phosphate) and pesticides were used and organic farming in which organic fertilizers like seaweed and vermicompost were used.

Objective

The experimental study was done on a field in north India from 2019 to 2021 in six different seasons, and the nutrient profile of the crops with respect to macroelements (S, K, Na, P, Ca, Mg) and microelements (B, Cu, Fe, Mn, Zn, Al) was compared.

Methods

Macro and microelements were analyzed by Element analyzer and ICP-OES in both types of farming systems. The content of macro, as well as microelements, was found to be significantly higher in all the organically produced crops as compared to the conventionally grown crops.

Results

Significant differences were observed in the macroelement content of organic onion (P- 900 mg/kg, K-2000mg/kg) and organic pea (K 2250 mg/kg) as compared to the content of conventionally grown onion (P-756 mg/kg, K- 1550 mg/kg) and pea (K-2000 mg/kg). Similarly, microelement content in the organic sesame (Fe - 3.12 mg/kg), organic millet (Fe- 2.19 mg/kg), and organic potato (Zn-200 mg/kg) was higher as compared to conventionally grown sesame (Fe 2.05 mg/kg), millet (Fe- 1.56 mg/kg) and potato (Zn 167 mg/kg).

Conclusion

This investigation concludes that crops with optimum nutritional content can be produced through organic farming with minimum input and maximum production.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X282571231227054442
2024-01-26
2024-11-18
Loading full text...

Full text loading...

References

  1. PeltzerK. Phaswana-MafuyaN. Fruit and vegetable intake and associated factors in older adults in South Africa.Glob. Health Action2012511866810.3402/gha.v5i0.18668 23195518
    [Google Scholar]
  2. AgudoA. Measuring intake of fruits and vegetables.2005Available from: https://www.who.int/dietphysicalactivity/publications/f&v_intake measurement.pdf?ua=1 (Accessed on: 10 November 2020).
  3. HanifR. IqbalZ. IqbalM. HanifS. RasheedM. Use of vegetables as nutritional food: Role in human health.J. Agric. Biol. Sci.200611822
    [Google Scholar]
  4. AbellánÁ. Domínguez-PerlesR. MorenoD. García-VigueraC. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health.Nutrients201911242910.3390/nu11020429 30791362
    [Google Scholar]
  5. MartinsA.C. KrumB.N. QueirósL. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects.J. Agric. Food Chem.20206846128931290310.1021/acs.jafc.0c00641 32298096
    [Google Scholar]
  6. SanlierN. Guler SabanM. The benefits of Brassica vegetables on human health.J Human Health Res20181104113
    [Google Scholar]
  7. GlantzK. IARC handbooks of cancer prevention Volume 8: Fruit and Vegetables. Lyon: IARC Press 2005119
    [Google Scholar]
  8. SlavinJ.L. LloydB. Health benefits of fruits and vegetables.Adv. Nutr.20123450651610.3945/an.112.002154 22797986
    [Google Scholar]
  9. MarlesR.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines.J. Food Compos. Anal.2017569310310.1016/j.jfca.2016.11.012
    [Google Scholar]
  10. WorthingtonV. Nutritional quality of organic versus conventional fruits, vegetables, and grains.J. Altern. Complement. Med.20017216117310.1089/107555301750164244 11327522
    [Google Scholar]
  11. MohammadiS. PourakbarL. MoghaddamS.S. Popović-DjordjevićJ. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress.Ecotoxicol. Environ. Saf.2021208111607
    [Google Scholar]
  12. BournD. PrescottJ. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods.Crit. Rev. Food Sci. Nutr.200242113410.1080/10408690290825439 11833635
    [Google Scholar]
  13. VlahovićB. UžarD. ŠkatarićG. Comparative analysis of organic food markets in the Republic of Serbia and the neighboring countries.Contemporary Agriculture2019681-2344210.2478/contagri‑2019‑0007
    [Google Scholar]
  14. GolubkinaN. SeredinT. AntoshkinaM. KoshelevaO. TelibanG. CarusoG. Yield, quality, antioxidants and elemental composition of new leek cultivars under greenhouse organic or conventional system.Horticulturae2018443910.3390/horticulturae4040039
    [Google Scholar]
  15. HansenH. Comparison of chemical composition and taste of biodynamically and conventionally grown vegetables. Qual Plant - Pl Fd Hum Nutr 1981302031110.1007/BF01094025
    [Google Scholar]
  16. LeclercJ. MillerM.L. JolietE. RocquelinG. Vitamin and mineral contents of carrot and celeriac under mineral or organic fertilization.Biol. Agric. Hortic.19917433934810.1080/01448765.1991.9754564
    [Google Scholar]
  17. LombardoS. PandinoG. MauromicaleG. The mineral profile in organically and conventionally grown “early” crop potato tubers.Sci. Hortic. 201416716917310.1016/j.scienta.2014.01.006
    [Google Scholar]
  18. Popović-DjordjevićJ. MarjanovićŽ.S. Essential elements as a distinguishing factor between mycorrhizal potentials of two cohabiting truffle species in riparian forest habitat in Serbia.Chem. Biodivers.201916e180069310.1002/cbdv.201800693
    [Google Scholar]
  19. DiniI. TenoreG.C. DiniA. Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds.Food Chem.2008107261362110.1016/j.foodchem.2007.08.053
    [Google Scholar]
  20. WhiteP.J. BradshawJ.E. FinlayM. Relationships between yield and mineral concentrations in potato tubers.HortScience200944161110.21273/HORTSCI.44.1.6
    [Google Scholar]
  21. JhaA.K. RaniM. PadbhushanR. KumarA. KumarR. Combined application of azolla and inorganic potassium fertilizer influence the growth, yield and storability of onion in alluvial soil.Commun. Soil Sci. Plant Anal.202354121727174010.1080/00103624.2023.2211091
    [Google Scholar]
  22. YahiaE.M. Maldonado CelisM.E. SvendsenM. The contribution of fruit and vegetable consumption to human health.Fruit and vegetable phytochemicals: chemistry and huan health. 2nd ed YahiaE.M. Wiley201835
    [Google Scholar]
  23. QuintaesK.D. Diez‐GarciaR.W. The importance of minerals in the human diet. In: Handbook of mineral elements in food. 201512110.1002/9781118654316.ch1
    [Google Scholar]
  24. Hoo FungL.A. AntoineJ.M.R. GrantC.N. LalorG.C. Vegetables and fruits.Handbook of mineral elements in food. de la GuardiaM. GarriguesS. UKWiley201548952010.1002/9781118654316.ch21
    [Google Scholar]
  25. RowanC.A. ZajicekO.T. CalabreseE.J. Dry ashing vegetables for the determination of sodium and potassium by atomic absorption spectrometry.Anal. Chem.198254114915110.1021/ac00238a047
    [Google Scholar]
  26. DolemanJ.F. GrisarK. Van LiedekerkeL. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake.Food Chem.2017234384510.1016/j.foodchem.2017.04.098 28551250
    [Google Scholar]
  27. HewlingsS. KalmanD. Sulfur in human health.EC Nutrition2019149785791
    [Google Scholar]
  28. HollandB. McCanceR.A. WiddowsonE.M. Vegetables, herbs and spices: Fifth supplement to McCance and Widdowson’s. In: The Composition of Foods.Royal Society of Chemistry19915
    [Google Scholar]
  29. De la GuardiaM. GarriguesS. Handbook of mineral elements in food.John Wiley & Sons201510.1002/9781118654316
    [Google Scholar]
  30. OrloviusK. McHoulJ. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet.J. Plant Nutr.201538132044205410.1080/01904167.2014.958167
    [Google Scholar]
  31. WhiteP.J. BroadleyM.R. Biofortification of crops with seven] mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine.New Phytol.20091821498410.1111/j.1469‑8137.2008.02738.x 19192191
    [Google Scholar]
  32. BegumS. RamappaK.T. NidoniU. HiregoudarS. RameshG. Proximate composition, physical properties and bio-chemical traits of fresh fenugreek leafy vegetables: A comprehensive study.Int J Environ Clim20231391252125910.9734/ijecc/2023/v13i92353
    [Google Scholar]
  33. ChhiroliyaJ.K. BhargavaA. MoryaR. GuptaP.K. Effect of plant growth regulators and biofertilizer on the yield of fenugreek (Trigonella foenum-graecum L.).Int J Environ Clim Chang202313113206321210.9734/ijecc/2023/v13i113492
    [Google Scholar]
  34. IslamM.S. AhmedM.K. Habibullah-Al-MamunM. MasunagaS. Trace metals in soil and vegetables and associated health risk assessment.Environ. Monit. Assess.2014186128727873910.1007/s10661‑014‑4040‑y 25204898
    [Google Scholar]
  35. IstrateA.M.R. CojocariuM. TelibanG.C. CojocaruA. StoleruV. Quality and yield of edible vegetables from landscape design.Horticulturae20239661510.3390/horticulturae9060615
    [Google Scholar]
  36. ChenP. BornhorstJ. AschnerM.A. Manganese metabolism in humans.Front. Biosci.2018231655167910.2741/4665
    [Google Scholar]
  37. CamaschellaC. Iron-deficiency anemia.N. Engl. J. Med.2015372191832184310.1056/NEJMra1401038 25946282
    [Google Scholar]
  38. PetoM.V. Aluminium and iron in humans: Bioaccumulation, pathology, and removal.Rejuvenation Res.201013558959810.1089/rej.2009.0995 21142669
    [Google Scholar]
  39. SamantaS KumarS Rajeev , Effect of phosphorus and zinc on fodder yield and quality of leguminous fodder: Berseem (Trifolium alexandrinum L.).Int J Environ Clim Change202313101209122110.9734/ijecc/2023/v13i102773
    [Google Scholar]
  40. SinghV. VermaP. KhaiperM. KaurK. Examining the impact of integrated nutrient management and vermicompost on mustard growth and nutrient composition.Int. J. Plant Soil Sci.202335211241124910.9734/ijpss/2023/v35i214102
    [Google Scholar]
  41. Wessling-ResnickM. Excess iron: Considerations related to development and early growth.Am. J. Clin. Nutr.2017106S61600S1605S10.3945/ajcn.117.155879 29070548
    [Google Scholar]
  42. MyintZ.W. OoT.H. TheinK.Z. TunA.M. SaeedH. Copper deficiency anemia: Review article.Ann. Hematol.20189791527153410.1007/s00277‑018‑3407‑5 29959467
    [Google Scholar]
  43. OteefM.D.Y. FawyK.F. Abd-RabbohH.S.M. IdrisA.M. Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer Region, Saudi Arabia.Environ. Monit. Assess.20151871167610.1007/s10661‑015‑4905‑8 26446130
    [Google Scholar]
  44. RahmdelS. RezaeiM. EkhlasiJ. Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: Their potential health risk to the general population in Shiraz, Iran.Environ. Monit. Assess.20181901165010.1007/s10661‑018‑7042‑3 30338393
    [Google Scholar]
  45. HardissonA. RevertC. Gonzales-WelerD. RubioC. Aluminium exposure through the diet.Food Sci. Nutr.2017319
    [Google Scholar]
  46. KassawG. BadessaT.S. EzezD. Mineral contents and health risk assessment of sesame (Sesamum Indicum Linn) seeds grown in Ethiopia.J. Food Compos. Anal.202312310556210.1016/j.jfca.2023.105562
    [Google Scholar]
  47. RazaM.A. FengL.Y. ManafA. Sulphur application increases seed yield and oil content in sesame seeds under rainfed conditions.Field Crops Res.2018218515810.1016/j.fcr.2017.12.024
    [Google Scholar]
  48. GuptaN. YadavK.K. KumarV. KumarS. ChaddR.P. KumarA. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review.Sci. Total Environ.2019651Pt 22927294210.1016/j.scitotenv.2018.10.047 30463144
    [Google Scholar]
  49. PetekM. TothN. PecinaM. Beetroot mineral composition affected by mineral and organic fertilization.PLoS One2019149e022176710.1371/journal.pone.0221767 31490954
    [Google Scholar]
  50. BeheraS.K. ShuklaA.K. SinghM.V. WanjariR.H. SinghP. Yield and zinc, copper, manganese and iron concentration in maize (Zea mays L.) grown on vertisol as influenced by zinc application from various zinc fertilizers.J. Plant Nutr.201538101544155710.1080/01904167.2014.992537
    [Google Scholar]
  51. CakmakI. McLaughlinM.J. WhiteP. Zinc for better crop production and human health.Plant Soil20174111-21410.1007/s11104‑016‑3166‑9
    [Google Scholar]
  52. IshfaqM. WakeelA. ShahzadM.N. KiranA. LiX. Severity of zinc and iron malnutrition linked to low intake through a staple crop: A case study in east-central Pakistan.Environ. Geochem. Health202143104219423310.1007/s10653‑021‑00912‑3 33830390
    [Google Scholar]
  53. MaretW. SandsteadH.H. Zinc requirements and the risks and benefits of zinc supplementation.J. Trace Elem. Med. Biol.200620131810.1016/j.jtemb.2006.01.006 16632171
    [Google Scholar]
  54. ThakurS. SinhaA. GhoshB.A. Boron-a critical element for fruit nutrition.Commun. Soil Sci. Plant Anal.2023542128992914
    [Google Scholar]
  55. CarusoG. De PascaleS. CozzolinoE. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application.Agronomy 20199950510.3390/agronomy9090505
    [Google Scholar]
  56. ConsentinoB.B. CirielloM. SabatinoL. Current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: A review.Horticulturae20239221910.3390/horticulturae9020219
    [Google Scholar]
  57. CristacheS.E. VuțăM. MarinE. CioacăS.I. VuţăM. Organic versus conventional farming-A paradigm for the sustainable development of the European countries.Sustainability20181011427910.3390/su10114279
    [Google Scholar]
  58. dos SantosA.M.P. LimaJ.S. AnunciaçãoD.S. SouzaA.S. dos SantosD.C.M.B. MatosG.D. Determination and evaluation employing multivariate analysis of the mineral composition of broccoli (Brassica oleracea L. var. Italica).Food Anal. Methods20136374575210.1007/s12161‑012‑9475‑6
    [Google Scholar]
  59. KellyS.D. BatemanA.S. Comparison of mineral concentrations in commercially grown organic and conventional crops – Tomatoes (Lycopersicon esculentum) and lettuces (Lactuca sativa).Food Chem.2010119273874510.1016/j.foodchem.2009.07.022
    [Google Scholar]
  60. KhoddamiA. MessinaV. VadabalijaV.K. FarahnakyA. BlanchardC.L. RobertsT.H. Sorghum in foods: Functionality and potential in innovative products.Crit. Rev. Food Sci. Nutr.20236391170118610.1080/10408398.2021.1960793 34357823
    [Google Scholar]
  61. KrejčováA. NávesníkJ. JičínskáJ. ČernohorskýT. An elemental analysis of conventionally, organically and self-grown carrots.Food Chem.201619224224910.1016/j.foodchem.2015.07.008 26304343
    [Google Scholar]
  62. MalhiS.S. GanY. RaneyJ.P. Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization.Agron. J.200799257057710.2134/agronj2006.0269
    [Google Scholar]
  63. MancaK.N A P. The content of minerals in Slovenian organic and conventional produced fruits, herbs and vegetables.Acta Agric. Slov.20151032271279
    [Google Scholar]
  64. ByerleeD. FanzoJ. The SDG of zero hunger 75 years on: Turning full circle on agriculture and nutrition.Glob. Food Secur.201921525910.1016/j.gfs.2019.06.002
    [Google Scholar]
  65. RempelosL. BarańskiM. SufarE.K. Effect of climatic conditions, and agronomic practices used in organic and conventional crop production on yield and nutritional composition parameters in potato, cabbage, lettuce and onion; results from the long-term NFSC-trials.Agronomy 2023135122510.3390/agronomy13051225
    [Google Scholar]
  66. SidererY. MaquetA. AnklamE. Need for research to support consumer confidence in the growing organic food market.Trends Food Sci. Technol.200516833234310.1016/j.tifs.2005.02.001
    [Google Scholar]
  67. WuD.T. LiW.X. WanJ.J. HuY.C. GanR.Y. ZouL. A comprehensive review of pea (Pisum sativum L.): chemical composition, processing, health benefits, and food applications.Foods20231213252710.3390/foods12132527 37444265
    [Google Scholar]
  68. ZarzyńskaK. TrawczyńskiC. PietraszkoM. Environmental and agronomical factors limiting differences in potato yielding between organic and conventional production system.Agriculture202313490110.3390/agriculture13040901
    [Google Scholar]
  69. de LimaM.D. BarbosaR. Methods of authentication of food grown in organic and conventional systems using chemometrics and data mining algorithms: a review.Food Anal. Methods201912488790110.1007/s12161‑018‑01413‑3
    [Google Scholar]
  70. de Souza AraújoD.F. da SilvaA.M.R.B. de Andrade LimaL.L. da Silva VasconcelosM.A. AndradeS.A.C. Asfora SarubboL. The concentration of minerals and physicochemical contaminants in conventional and organic vegetables.Food Control20144424224810.1016/j.foodcont.2014.04.005
    [Google Scholar]
  71. FAO/WHO. Organically Produced Foods2020Available from: www.fao.org/3/a1385e/a1385e00.pdf
  72. GopalanC. Rama SastriB.V. BalasubramanianS.C. Nutritive value of Indian foods/C Gopalan, B V Rama Sastri, S C Balasubramanian. Hyderabad: National Institute of Nutrition.New DelhiIndian Council of Medical Research1971
    [Google Scholar]
  73. HaT.M. ShakurS. Pham DoK.H. Rural-urban differences in willingness to pay for organic vegetables: Evidence from Vietnam.Appetite201914110427310.1016/j.appet.2019.05.004 31150771
    [Google Scholar]
  74. HajšlováJ. SchulzováV. SlaninaP. JannéK. HellenäsK.E. AnderssonC.H. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties.Food Addit. Contam.200522651453410.1080/02652030500137827 16019825
    [Google Scholar]
  75. HoefkensC. VerbekeW. AertsensJ. MondelaersK. Van CampJ. The nutritional and toxicological value of organic vegetables.Br. Food J.2009111101062107710.1108/00070700920992916
    [Google Scholar]
  76. SinghI. DigheP. RasaneP. Nutrient composition and health benefits of millets. In: Nutriomics of Millet Crops.CRC Press202311610.1201/b22809‑1
    [Google Scholar]
  77. WeaverC.M. Potassium and Health.Adv. Nutr.201343368S377S10.3945/an.112.003533 23674806
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X282571231227054442
Loading
/content/journals/rafna/10.2174/012772574X282571231227054442
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Element analyzer; macroelements; microelements; organic farming; seaweed; vermicompost
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test