Full text loading...
-
Design, Development and In-Vitro Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound
- Source: Recent Advances in Drug Delivery and Formulation, Volume 18, Issue 1, Mar 2024, p. 50 - 60
-
- 01 Mar 2024
Abstract
Aim: To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds. Objectives: To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site. Methodology: The insulin organogel formulated by the micro-emulsion method involves mixing the “aqueous and oil phases” at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel. Results: All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1–F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1–F3, the concentration of lecithin was gradually increased, and in formulations F4–F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport. Conclusion: Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.