Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878300347240718100814
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. ElSohlyM.A. RadwanM.M. GulW. ChandraS. GalalA. Phytochemistry of Cannabis sativa L.Prog. Chem. Org. Nat. Prod.201710313610.1007/978‑3‑319‑45541‑9_1
    [Google Scholar]
  2. MadrasB.K. Update of cannabis and its medical use.GenevaWorld Health Organization2015
    [Google Scholar]
  3. RupasingheH.P.V. DavisA. KumarS.K. MurrayB. ZheljazkovV.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals.Molecules20202518407810.3390/molecules25184078 32906622
    [Google Scholar]
  4. RuheelM.A. GomesZ. UsmanS. HomayouniP. NgJ.Y. Facilitators and barriers to the regulation of medical cannabis: A scoping review of the peer-reviewed literature.Harm Reduct. J.202118110610.1186/s12954‑021‑00547‑8 34649577
    [Google Scholar]
  5. CrocqM.A. History of cannabis and the endocannabinoid system.Dialogues Clin. Neurosci.202022322322810.31887/DCNS.2020.22.3/mcrocq 33162765
    [Google Scholar]
  6. DhopeshwarkarA. MackieK. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold?Mol. Pharmacol.201486443043710.1124/mol.114.094649 25106425
    [Google Scholar]
  7. Di MarzoV. PiscitelliF. The endocannabinoid system and its modulation by phytocannabinoids.Neurotherapeutics201512469269810.1007/s13311‑015‑0374‑6 26271952
    [Google Scholar]
  8. NewmanC.L. MasonM.J. LangenderferJ. The shifting landscape of cannabis legalization: Potential benefits and regulatory perspectives.J. Consum. Aff.20215531169117710.1111/joca.12387
    [Google Scholar]
  9. PotterG. BouchardM.M. DecorteM.T. World wide weed: Global trends in cannabis cultivation and its control.Ashgate Publishing, Ltd.2013
    [Google Scholar]
  10. GaoniY. MechoulamR. Isolation, structure, and partial synthesis of an active constituent of hashish.J. Am. Chem. Soc.19648681646164710.1021/ja01062a046
    [Google Scholar]
  11. AggarwalS.K. CarterG.T. SullivanM.D. ZumBrunnenC. MorrillR. MayerJ.D. Medicinal use of cannabis in the United States: Historical perspectives, current trends, and future directions.J. Opioid. Manag.20095315316810.5055/jom.2009.0016 19662925
    [Google Scholar]
  12. KumarP. MahatoD.K. KamleM. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview.Phytother. Res.202135116010602910.1002/ptr.7213 34237796
    [Google Scholar]
  13. GuindonJ. HohmannA.G. The endocannabinoid system and pain.CNS Neurol. Disord. Drug Targets20098640342110.2174/187152709789824660
    [Google Scholar]
  14. HillK.P. PalastroM.D. JohnsonB. DitreJ.W. Cannabis and pain: A clinical review.Cannabis Cannabinoid Res.2017219610410.1089/can.2017.0017 28861509
    [Google Scholar]
  15. SavageS.R. Romero-SandovalA. SchatmanM. Cannabis in pain treatment: Clinical and research considerations.J. Pain201617665466810.1016/j.jpain.2016.02.007 26961090
    [Google Scholar]
  16. JärvinenT. PateD.W. LaineK. Cannabinoids in the treatment of glaucoma.Pharmacol. Ther.200295220322010.1016/S0163‑7258(02)00259‑0 12182967
    [Google Scholar]
  17. RafuseP. BuysY.M. Medical use of cannabis for glaucoma.Can. J. Ophthalmol.20195417810.1016/j.jcjo.2018.11.001 30851777
    [Google Scholar]
  18. StithS.S. LiX. OrozcoJ. The effectiveness of common cannabis products for treatment of nausea.J. Clin. Gastroenterol.202256433133810.1097/MCG.0000000000001534 35258504
    [Google Scholar]
  19. CastañedaJ. User perspectives on cannabis and SSRIs as treatment for depression.Drugs Alcohol Today2020201748310.1108/DAT‑08‑2019‑0038
    [Google Scholar]
  20. ViverosM MarcoE Cannabinoids, anxiety and depression.Natural products II200722749
    [Google Scholar]
  21. FogartyA. RawstorneP. PrestageG. CrawfordJ. GriersonJ. KippaxS. Marijuana as therapy for people living with HIV/AIDS: Social and health aspects.AIDS Care200719229530110.1080/09540120600841930 17364413
    [Google Scholar]
  22. FianiB. SarhadiK.J. SoulaM. ZafarA. QuadriS.A. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders.Neurol. Sci.202041113085309810.1007/s10072‑020‑04514‑2 32556748
    [Google Scholar]
  23. AbramsD.I. JayC.A. ShadeS.B. Cannabis in painful HIV-associated sensory neuropathy.Neurology200768751552110.1212/01.wnl.0000253187.66183.9c 17296917
    [Google Scholar]
  24. LiangY. HuangC. HsuK. Therapeutic potential of cannabinoids in trigeminal neuralgia.Curr. Drug Targets CNS Neurol. Disord.20043650751410.2174/1568007043336833 15578967
    [Google Scholar]
  25. PryceG. BakerD. Emerging properties of cannabinoid medicines in management of multiple sclerosis.Trends Neurosci.200528527227610.1016/j.tins.2005.03.006 15866202
    [Google Scholar]
  26. ChenP.X. RogersM.A. Opportunities and challenges in developing orally administered cannabis edibles.Curr. Opin. Food Sci.20192871310.1016/j.cofs.2019.02.005
    [Google Scholar]
  27. HartselJ.A. Cannabis sativa and Hemp. Nutraceuticals.Elsevier201673575410.1016/B978‑0‑12‑802147‑7.00053‑X
    [Google Scholar]
  28. MechoulamR. The pharmacohistory of Cannabis sativa.Chapman and Hall/CRC201912010.1201/9780429260667‑1
    [Google Scholar]
  29. SmallE. Classification of Cannabis sativa L. in relation to agricultural, biotechnological, medical and recreational utilization.In: Cannabis sativa L- Botany and Biotechnology.ChamSpringer2017162
    [Google Scholar]
  30. RockE.M. ParkerL.A. Constituents of Cannabis sativa.In: Adv. Exp. Med. Biol.2021113
    [Google Scholar]
  31. SternC.A. BertoglioL.J. TakahashiR.N. Overview of cannabis use, misuse, and addiction.neuropathology of drug addictions and substance misuse.Elsevier 20166657110.1016/B978‑0‑12‑800213‑1.00061‑4
    [Google Scholar]
  32. ChouvyP-A. Cannabis cultivation in the world: Heritages, trends and challenges.EchoGéo2019481759110.4000/echogeo.17591
    [Google Scholar]
  33. SadiyaM.R. RavindraB.M. SimuzarS.M. KiranP.K. Cannabis sativa: A therapeutic medicinal plant-global marketing updates.World J Biol Pharm Heal Sci202417217018310.30574/wjbphs.2024.17.2.0044
    [Google Scholar]
  34. PaculaR.L. SmartR. Medical marijuana and marijuana legalization.Annu. Rev. Clin. Psychol.201713139741910.1146/annurev‑clinpsy‑032816‑045128 28482686
    [Google Scholar]
  35. LevinsohnE.A. HillK.P. Clinical uses of cannabis and cannabinoids in the United States.J. Neurol. Sci.202041111671710.1016/j.jns.2020.116717 32044684
    [Google Scholar]
  36. BourgeoisB.F.D. DouglassL.M. SankarR. Lennox‐Gastaut syndrome: A consensus approach to differential diagnosis.Epilepsia20145544910.1111/epi.12567 25284032
    [Google Scholar]
  37. GolubV. ReddyD.S. Cannabidiol therapy for refractory epilepsy and seizure disorders. In: Cannabinoids and Neuropsychiatric Disorders.Springer20219311010.1007/978‑3‑030‑57369‑0_7
    [Google Scholar]
  38. DravetC. Dravet syndrome (severe myoclonic epilepsy in infancy).Handb. Clin. Neurol.2002111627633
    [Google Scholar]
  39. KeatingG.M. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): A review in multiple sclerosis-related spasticity.Drugs201777556357410.1007/s40265‑017‑0720‑6 28293911
    [Google Scholar]
  40. KumarV. WangL. RiebeM. TungH.H. Prud’hommeR.K. Formulation and stability of itraconazole and odanacatib nanoparticles: Governing physical parameters.Mol. Pharm.2009641118112410.1021/mp900002t 19366261
    [Google Scholar]
  41. Lazzarotto RebelattoE.R. RauberG.S. CaonT. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications.Int. J. Pharm.202363512272710.1016/j.ijpharm.2023.122727 36803924
    [Google Scholar]
  42. FairbairnJ.W. LiebmannJ.A. RowanM.G. The stability of cannabis and its preparations on storage.J. Pharm. Pharmacol.20112811710.1111/j.2042‑7158.1976.tb04014.x 6643
    [Google Scholar]
  43. PacificiR. MarcheiE. SalvatoreF. GuandaliniL. BusardòF.P. PichiniS. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry.Clin. Chem. Lab. Med. (CCLM)2018564949610.1515/cclm‑2017‑0758 29176009
    [Google Scholar]
  44. RamalhoÍ.M.M. PereiraD.T. GalvãoG.B.L. Current trends on cannabidiol delivery systems: Where are we and where are we going?Expert Opin. Drug Deliv.202118111577158710.1080/17425247.2021.1952978 34253133
    [Google Scholar]
  45. AlvebrattC. KeeminkJ. EduengK. CheungO. StrømmeM. BergströmC.A.S. An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems.Eur. J. Pharm. Biopharm.2020149212910.1016/j.ejpb.2020.01.010 31982572
    [Google Scholar]
  46. FrancoV. GershkovichP. PeruccaE. BialerM. The interplay between liver first-pass effect and lymphatic absorption of cannabidiol and its implications for cannabidiol oral formulations.Clin. Pharmacokinet.202059121493150010.1007/s40262‑020‑00931‑w 32785853
    [Google Scholar]
  47. BruniN. Della PepaC. Oliaro-BossoS. PessioneE. GastaldiD. DosioF. Cannabinoid delivery systems for pain and inflammation treatment.Molecules20182310247810.3390/molecules23102478 30262735
    [Google Scholar]
  48. GrimseyN.L. SavinainenJ.R. AttiliB. AhamedM. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: New developments in therapeutic and PET imaging applications.Drug Discov. Today202025233034310.1016/j.drudis.2019.10.004 31622747
    [Google Scholar]
  49. NgwaW. KumarR. MoreauM. DabneyR. HermanA. Nanoparticle drones to target lung cancer with radiosensitizers and cannabinoids.Front. Oncol.2017720810.3389/fonc.2017.00208 28971063
    [Google Scholar]
  50. EspositoE. DrechslerM. CortesiR. NastruzziC. Encapsulation of cannabinoid drugs in nanostructured lipid carriers.Eur. J. Pharm. Biopharm.2016102879110.1016/j.ejpb.2016.03.005 26952905
    [Google Scholar]
  51. OnaiviE.S. Singh ChauhanB.P. SharmaV. Challenges of cannabinoid delivery: How can nanomedicine help?Nanomedicine202020232028
    [Google Scholar]
  52. AssadpourE. RezaeiA. DasS.S. Cannabidiol-loaded nanocarriers and their therapeutic applications.Pharmaceuticals202316448710.3390/ph16040487 37111244
    [Google Scholar]
  53. GrifoniL. VantiG. DonatoR. SaccoC. BiliaA.R. Promising nanocarriers to enhance solubility and bioavailability of cannabidiol for a plethora of therapeutic opportunities.Molecules20222718607010.3390/molecules27186070 36144803
    [Google Scholar]
  54. ΔεμισλήΣ.K. Development of nanocarriers for the encapsulation of cannabinoids and other bioactive compounds.University of Thessaly2023
    [Google Scholar]
  55. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  56. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  57. ShahbaziM-A. SantosH.A. Improving oral absorption via drug-loaded nanocarriers: Absorption mechanisms, intestinal models and rational fabrication.Curr. Drug Metab.2013141285610.2174/138920013804545133 22497568
    [Google Scholar]
  58. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  59. OnziG. Active targeting of nanocarriers.The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics.Springer2021113
    [Google Scholar]
  60. PaszkoE. SengeM.O. Immunoliposomes.Curr. Med. Chem.201219315239527710.2174/092986712803833362 22934774
    [Google Scholar]
  61. BatoolS SohailS ud Din F, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system.Drug Deliv.2023301218381510.1080/10717544.2023.2183815 36866455
    [Google Scholar]
  62. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.521200 21028937
    [Google Scholar]
  63. GullottiE. YeoY. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery.Mol. Pharm.2009641041105110.1021/mp900090z 19366234
    [Google Scholar]
  64. TuA.B. LewisJ.S. Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis.Drug Deliv. Transl. Res.20211162371239310.1007/s13346‑021‑01038‑w 34414564
    [Google Scholar]
  65. MishraD.K. ShandilyaR. MishraP.K. Lipid based nanocarriers: A translational perspective.Nanomedicine20181472023205010.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  66. RawatM. SinghD. SarafS. SarafS. Nanocarriers: promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.1790 16946487
    [Google Scholar]
  67. AinbinderD. PaolinoD. FrestaM. TouitouE. Drug delivery applications with ethosomes.J. Biomed. Nanotechnol.20106555856810.1166/jbn.2010.1152 21329048
    [Google Scholar]
  68. TijaniA.O. ThakurD. MishraD. FrempongD. ChukwunyereU.I. PuriA. Delivering therapeutic cannabinoids via skin: Current state and future perspectives.J. Control. Release202133442745110.1016/j.jconrel.2021.05.005 33964365
    [Google Scholar]
  69. LodzkiM. GodinB. RakouL. MechoulamR. GallilyR. TouitouE. Cannabidiol—transdermal delivery and anti-inflammatory effect in a murine model.J. Control. Release200393337738710.1016/j.jconrel.2003.09.001 14644587
    [Google Scholar]
  70. JaiswalM DudheR SharmaP. Nanoemulsion: An advanced mode of drug delivery system.3 Biotech201552123710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  71. NakanoY. TajimaM. SugiyamaE. SatoV.H. SatoH. Development of a novel nano-emulsion formulation to improve intestinal absorption of cannabidiol.Med. Cannabis Cannabinoids201921354210.1159/000497361 34676332
    [Google Scholar]
  72. BanerjeeA. HosieW. VenturaA.C.T. Rational design, synthesis, and characterization of a solid Δ9-tetrahydrocannabinol nanoformulation suitable for “microdosing” applications.Cannabis Cannabinoid Res.2023
    [Google Scholar]
  73. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  74. PunyamurthulaN.S. AdelliG.R. GulW. RepkaM.A. ElSohlyM.A. MajumdarS. Ocular disposition of ∆ 8-tetrahydrocannabinol from various topical ophthalmic formulations.AAPS PharmSciTech20171861936194510.1208/s12249‑016‑0672‑2 27905004
    [Google Scholar]
  75. MozafariM.R. Nanoliposomes: preparation and analysis.Methods Mol. Biol.2010605295010.1007/978‑1‑60327‑360‑2_2
    [Google Scholar]
  76. FathiM. MozafariM.R. MohebbiM. Nanoencapsulation of food ingredients using lipid based delivery systems.Trends Food Sci. Technol.2012231132710.1016/j.tifs.2011.08.003
    [Google Scholar]
  77. Shilo-BenjaminiY. CernA. ZilbersheidD. A case report of subcutaneously injected liposomal cannabidiol formulation used as a compassion therapy for pain management in a dog.Front. Vet. Sci.2022989230610.3389/fvets.2022.892306 35573415
    [Google Scholar]
  78. AroraR. KatiyarS.S. KushwahV. JainS. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study.Expert Opin. Drug Deliv.201714216517710.1080/17425247.2017.1264386 27882780
    [Google Scholar]
  79. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  80. HommossG. PyoS.M. MüllerR.H. Mucoadhesive tetrahydrocannabinol-loaded NLC: Formulation optimization and long-term physicochemical stability.Eur. J. Pharm. Biopharm.201711740841710.1016/j.ejpb.2017.04.009 28433786
    [Google Scholar]
  81. MatarazzoA.P. EliseiL.M.S. CarvalhoF.C. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain.Eur. J. Pharm. Sci.202115910569810.1016/j.ejps.2020.105698 33406408
    [Google Scholar]
  82. MorakulB. JunyaprasertV.B. SakchaisriK. TeeranachaideekulV. Cannabidiol-loaded nanostructured lipid carriers (NLCs) for dermal delivery: enhancement of photostability, cell viability, and anti-inflammatory activity.Pharmaceutics202315253710.3390/pharmaceutics15020537 36839859
    [Google Scholar]
  83. PugliaC. PignatelloR. FuochiV. Lipid nanoparticles and active natural compounds: A perfect combination for pharmaceutical applications.Curr. Med. Chem.201926244681469610.2174/0929867326666190614123835 31203795
    [Google Scholar]
  84. Aparicio-BlancoJ. SebastiánV. BenoitJ.P. Torres-SuárezA.I. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters.Eur. J. Pharm. Biopharm.201913412613710.1016/j.ejpb.2018.11.020 30472144
    [Google Scholar]
  85. AtsmonJ. CherniakovI. IzgelovD. PTL401, a new formulation based on pro-nano dispersion technology, improves oral cannabinoids bioavailability in healthy volunteers.J. Pharm. Sci.201810751423142910.1016/j.xphs.2017.12.020 29287930
    [Google Scholar]
  86. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances.Nanomedicine 20105101595161610.2217/nnm.10.126 21143036
    [Google Scholar]
  87. DivateMP Self nano-emulsifying drug delivery system: A review.Int J Adv Sci Res 2021123)(2112
    [Google Scholar]
  88. KnaubK. SartoriusT. DharsonoT. WackerR. WilhelmM. SchönC. A novel self-emulsifying drug delivery system (SEDDS) based on VESIsorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects.Molecules20192416296710.3390/molecules24162967 31426272
    [Google Scholar]
  89. BeginesB. OrtizT. Pérez-ArandaM. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  90. KulhariH. PoojaD. KotaR. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells.Mol. Pharm.20161351491150010.1021/acs.molpharmaceut.5b00935 26930230
    [Google Scholar]
  91. MoreM.P. PardeshiS.R. PardeshiC.V. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer.Med Drug Disc20211010008210.1016/j.medidd.2021.100082
    [Google Scholar]
  92. Martín-BanderasL. Muñoz-RubioI. Álvarez-FuentesJ. Engineering of Δ 9-tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms.Colloids Surf. B Biointerfaces201412311412210.1016/j.colsurfb.2014.09.002 25262411
    [Google Scholar]
  93. Fraguas-SánchezA.I. Torres-SuárezA.I. CohenM. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and In Ovo assessment.Pharmaceutics202012543910.3390/pharmaceutics12050439 32397428
    [Google Scholar]
  94. El-HammadiM.M. Small-HowardA.L. Fernández-ArévaloM. Martín-BanderasL. Development of enhanced drug delivery vehicles for three cannabis-based terpenes using poly(lactic-co-glycolic acid) based nanoparticles.Ind. Crops Prod.202116411334510.1016/j.indcrop.2021.113345
    [Google Scholar]
  95. Durán-LobatoM. Álvarez-FuentesJ. Fernández-ArévaloM. Martín-BanderasL. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization.Sci. Rep.2022121129710.1038/s41598‑022‑05301‑z 35079042
    [Google Scholar]
  96. MomekovaD. IvanovE. KonstantinovS. UblekovF. PetrovP.D. Nanocomposite cryogel carriers from 2-hydroxyethyl cellulose network and cannabidiol-loaded polymeric micelles for sustained topical delivery.Polymers2020125117210.3390/polym12051172 32443724
    [Google Scholar]
  97. SosnikA. ShaboR.B. HalamishH.M. Cannabidiol-loaded mixed polymeric micelles of chitosan/poly (vinyl alcohol) and poly (methyl methacrylate) for trans-corneal delivery.Pharmaceutics20211312214210.3390/pharmaceutics13122142 34959427
    [Google Scholar]
  98. De MatteisV. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation.Toxics2017542910.3390/toxics5040029 29051461
    [Google Scholar]
  99. RosiN.L. MirkinC.A. Nanostructures in biodiagnostics.Chem. Rev.200510541547156210.1021/cr030067f 15826019
    [Google Scholar]
  100. WangY.X.J. HussainS.M. KrestinG.P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging.Eur. Radiol.200111112319233110.1007/s003300100908 11702180
    [Google Scholar]
  101. RousserieG. SukhanovaA. Even-DesrumeauxK. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays.Crit. Rev. Oncol. Hematol.201074111510.1016/j.critrevonc.2009.04.006 19467882
    [Google Scholar]
  102. JainPK El-SayedIH El-SayedMA Au nanoparticles target cancer.nano today2007211829
    [Google Scholar]
  103. BrongersmaM.L. Nanoshells: Gifts in a gold wrapper.Nat. Mater.20032529629710.1038/nmat891 12728232
    [Google Scholar]
  104. Radwan-PragłowskaJ. JanusŁ. PiątkowskiM. Development of stimuli-responsive chitosan/ZnO NPs transdermal systems for controlled cannabidiol delivery.Polymers202113221110.3390/polym13020211 33435623
    [Google Scholar]
  105. LoftssonT. DuchêneD. Cyclodextrins and their pharmaceutical applications.Int. J. Pharm.20073291-211110.1016/j.ijpharm.2006.10.044 17137734
    [Google Scholar]
  106. MelletC.O. FernándezJ.M.G. BenitoJ.M. Cyclodextrin-based gene delivery systems.Chem. Soc. Rev.20114031586160810.1039/C0CS00019A 21042619
    [Google Scholar]
  107. LvP. ZhangD. GuoM. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins.J. Drug Deliv. Sci. Technol.20195133734410.1016/j.jddst.2019.03.015
    [Google Scholar]
  108. ChenL. YangW. GaoC. LiaoX. YangJ. YangB. The complexes of cannabidiol mediated by bridged cyclodextrins dimers with high solubilization, in vitro antioxidant activity and cytotoxicity.J. Mol. Liq.202234511701710.1016/j.molliq.2021.117017
    [Google Scholar]
  109. ShoyamaY. MorimotoS. NishiokaI. Cannabis. XV. preparation and stability of Δ9-tetrahydrocannabinol-β-cyclodextrin inclusion complex.J. Nat. Prod.198346563363710.1021/np50029a007
    [Google Scholar]
  110. JarhoP. PateD.W. BrenneisenR. JärvinenT. Hydroxypropyl-β-cyclodextrin and its combination with hydroxypropyl-methylcellulose increases aqueous solubility of Δ9-tetrahydrocannabinol.Life Sci.19986326PL381PL38410.1016/S0024‑3205(98)00528‑1 9877229
    [Google Scholar]
  111. LuoY. YangH. ZhouY.F. HuB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery.J. Control. Release202031719521510.1016/j.jconrel.2019.11.037 31794799
    [Google Scholar]
  112. DavoodiP. LeeL.Y. XuQ. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.002 30415656
    [Google Scholar]
  113. TabboonP. PongjanyakulT. LimpongsaE. JaipakdeeN. In vitro release, mucosal permeation and deposition of cannabidiol from liquisolid systems: The influence of liquid vehicles.Pharmaceutics2022149178710.3390/pharmaceutics14091787 36145536
    [Google Scholar]
  114. CaggianoN.J. WilsonB.K. PriestleyR.D. Prud’hommeR.K. Development of an in vitro release assay for low-density cannabidiol nanoparticles prepared by flash nanoprecipitation.Mol. Pharm.20221951515152510.1021/acs.molpharmaceut.2c00041 35412842
    [Google Scholar]
  115. PatelN. KommineniN. SurapaneniS.K. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models.Int. J. Pharm.202160712094310.1016/j.ijpharm.2021.120943 34324983
    [Google Scholar]
  116. SöpperU. HoffmannA. DanielsR. Mucoadhesion and mucopenetration of cannabidiol (CBD)-loaded mesoporous carrier systems for buccal drug delivery.Sci. Pharm.20218933510.3390/scipharm89030035
    [Google Scholar]
  117. AndriotisE.G. ChachlioutakiK. MonouP.K. Development of water-soluble electrospun fibers for the oral delivery of cannabinoids.AAPS PharmSciTech20212212310.1208/s12249‑020‑01895‑7 33400042
    [Google Scholar]
  118. ShiJ. MaQ. SuW. Effervescent cannabidiol solid dispersion-doped dissolving microneedles for boosted melanoma therapy via the TRPV1-NFATc1-ATF3 pathway and tumor microenvironment engineering.Biomater. Res.20232714810.1186/s40824‑023‑00390‑x 37198657
    [Google Scholar]
  119. KamaliA. OryanA. HosseiniS. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects.Mater. Sci. Eng. C2019101647510.1016/j.msec.2019.03.070 31029357
    [Google Scholar]
  120. RaoY. LiR. LiuS. Enhanced bioavailability and biosafety of cannabidiol nanomicelles for effective anti-inflammatory therapy.Particuology2022691910.1016/j.partic.2021.11.010
    [Google Scholar]
  121. AminiM. AbdolmalekiZ. The effect of cannabidiol coated by nano-chitosan on learning and memory, hippocampal CB1 and CB2 levels, and amyloid plaques in an alzheimer’s disease rat model.Neuropsychobiology202281317118310.1159/000519534 34727550
    [Google Scholar]
  122. DasS.S. SarkarA. ChabattulaS.C. Food-grade quercetin-loaded nanoemulsion ameliorates effects associated with parkinson’s disease and cancer: Studies employing a transgenic c. elegans model and human cancer cell lines.Antioxidants2022117137810.3390/antiox11071378 35883869
    [Google Scholar]
  123. MoqejwaT. MarimuthuT. KondiahP.P.D. ChoonaraY.E. Development of stable nano-sized transfersomes as a rectal colloid for enhanced delivery of cannabidiol.Pharmaceutics202214470310.3390/pharmaceutics14040703 35456536
    [Google Scholar]
  124. GreishK. MathurA. Al ZahraniR. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer.J. Control. Release201829118419510.1016/j.jconrel.2018.10.030 30367922
    [Google Scholar]
  125. KokL.Y. BanniganP. SanaeeF. EvansJ.C. DunneM. RegenoldM. AhmedL. DubinsD. AllenC. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol.Eur. J. Pharm. Sci.202216810605810.1016/j.ejps.2021.106058 34763088
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878300347240718100814
Loading
/content/journals/raddf/10.2174/0126673878300347240718100814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test