Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Background

Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from breakdown and clearance while also making it easier for it to enter intracellular compartments.

Aim and Objectives

Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers.

Methodology

Significant therapeutic outcomes have previously been attained using genetic material-delivering polymer vehicles in both and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinica assessment in the past 20 years.

Results

Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genome-modifying nucleic acids, siRNA, microRNA, and plasmid DNA.

Conclusion

In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878324536240805060143
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. TatumE.L. Molecular biology, nucleic acids, and the future of medicine.Perspect. Biol. Med.1966101193210.1353/pbm.1966.0027 6002665
    [Google Scholar]
  2. GibneyE.R. NolanC.M. Epigenetics and gene expression.Heredity2010105141310.1038/hdy.2010.54 20461105
    [Google Scholar]
  3. DunbarC.E. HighK.A. JoungJ.K. KohnD.B. OzawaK. SadelainM. Gene therapy comes of age.Science20183596372eaan467210.1126/science.aan4672 29326244
    [Google Scholar]
  4. OrkinS.H. ReillyP. Paying for future success in gene therapy.Science201635262891059106110.1126/science.aaf4770 27230368
    [Google Scholar]
  5. ZhaoY. HuangL. Lipid nanoparticles for gene delivery.Adv. Genet.201488133610.1016/B978‑0‑12‑800148‑6.00002‑X 25409602
    [Google Scholar]
  6. KatzM.G. FargnoliA.S. WilliamsR.D. BridgesC.R. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications.Hum. Gene Ther.2013241191492710.1089/hum.2013.2517 24164239
    [Google Scholar]
  7. AurouxP.A. KocY. deMelloA. ManzA. DayP.J.R. Miniaturised nucleic acid analysis.Lab Chip20044653454610.1039/b408850f 15570362
    [Google Scholar]
  8. LuoD. SaltzmanW.M. Synthetic DNA delivery systems.Nat. Biotechnol.2000181333710.1038/71889 10625387
    [Google Scholar]
  9. NekhotiaevaN. AwasthiS.K. NielsenP.E. GoodL. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids.Mol. Ther.200410465265910.1016/j.ymthe.2004.07.006 15451449
    [Google Scholar]
  10. PackD.W. HoffmanA.S. PunS. StaytonP.S. Design and development of polymers for gene delivery.Nat. Rev. Drug Discov.20054758159310.1038/nrd1775 16052241
    [Google Scholar]
  11. GodbeyW.T. WuK.K. MikosA.G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery.Proc. Natl. Acad. Sci. USA19999695177518110.1073/pnas.96.9.5177 10220439
    [Google Scholar]
  12. KopečekJ. YangJ. Smart self-assembled hybrid hydrogel biomaterials.Angew. Chem. Int. Ed.201251307396741710.1002/anie.201201040 22806947
    [Google Scholar]
  13. BoussifO. Lezoualc’hF. ZantaM.A. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine.Proc. Natl. Acad. Sci. USA199592167297730110.1073/pnas.92.16.7297 7638184
    [Google Scholar]
  14. WangY. GaoS. YeW.H. YoonH.S. YangY.Y. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer.Nat. Mater.200651079179610.1038/nmat1737 16998471
    [Google Scholar]
  15. OsborneS.E. EllingtonA.D. Nucleic acid selection and the challenge of combinatorial chemistry.Chem. Rev.199797234937010.1021/cr960009c 11848874
    [Google Scholar]
  16. KulkarniJ.A. WitzigmannD. ThomsonS.B. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑0 34059811
    [Google Scholar]
  17. WangX. NiuD. HuC. LiP. Polyethyleneimine-based nanocarriers for gene delivery.Curr. Pharm. Des.201521426140615610.2174/1381612821666151027152907 26503146
    [Google Scholar]
  18. NiculescuA.G. GrumezescuA.M. Polymer-based nanosystems—A versatile delivery approach.Materials20211422681210.3390/ma14226812 34832213
    [Google Scholar]
  19. ZhangD. SongQ. WangW. Unleashing a dual‐warhead nanomedicine to precisely sensitize immunotherapy for pancreatic ductal adenocarcinoma.Adv. Funct. Mater.2024231544710.1002/adfm.202315447
    [Google Scholar]
  20. YıldırımM. AcetÖ. YetkinD. AcetB.Ö. KarakocV. OdabasıM. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer.J. Drug Deliv. Sci. Technol.20227410355210.1016/j.jddst.2022.103552
    [Google Scholar]
  21. AcetÖ. Design of enhanced smart delivery systems for therapeutic enzymes: Kinetic and release performance of dual effected enzyme-loaded nanopolymers.Catal. Lett.2023153103174318410.1007/s10562‑023‑04418‑8
    [Google Scholar]
  22. LeeJ.H. LeeK. MoonS.H. LeeY. ParkT.G. CheonJ. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery.Angew. Chem. Int. Ed.200948234174417910.1002/anie.200805998 19408274
    [Google Scholar]
  23. LiS. TsengW-C. StolzD.B. WuS-P. WatkinsS.C. HuangL. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: Implications for intravenous lipofection.Gene Ther.19996458559410.1038/sj.gt.3300865 10476218
    [Google Scholar]
  24. LaraA.R. RamírezO.T. WunderlichM. Plasmid DNA production for therapeutic applications.Methods Mol. Biol.201282427130310.1007/978‑1‑61779‑433‑9_14 22160904
    [Google Scholar]
  25. GillD.R. PringleI.A. HydeS.C. Progress and prospects: The design and production of plasmid vectors.Gene Ther.200916216517110.1038/gt.2008.183 19129858
    [Google Scholar]
  26. KobeltD. SchleefM. SchmeerM. AumannJ. SchlagP.M. WaltherW. Performance of high quality minicircle DNA for in vitro and in vivo gene transfer.Mol. Biotechnol.2013531808910.1007/s12033‑012‑9535‑6 22467123
    [Google Scholar]
  27. HardeeC. Arévalo-SolizL. HornsteinB. ZechiedrichL. Advances in non-viral DNA vectors for gene therapy.Genes 201782658710.3390/genes8020065 28208635
    [Google Scholar]
  28. TangX. ZhangS. FuR. Therapeutic prospects of mRNA-based gene therapy for glioblastoma.Front. Oncol.20199120810.3389/fonc.2019.01208 31781503
    [Google Scholar]
  29. TavernierG. AndriesO. DemeesterJ. SandersN.N. De SmedtS.C. RejmanJ. mRNA as gene therapeutic: How to control protein expression.J. Control. Release2011150323824710.1016/j.jconrel.2010.10.020 20970469
    [Google Scholar]
  30. BorchT.H. SvaneI.M. Synthetic mRNA.Methods in Molecular Biology. RhoadsR.E. New York, NYSpringer New York2016Vol. 1428
    [Google Scholar]
  31. YounH. ChungJ.K. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy.Expert Opin. Biol. Ther.20151591337134810.1517/14712598.2015.1057563 26125492
    [Google Scholar]
  32. FreundI. EigenbrodT. HelmM. DalpkeA.H. RNA modifications modulate activation of innate toll-like receptors.Genes20191029211010.3390/genes10020092 30699960
    [Google Scholar]
  33. ParrC.J.C. WadaS. KotakeK. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells.Nucleic Acids Res.2020486e35e4410.1093/nar/gkaa070 32090264
    [Google Scholar]
  34. AndriesO. Mc CaffertyS. De SmedtS.C. WeissR. SandersN.N. KitadaT. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice.J. Control. Release201521733734410.1016/j.jconrel.2015.08.051 26342664
    [Google Scholar]
  35. SioudM. FursetG. CekaiteL. Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs.Biochem. Biophys. Res. Commun.2007361112212610.1016/j.bbrc.2007.06.177 17658482
    [Google Scholar]
  36. MengZ. O’Keeffe-AhernJ. LyuJ. PierucciL. ZhouD. WangW. A new developing class of gene delivery: Messenger RNA-based therapeutics.Biomater. Sci.20175122381239210.1039/C7BM00712D 29063914
    [Google Scholar]
  37. EmamS.E. ElsadekN.E. Abu LilaA.S. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice.J. Control. Release202133432733410.1016/j.jconrel.2021.05.001 33957196
    [Google Scholar]
  38. NagareddyR. ThomasR.G. JeongY.Y. Stimuli-responsive polymeric nanomaterials for the delivery of immunotherapy moieties: Antigens, adjuvants and agonists.Int. J. Mol. Sci.202122221251010.3390/ijms222212510 34830392
    [Google Scholar]
  39. GaoY. WangK. ZhangJ. DuanX. SunQ. MenK. Multifunctional nanoparticle for cancer therapy.MedComm202341e18710.1002/mco2.187 36654533
    [Google Scholar]
  40. YangW. MixichL. BoonstraE. CabralH. Polymer-based mRNA delivery strategies for advanced therapies.Adv. Healthc. Mater.20231215220268810.1002/adhm.202202688 36785927
    [Google Scholar]
  41. KazemianP. YuS.Y. ThomsonS.B. BirkenshawA. LeavittB.R. RossC.J.D. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components.Mol. Pharm.20221961669168610.1021/acs.molpharmaceut.1c00916 35594500
    [Google Scholar]
  42. ZhangP. WagnerE. History of polymeric gene delivery systems.Polymeric Gene Delivery Systems2018139
    [Google Scholar]
  43. KaczmarekJ.C. KowalskiP.S. AndersonD.G. Advances in the delivery of RNA therapeutics: From concept to clinical reality.Genome Med.201791607610.1186/s13073‑017‑0450‑0 28655327
    [Google Scholar]
  44. YildirimM. AcetÖ. Immunomodulatory activities of pH/temperature sensitive smart naringenin-loaded nanopolymers on the mammalian macrophages.Appl Surf Sci Adv20231810052710.1016/j.apsadv.2023.100527
    [Google Scholar]
  45. AcetÖ. DikiciE. AcetB.Ö. OdabaşıM. MijakovicI. PanditS. Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes.Colloids Surf. B Biointerfaces202322111302410.1016/j.colsurfb.2022.113024 36403418
    [Google Scholar]
  46. AcetÖ. Ali NomaS.A. AcetB.Ö. DikiciE. OsmanB. OdabaşıM. A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes.J. Pharm. Biomed. Anal.202322611525010.1016/j.jpba.2023.115250 36657352
    [Google Scholar]
  47. LiW. GaiM. RutkowskiS. An automated device for layer-by-layer coating of dispersed superparamagnetic nanoparticle templates.Colloid J.201880664865910.1134/S1061933X18060078
    [Google Scholar]
  48. AntipinaM.N. KiryukhinM.V. SkirtachA.G. SukhorukovG.B. Micropackaging via layer-by-layer assembly: Microcapsules and microchamber arrays.Int. Mater. Rev.201459422424410.1179/1743280414Y.0000000030
    [Google Scholar]
  49. RinaldiC. WoodM.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders.Nat. Rev. Neurol.201814192110.1038/nrneurol.2017.148 29192260
    [Google Scholar]
  50. KoleR. KrainerA.R. AltmanS. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides.Nat. Rev. Drug Discov.201211212514010.1038/nrd3625 22262036
    [Google Scholar]
  51. SettenR.L. RossiJ.J. HanS. The current state and future directions of RNAi-based therapeutics.Nat. Rev. Drug Discov.201918642144610.1038/s41573‑019‑0017‑4 30846871
    [Google Scholar]
  52. O’BrienJ. HayderH. ZayedY. PengC. Overview of microrna biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.00402 30123182
    [Google Scholar]
  53. TipaneeJ. ChaiY.C. VandenDriesscheT. ChuahM.K. Preclinical and clinical advances in transposon-based gene therapy.Biosci. Rep.2017376BSR2016061410.1042/BSR20160614 29089466
    [Google Scholar]
  54. YehC.D. RichardsonC.D. CornJ.E. Advances in genome editing through control of DNA repair pathways.Nat. Cell Biol.201921121468147810.1038/s41556‑019‑0425‑z 31792376
    [Google Scholar]
  55. AnzaloneA.V. KoblanL.W. LiuD.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors.Nat. Biotechnol.202038782484410.1038/s41587‑020‑0561‑9 32572269
    [Google Scholar]
  56. LächeltU. WagnerE. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond).Chem. Rev.201511519110431107810.1021/cr5006793 25872804
    [Google Scholar]
  57. SlivacI. GuayD. MangionM. ChampeilJ. GailletB. Non-viral nucleic acid delivery methods.Expert Opin. Biol. Ther.201717110511810.1080/14712598.2017.1248941 27740858
    [Google Scholar]
  58. XuL. AnchordoquyT. Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics.J. Pharm. Sci.20111001385210.1002/jps.22243 20575003
    [Google Scholar]
  59. NiR. FengR. ChauY. Synthetic approaches for nucleic acid delivery: Choosing the right carriers.Life2019935910.3390/life9030059 31324016
    [Google Scholar]
  60. MillerN. VileR. Targeted vectors for gene therapy.FASEB J.19959219019910.1096/fasebj.9.2.7781922 7781922
    [Google Scholar]
  61. ZhangW.W. Development and application of adenoviral vectors for gene therapy of cancer.Cancer Gene Ther.19996211313810.1038/sj.cgt.7700024 10195879
    [Google Scholar]
  62. VaheriA. PaganoJ.S. Infectious poliovirus RNA: A sensitive method of assay.Virology196527343443610.1016/0042‑6822(65)90126‑1 4285107
    [Google Scholar]
  63. WangZ.V. DengY. WangQ.A. SunK. SchererP.E. Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression.Endocrinology201015162933293910.1210/en.2010‑0136 20363877
    [Google Scholar]
  64. PapadakisE. NicklinS. BakerA. WhiteS. Promoters and control elements: Designing expression cassettes for gene therapy.Curr. Gene Ther.2004418911310.2174/1566523044578077 15032617
    [Google Scholar]
  65. ŠimčíkováM. PratherK.L.J. PrazeresD.M.F. MonteiroG.A. Towards effective non-viral gene delivery vector.Biotechnol. Genet. Eng. Rev.2015311-28210710.1080/02648725.2016.1178011 27160661
    [Google Scholar]
  66. Fus-KujawaA. PrusP. Bajdak-RusinekK. An overview of methods and tools for transfection of eukaryotic cells in vitro.Front. Bioeng. Biotechnol.2021970103110.3389/fbioe.2021.701031 34354988
    [Google Scholar]
  67. McCutchanJ.H. PaganoJ.S. Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran.J. Natl. Cancer Inst.1968412351357 4299537
    [Google Scholar]
  68. GulickT. Transfection using DEAE-Dextran Current Protocols in Cell Biology20031920.411010.1002/0471143030.cb2004s19
    [Google Scholar]
  69. LaemmliU.K. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.Proc. Natl. Acad. Sci. USA197572114288429210.1073/pnas.72.11.4288 1060108
    [Google Scholar]
  70. ChattorajD.K. GosuleL.C. SchellmanJ.A. DNA condensation with polyamines.J. Mol. Biol.1978121332733710.1016/0022‑2836(78)90367‑4 671541
    [Google Scholar]
  71. HauckE.S. HeckerJ.G. Non-viral delivery of RNA gene therapy to the central nervous system.Pharmaceutics202214116510.3390/pharmaceutics14010165 35057059
    [Google Scholar]
  72. WuG.Y. WuC.H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system.J. Biol. Chem.1987262104429443210.1016/S0021‑9258(18)61209‑8 3558345
    [Google Scholar]
  73. ChowdhuryN.R. WuC.H. WuG.Y. YerneniP.C. BommineniV.R. ChowdhuryJ.R. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. Prolonged persistence in cytoplasmic vesicles after partial hepatectomy.J. Biol. Chem.199326815112651127110.1016/S0021‑9258(18)82119‑6 8496181
    [Google Scholar]
  74. KumarR. Santa ChalarcaC.F. BockmanM.R. Polymeric delivery of therapeutic nucleic acids.Chem. Rev.202112118115271165210.1021/acs.chemrev.0c00997 33939409
    [Google Scholar]
  75. RossorA.M. ReillyM.M. SleighJ.N. Antisense oligonucleotides and other genetic therapies made simple.Pract. Neurol.201818212613110.1136/practneurol‑2017‑001764 29455156
    [Google Scholar]
  76. Batista-DuharteA. SendraL. HerreroM. Téllez-MartínezD. CarlosI. AliñoS. Progress in the use of antisense oligonucleotides for vaccine improvement.Biomolecules202010231610.3390/biom10020316 32079263
    [Google Scholar]
  77. KimSW Polylysine copolymers for gene delivery.Cold Spring Harb Protoc201220124 pdb.ip06861910.1101/pdb.ip068619 22474666
    [Google Scholar]
  78. SonawaneN.D. SzokaF.C.Jr VerkmanA.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.J. Biol. Chem.200327845448264483110.1074/jbc.M308643200 12944394
    [Google Scholar]
  79. Mata-VentosaA. RNase H-sensitive multifunctional ASO-based nanostructures as promising tools for the treatment of multifactorial complex pathologies.ChemRxiv202310.26434/chemrxiv‑2023‑r7whl
    [Google Scholar]
  80. SergeevaO.V. Modulation of RNA splicing by oligonucleotides: Mechanisms of action and therapeutic implications.Nucleic Acid Ther.2022323123138
    [Google Scholar]
  81. HaenslerJ. SzokaF.C.Jr Polyamidoamine cascade polymers mediate efficient transfection of cells in culture.Bioconjug. Chem.19934537237910.1021/bc00023a012 8274523
    [Google Scholar]
  82. AraújoR.V. SantosS.S. Igne FerreiraE. GiarollaJ. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules23112849 30400134
    [Google Scholar]
  83. SchirleN.T. Sheu-GruttadauriaJ. MacRaeI.J. Structural basis for microRNA targeting.Science2014346620960861310.1126/science.1258040 25359968
    [Google Scholar]
  84. MalikN. WiwattanapatapeeR. KlopschR. Dendrimers.J. Control. Release2000651-213314810.1016/S0168‑3659(99)00246‑1 10699277
    [Google Scholar]
  85. RobertsJ.C. BhalgatM.K. ZeraR.T. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers.J. Biomed. Mater. Res.1996301536510.1002/(SICI)1097‑4636(199601)30:1<53:AID‑JBM8>3.0.CO;2‑Q 8788106
    [Google Scholar]
  86. ShenY. ZhouZ. SuiM. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery.Nanomedicine2010581205121710.2217/nnm.10.86 21039198
    [Google Scholar]
  87. JablonkaE. LambM.J. Evolution in four dimensions.In: Revised edition: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT press. 201410.7551/mitpress/9689.001.0001
    [Google Scholar]
  88. BaughnM.W. Therapeutic Restoration of Stathmin-2 RNA Processing in TDP-43 Proteinopathies.San DiegoUniversity of California2021
    [Google Scholar]
  89. MilhemO.M. MylesC. McKeownN.B. AttwoodD. D’EmanueleA. Polyamidoamine Starburst® dendrimers as solubility enhancers.Int. J. Pharm.20001971-223924110.1016/S0378‑5173(99)00463‑9 10704811
    [Google Scholar]
  90. WagnerE. KloecknerJ. Gene delivery using polymer therapeutics.Adv. Polym. Sci.200619213517310.1007/12_023
    [Google Scholar]
  91. SharmaA. PorterfieldJ.E. SmithE. SharmaR. KannanS. KannanR.M. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.J. Control. Release201828317518910.1016/j.jconrel.2018.06.003 29883694
    [Google Scholar]
  92. SayedN. AllawadhiP. KhuranaA. Gene therapy: Comprehensive overview and therapeutic applications.Life Sci.202229412037510.1016/j.lfs.2022.120375 35123997
    [Google Scholar]
  93. FernandezA. O’LearyC. O’ByrneK.J. BurgessJ. RichardD.J. SuraweeraA. Epigenetic mechanisms in DNA double strand break repair: A clinical review.Front. Mol. Biosci.2021868544010.3389/fmolb.2021.685440 34307454
    [Google Scholar]
  94. YamamotoY. GerbiS.A. Making ends meet: Targeted integration of DNA fragments by genome editing.Chromosoma2018127440542010.1007/s00412‑018‑0677‑6 30003320
    [Google Scholar]
  95. YangH. RenS. YuS. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks.Int. J. Mol. Sci.20202118646110.3390/ijms21186461 32899704
    [Google Scholar]
  96. MaY. ShaM. ChengS. YaoW. LiZ. QiX.R. Construction of hyaluronic tetrasaccharide clusters modified polyamidoamine siRNA delivery system.Nanomaterials 20188643310.3390/nano8060433 29899207
    [Google Scholar]
  97. AltwaijryN. SomaniS. ParkinsonJ.A. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12.Drug Deliv.201825167968910.1080/10717544.2018.1440666 29493296
    [Google Scholar]
  98. OgrisM. BrunnerS. SchüllerS. KircheisR. WagnerE. PEGylated DNA/transferrin–PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery.Gene Ther.19996459560510.1038/sj.gt.3300900 10476219
    [Google Scholar]
  99. WightmanL. KircheisR. RösslerV. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo.J. Gene Med.20013436237210.1002/jgm.187 11529666
    [Google Scholar]
  100. SchlosserK. TahaM. DengY. StewartD.J. Systemic delivery of microRNA mimics with polyethylenimine elevates pulmonary microRNA levels, but lacks pulmonary selectivity.Pulm. Circ.2018811410.1177/2045893217750613 29251557
    [Google Scholar]
  101. WagnerE. Polymers for siRNA delivery: Inspired by viruses to be targeted, dynamic, and precise.Acc. Chem. Res.20124571005101310.1021/ar2002232 22191535
    [Google Scholar]
  102. ClelandJ.L. LangerR. Formulation and delivery of proteins and peptides: Design and development strategies.ACS Publications199410.1021/bk‑1994‑0567
    [Google Scholar]
  103. AkincA. ThomasM. KlibanovA.M. LangerR. Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis.J. Gene Med.20057565766310.1002/jgm.696 15543529
    [Google Scholar]
  104. BenjaminsenR.V. MattebjergM.A. HenriksenJ.R. MoghimiS.M. AndresenT.L. The possible proton sponge effect of polyethylenimine (PEI) does not include change in lysosomal pH.Mol. Ther.201321114915710.1038/mt.2012.185 23032976
    [Google Scholar]
  105. ReschkeM. Piotrowski-DaspitA.S. PoberJ.S. SaltzmanW.M. Nucleic acid delivery to the vascular endothelium.Mol. Pharm.202219124466448610.1021/acs.molpharmaceut.2c00653 36251765
    [Google Scholar]
  106. Piotrowski-DaspitA.S. KauffmanA.C. BracagliaL.G. SaltzmanW.M. Polymeric vehicles for nucleic acid delivery.Adv. Drug Deliv. Rev.202015611913210.1016/j.addr.2020.06.014 32585159
    [Google Scholar]
  107. DoyleS.R. ChanC. Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells.Genet. Vaccines Ther.2007511110.1186/1479‑0556‑5‑11 18036259
    [Google Scholar]
  108. GodbeyW.T. WuK.K. HirasakiG.J. MikosA.G. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency.Gene Ther.1999681380138810.1038/sj.gt.3300976 10467362
    [Google Scholar]
  109. GarnettM.C. Gene-delivery systems using cationic polymers.Crit. Rev. Ther. Drug Carrier Syst.19991621010.1615/CritRevTherDrugCarrierSyst.v16.i2.10
    [Google Scholar]
  110. LeeS.H. ChoiS.H. KimS.H. ParkT.G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock.J. Control. Release20081251253210.1016/j.jconrel.2007.09.011 17976853
    [Google Scholar]
  111. ZaunerW. OgrisM. WagnerE. Polylysine-based transfection systems utilizing receptor-mediated delivery.Adv. Drug Deliv. Rev.1998301-39711310.1016/S0169‑409X(97)00110‑5 10837605
    [Google Scholar]
  112. ChoiS.H. LeeS.H. ParkT.G. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment.Biomacromolecules2006761864187010.1021/bm060182a 16768408
    [Google Scholar]
  113. PengL. WagnerE. Polymeric carriers for nucleic acid delivery: Current designs and future directions.Biomacromolecules201920103613362610.1021/acs.biomac.9b00999 31497946
    [Google Scholar]
  114. HeJ. XuS. MixsonA.J. The multifaceted histidine-based carriers for nucleic acid delivery: Advances and challenges.Pharmaceutics202012877410.3390/pharmaceutics12080774 32823960
    [Google Scholar]
  115. MoghimiS.M. SymondsP. MurrayJ.C. HunterA.C. DebskaG. SzewczykA. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy.Mol. Ther.200511699099510.1016/j.ymthe.2005.02.010 15922971
    [Google Scholar]
  116. GrandinettiG. IngleN.P. ReinekeT.M. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: Implications for a mechanism of cytotoxicity.Mol. Pharm.2011851709171910.1021/mp200078n 21699201
    [Google Scholar]
  117. BaderR.A. Engineering Polymer Systems for Improved Drug Delivery.John Wiley & Sons, Inc2014
    [Google Scholar]
  118. HalmanJ.R. KimK.T. GwakS.J. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution.Nanomedicine20202310209410.1016/j.nano.2019.102094 31669854
    [Google Scholar]
  119. SelbyL.I. Cortez-JugoC.M. SuchG.K. JohnstonA.P.R. Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201795e145210.1002/wnan.1452 28160452
    [Google Scholar]
  120. VermeulenL.M.P. BransT. SamalS.K. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles.ACS Nano20181232332234510.1021/acsnano.7b07583 29505236
    [Google Scholar]
  121. GwakS.J. LeeJ.S. Suicide gene therapy by amphiphilic copolymer nanocarrier for spinal cord tumor.Nanomaterials20199457310.3390/nano9040573 30965667
    [Google Scholar]
  122. BusT. TraegerA. SchubertU.S. The great escape: How cationic polyplexes overcome the endosomal barrier.J. Mater. Chem. B Mater. Biol. Med.20186436904691810.1039/C8TB00967H 32254575
    [Google Scholar]
  123. AjdaryM. MoosaviM.A. RahmatiM. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity.Nanomaterials20188963410.3390/nano8090634 30134524
    [Google Scholar]
  124. ParkJ.S. YangH.N. YiS.W. KimJ.H. ParkK.H. Neoangiogenesis of human mesenchymal stem cells transfected with peptide-loaded and gene-coated PLGA nanoparticles.Biomaterials20167622623710.1016/j.biomaterials.2015.10.062 26546915
    [Google Scholar]
  125. UlkoskiD. BakA. WilsonJ.T. KrishnamurthyV.R. Recent advances in polymeric materials for the delivery of RNA therapeutics.Expert Opin. Drug Deliv.201916111149116710.1080/17425247.2019.1663822 31498013
    [Google Scholar]
  126. MejlsøeS.L. ChristensenJ.B. Dendrimers in drug delivery.In: Advanced and Modern Approaches for Drug Delivery.Elsevier202335738710.1016/B978‑0‑323‑91668‑4.00005‑8
    [Google Scholar]
  127. RaupA. StahlschmidtU. JérômeV. SynatschkeC. MüllerA. FreitagR. Influence of polyplex formation on the performance of star-shaped polycationic transfection agents for mammalian cells.Polymers20168622410.3390/polym8060224 30979314
    [Google Scholar]
  128. OldenB.R. ChengY. YuJ.L. PunS.H. Cationic polymers for non-viral gene delivery to human T cells.J. Control. Release201828214014710.1016/j.jconrel.2018.02.043 29518467
    [Google Scholar]
  129. JeonO. YangH.S. LeeT.J. KimB.S. Heparin-conjugated polyethylenimine for gene delivery.J. Control. Release2008132323624210.1016/j.jconrel.2008.05.017 18597881
    [Google Scholar]
  130. SaitoG. SwansonJ.A. LeeK.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities.Adv. Drug Deliv. Rev.200355219921510.1016/S0169‑409X(02)00179‑5 12564977
    [Google Scholar]
  131. LeeW.S. KimY.K. ZhangQ. Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis.Nanomedicine201410352553410.1016/j.nano.2013.10.005 24184000
    [Google Scholar]
  132. HallA. LächeltU. BartekJ. WagnerE. MoghimiS.M. Polyplex evolution: Understanding biology, optimizing performance.Mol. Ther.20172571476149010.1016/j.ymthe.2017.01.024 28274797
    [Google Scholar]
  133. SchaffertD. OgrisM. Nucleic acid carrier systems based on polyethylenimine conjugates for the treatment of metastatic tumors.Curr. Med. Chem.201320283456347010.2174/0929867311320280004 23745556
    [Google Scholar]
  134. ChengR. FengF. MengF. DengC. FeijenJ. ZhongZ. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery.J. Control. Release2011152121210.1016/j.jconrel.2011.01.030 21295087
    [Google Scholar]
  135. ZhangY. MaW. ZhanY. Nucleic acids and analogs for bone regeneration.Bone Res.2018613710.1038/s41413‑018‑0042‑7 30603226
    [Google Scholar]
  136. GrijalvoS. AlagiaA. JorgeA. EritjaR. Covalent strategies for targeting messenger and non-coding RNAs: An updated review on siRNA, miRNA and antimiR conjugates.Genes2018927410.3390/genes9020074 29415514
    [Google Scholar]
  137. RafteryR.M. WalshD.P. CastañoI.M. Delivering nucleic‐acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: Challenges, progress and future perspectives.Adv. Mater.201628275447546910.1002/adma.201505088 26840618
    [Google Scholar]
  138. BulmusV. WoodwardM. LinL. MurthyN. StaytonP. HoffmanA. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs.J. Control. Release200393210512010.1016/j.jconrel.2003.06.001 14636717
    [Google Scholar]
  139. GantaS. DevalapallyH. ShahiwalaA. AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release2008126318720410.1016/j.jconrel.2007.12.017 18261822
    [Google Scholar]
  140. MengF. HenninkW.E. ZhongZ. Reduction-sensitive polymers and bioconjugates for biomedical applications.Biomaterials200930122180219810.1016/j.biomaterials.2009.01.026 19200596
    [Google Scholar]
  141. AdeyemiS.A. A Novel Peptide-Enhanced Drug Delivery System for Squamous Cell Oesophageal Carcinoma.University of the Witwatersrand, Faculty of Health Sciences2017
    [Google Scholar]
  142. TsarevskyN.V. MatyjaszewskiK. Combining atom transfer radical polymerization and disulfide/thiol redox chemistry: A route to well-defined biodegradable polymeric materials.Macromolecules20053883087309210.1021/ma050020r
    [Google Scholar]
  143. SunshineJ.C. PengD.Y. GreenJ.J. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties.Mol. Pharm.20129113375338310.1021/mp3004176 22970908
    [Google Scholar]
  144. SchererF. SchillingerU. PutzU. StembergerA. PlankC. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo.J. Gene Med.20024663464310.1002/jgm.298 12439855
    [Google Scholar]
  145. ZakeriA. KouhbananiM.A.J. BeheshtkhooN. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon.Nano Rev. Exp.201891148849710.1080/20022727.2018.1488497 30410712
    [Google Scholar]
  146. CapitoR.M. SpectorM. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering.Gene Ther.200714972173210.1038/sj.gt.3302918 17315042
    [Google Scholar]
  147. CurtinC.M. TierneyE.G. McSorleyK. CryanS.A. DuffyG.P. O’BrienF.J. Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold.Adv. Healthc. Mater.20154222322710.1002/adhm.201400397 25125073
    [Google Scholar]
  148. MageedR.A. AdamsG. WoodrowD. PodhajcerO.L. ChernajovskyY. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor.Gene Ther.19985121584159210.1038/sj.gt.3300785 10023437
    [Google Scholar]
  149. ChisA.A. DobreaC. MorgovanC. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules25173982 32882920
    [Google Scholar]
  150. WangX.T. LiuP.Y. XinK.Q. TangJ.B. Tendon healing in vitro: BFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes.J. Hand Surg. Am.20053061255126110.1016/j.jhsa.2005.06.001 16344185
    [Google Scholar]
  151. YangQ. LiuS. LiuX. LiuZ. XueW. ZhangY. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems.Acta Biomater.20199643645510.1016/j.actbio.2019.06.043 31254682
    [Google Scholar]
  152. Cohen-SacksH. ElazarV. GaoJ. Delivery and expression of pDNA embedded in collagen matrices.J. Control. Release200495230932010.1016/j.jconrel.2003.11.001 14980779
    [Google Scholar]
  153. ErbacherP. ZouS. BettingerT. SteffanA.M. RemyJ.S. Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability.Pharm. Res.19981591332133910.1023/A:1011981000671 9755882
    [Google Scholar]
  154. ZhaoC. NieS. TangM. SunS. Polymeric pH-sensitive membranes—A review.Prog. Polym. Sci.201136111499152010.1016/j.progpolymsci.2011.05.004
    [Google Scholar]
  155. ParkI.K. KimT.H. ParkY.H. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier.J. Control. Release200176334936210.1016/S0168‑3659(01)00448‑5 11578748
    [Google Scholar]
  156. Fernández FernándezE. Santos-CarballalB. WeberW.M. GoycooleaF.M. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line.Int. J. Pharm.20165021-21910.1016/j.ijpharm.2016.01.083 26875537
    [Google Scholar]
  157. LallanaE. Ríos de la RosaJ.M. TirellaA. Chitosan/hyaluronic acid nanoparticles: Rational design revisited for RNA delivery.Mol. Pharm.20171472422243610.1021/acs.molpharmaceut.7b00320 28597662
    [Google Scholar]
  158. LouwA.M. KolarM.K. NovikovaL.N. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury.Nanomedicine201612364365310.1016/j.nano.2015.10.011 26582736
    [Google Scholar]
  159. ZhuL. MahatoR.I. Lipid and polymeric carrier-mediated nucleic acid delivery.Expert Opin. Drug Deliv.20107101209122610.1517/17425247.2010.513969 20836625
    [Google Scholar]
  160. GaurS. WenY. SongJ.H. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy.Oncotarget2015630291612917710.18632/oncotarget.4971 26313360
    [Google Scholar]
  161. CoscoD. CilurzoF. MaiuoloJ. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma.Sci. Rep.2015511757910.1038/srep17579 26620594
    [Google Scholar]
  162. ChenX. GuS. ChenB.F. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway.Biomaterials20155323925010.1016/j.biomaterials.2015.02.071 25890723
    [Google Scholar]
  163. Köping-HöggårdM. TubulekasI. GuanH. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo.Gene Ther.20018141108112110.1038/sj.gt.3301492 11526458
    [Google Scholar]
  164. KievitF.M. VeisehO. BhattaraiN. PEI–PEG–chitosan‐copolymer-coated iron oxide nanoparticles for safe gene delivery: Synthesis, complexation, and transfection.Adv. Funct. Mater.200919142244225110.1002/adfm.200801844 20160995
    [Google Scholar]
  165. PingY. LiuC. ZhangZ. LiuK.L. ChenJ. LiJ. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.Biomaterials201132328328834110.1016/j.biomaterials.2011.07.038 21840593
    [Google Scholar]
  166. WongK. SunG. ZhangX. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo.Bioconjug. Chem.200617115215810.1021/bc0501597 16417264
    [Google Scholar]
  167. JiangH.L. KimY.K. AroteR. Chitosan-graft-polyethylenimine as a gene carrier.J. Control. Release2007117227328010.1016/j.jconrel.2006.10.025 17166614
    [Google Scholar]
  168. RafteryR. O’BrienF. CryanS.A. Chitosan for gene delivery and orthopedic tissue engineering applications.Molecules20131855611564710.3390/molecules18055611 23676471
    [Google Scholar]
  169. GaoJ.Q. ZhaoQ.Q. LvT.F. Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity.Int. J. Pharm.20103871-228629410.1016/j.ijpharm.2009.12.033 20035848
    [Google Scholar]
  170. MelletC.O. FernándezJ.M.G. BenitoJ.M. Cyclodextrin-based gene delivery systems.Chem. Soc. Rev.20114031586160810.1039/C0CS00019A 21042619
    [Google Scholar]
  171. KumarV. Chitin and chitosan: The defense booster in agricultural field.In: Handbook of Biopolymers.Jenny Stanford Publishing20189313410.1201/9780429024757‑5
    [Google Scholar]
  172. LiJ. LohX.J. Cyclodextrin-based supramolecular architectures: Synthesis, structures, and applications for drug and gene delivery.Adv. Drug Deliv. Rev.20086091000101710.1016/j.addr.2008.02.011 18413280
    [Google Scholar]
  173. PunS.H. BellocqN.C. LiuA. Cyclodextrin-modified polyethylenimine polymers for gene delivery.Bioconjug. Chem.200415483184010.1021/bc049891g 15264871
    [Google Scholar]
  174. HaiderA. KhanS. IqbalD.N. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications.Eur. Polym. J.202421011298310.1016/j.eurpolymj.2024.112983
    [Google Scholar]
  175. BellocqN.C. PunS.H. JensenG.S. DavisM.E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery.Bioconjug. Chem.20031461122113210.1021/bc034125f 14624625
    [Google Scholar]
  176. WadaK. ArimaH. TsutsumiT. Improvement of gene delivery mediated by mannosylated dendrimer/α-cyclodextrin conjugates.J. Control. Release2005104239741310.1016/j.jconrel.2005.02.016 15907588
    [Google Scholar]
  177. LaiW.F. Cyclodextrins in non-viral gene delivery.Biomaterials201435140141110.1016/j.biomaterials.2013.09.061 24103652
    [Google Scholar]
  178. LiJ. YangC. LiH. Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery.Adv. Mater.200618222969297410.1002/adma.200600812
    [Google Scholar]
  179. ChallaR. AhujaA. AliJ. KharR.K. Cyclodextrins in drug delivery: An updated review.AAPS PharmSciTech200562E329E35710.1208/pt060243 16353992
    [Google Scholar]
  180. QuanF. ZhangA. ChengF. CuiL. LiuJ. XiaY. Biodegradable polymeric architectures via reversible deactivation radical polymerizations.Polymers201810775810.3390/polym10070758 30960683
    [Google Scholar]
  181. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  182. GidwaniB. VyasA. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs.BioMed Res. Int.2015201511510.1155/2015/198268 26582104
    [Google Scholar]
  183. HuQ.D. TangG.P. ChuP.K. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: From design to applications.Acc. Chem. Res.20144772017202510.1021/ar500055s 24873201
    [Google Scholar]
  184. SuY. ZhangB. SunR. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application.Drug Deliv.20212811397141810.1080/10717544.2021.1938756 34184949
    [Google Scholar]
  185. FengR. DengP. TengF. SongZ. Recent development of copolymeric delivery system for anticancer agents based on cyclodextrin derivatives.Anticancer. Agents Med. Chem.201616329930810.2174/1871520615666150909120234 26349814
    [Google Scholar]
  186. ParkI.K. von RecumH.A. JiangS. PunS.H. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery.Langmuir200622208478848410.1021/la061757s 16981766
    [Google Scholar]
  187. LehtoT EzzatK WoodMJA EL Andaloussi S. Peptides for nucleic acid delivery.Adv Drug Deliv Rev 2016106Pt A1728210.1016/j.addr.2016.06.008 27349594
    [Google Scholar]
  188. CaiX. DouR. GuoC. Cationic polymers as transfection reagents for nucleic acid delivery.Pharmaceutics2023155150210.3390/pharmaceutics15051502 37242744
    [Google Scholar]
  189. MishraS. WebsterP. DavisM.E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles.Eur. J. Cell Biol.20048339711110.1078/0171‑9335‑00363 15202568
    [Google Scholar]
  190. DassC. Lipoplex-mediated delivery of nucleic acids: Factors affecting in vivo transfection.J. Mol. Med.200482957959110.1007/s00109‑004‑0558‑8 15221077
    [Google Scholar]
  191. PunS.H. DavisM.E. Development of a nonviral gene delivery vehicle for systemic application.Bioconjug. Chem.200213363063910.1021/bc0155768 12009955
    [Google Scholar]
  192. LuoD. Woodrow-MumfordK. BelchevaN. SaltzmanW.M. Controlled DNA delivery systems.Pharm. Res.19991681300130810.1023/A:1014870102295 10468035
    [Google Scholar]
  193. CookA.B. Highly branched and hyperbranched polymers: Synthesis, characterisation, and application in nucleic acid delivery.University of Warwick2018
    [Google Scholar]
  194. KonwarB. SagarK. Lipase: An industrial enzyme through metagenomics.Apple Academic Press201810.1201/9781315159232
    [Google Scholar]
  195. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.91 25565440
    [Google Scholar]
  196. WoodrowK.A. CuY. BoothC.J. Saucier-SawyerJ.K. WoodM.J. Mark SaltzmanW. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA.Nat. Mater.20098652653310.1038/nmat2444 19404239
    [Google Scholar]
  197. ZhangJ. CuiJ. DengY. JiangZ. SaltzmanW.M. Multifunctional poly(amine- co -ester- co -orthoester) for efficient and safe gene delivery.ACS Biomater. Sci. Eng.20162112080208910.1021/acsbiomaterials.6b00502 28649641
    [Google Scholar]
  198. DevalliereJ. ChangW.G. AndrejecskJ.W. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation.FASEB J.201428290892210.1096/fj.13‑238527 24221087
    [Google Scholar]
  199. BabarI.A. ChengC.J. BoothC.J. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma.Proc. Natl. Acad. Sci. USA201210926E1695E170410.1073/pnas.1201516109 22685206
    [Google Scholar]
  200. WangT. UpponiJ.R. TorchilinV.P. Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies.Int. J. Pharm.2012427132010.1016/j.ijpharm.2011.07.013 21798324
    [Google Scholar]
  201. JainA.K. DasM. SwarnakarN.K. JainS. Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics.Crit. Rev. Ther. Drug Carrier Syst.201128114510.1615/CritRevTherDrugCarrierSyst.v28.i1.10 21395514
    [Google Scholar]
  202. ChenJ.C. Evolution and computational generation of highly functionalized nucleic acid polymers.Doctoral dissertation, Harvard University Graduate School of Arts and Sciences2021
    [Google Scholar]
  203. EngelhartA.E. HudN.V. Primitive genetic polymers.Cold Spring Harb. Perspect. Biol.2010212a00219610.1101/cshperspect.a002196 20462999
    [Google Scholar]
  204. WilsonC.J. BommariusA.S. ChampionJ.A. Biomolecular assemblies: Moving from observation to predictive design.Chem. Rev.201811824115191157410.1021/acs.chemrev.8b00038 30281290
    [Google Scholar]
  205. Oude BlenkeE. MahakenaS. FensM. van den DikkenbergJ. HolkersM. MastrobattistaE. Impact of chemistry and nanoformulation parameters on cellular uptake and airway distribution of RNA oligonucleotides.J. Control. Release202031715416510.1016/j.jconrel.2019.11.025 31765703
    [Google Scholar]
  206. ChoiK.Y. CorreaS. MinJ. Binary targeting of siRNA to hematologic cancer cells in vivo using layer-by-layer nanoparticles.Adv. Funct. Mater.20192920190001810.1002/adfm.201900018 31839764
    [Google Scholar]
  207. HaqueA.K.M.A. DewerthA. AntonyJ.S. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis.Sci. Rep.2018811677610.1038/s41598‑018‑34960‑0 30425265
    [Google Scholar]
  208. LynnD.M. LangerR. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA.J. Am. Chem. Soc.200012244107611076810.1021/ja0015388
    [Google Scholar]
  209. LimY. KimC. KimK. KimS.W. ParkJ. Development of a safe gene delivery system using biodegradable polymer, Poly[α-(4-aminobutyl)- l -glycolic acid].J. Am. Chem. Soc.2000122276524652510.1021/ja001033h
    [Google Scholar]
  210. BishopC.J. Abubaker-SharifB. GuiribaT. TzengS.Y. GreenJ.J. Gene delivery polymer structure–function relationships elucidated via principal component analysis.Chem. Commun. 20155160121341213710.1039/C5CC04417K 26126593
    [Google Scholar]
  211. KaczmarekJ.C. KauffmanK.J. FentonO.S. Optimization of a degradable polymer–lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells.Nano Lett.201818106449645410.1021/acs.nanolett.8b02917 30211557
    [Google Scholar]
  212. ChoiJ. RuiY. KimJ. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies.Nanomedicine20202310211510.1016/j.nano.2019.102115 31655205
    [Google Scholar]
  213. ZamboniC.G. KozielskiK.L. VaughanH.J. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.J. Control. Release2017263182810.1016/j.jconrel.2017.03.384 28351668
    [Google Scholar]
  214. SunshineJ.C. SunshineS.B. BhuttoI. HandaJ.T. GreenJ.J. Poly(β-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo.PLoS One201275e3754310.1371/journal.pone.0037543 22629417
    [Google Scholar]
  215. Tros de IlarduyaC. SunY. DüzgüneşN. Gene delivery by lipoplexes and polyplexes.Eur. J. Pharm. Sci.201040315917010.1016/j.ejps.2010.03.019 20359532
    [Google Scholar]
  216. LvH. ZhangS. WangB. CuiS. YanJ. Toxicity of cationic lipids and cationic polymers in gene delivery.J. Control. Release2006114110010910.1016/j.jconrel.2006.04.014 16831482
    [Google Scholar]
  217. FieldsR.J. ChengC.J. QuijanoE. Surface modified poly(β amino ester)-containing nanoparticles for plasmid DNA delivery.J. Control. Release20121641414810.1016/j.jconrel.2012.09.020 23041278
    [Google Scholar]
  218. ZhouJ. LiuJ. ChengC.J. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery.Nat. Mater.2012111829010.1038/nmat3187 22138789
    [Google Scholar]
  219. SunshineJ. BhiseN. GreenJ.J. Degradable polymers for gene delivery.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.2009200924122415 19964958
    [Google Scholar]
  220. KauffmanA.C. Piotrowski-DaspitA.S. NakazawaK.H. JiangY. DatyeA. SaltzmanW.M. Tunability of biodegradable poly(amine- co -ester) polymers for customized nucleic acid delivery and other biomedical applications.Biomacromolecules20181993861387310.1021/acs.biomac.8b00997 30110158
    [Google Scholar]
  221. JiangY. GaudinA. ZhangJ. A top-down approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery.Biomaterials201817612213010.1016/j.biomaterials.2018.05.043 29879653
    [Google Scholar]
  222. ElgharbawyA.A. RiyadiF.A. AlamM.Z. MoniruzzamanM. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review.J. Mol. Liq.201825115016610.1016/j.molliq.2017.12.050
    [Google Scholar]
  223. KazlauskasR.J. BornscheuerU.T. Biotransformations with lipases.Biotechnol Biotransformations I199883619110.1002/9783527620906.ch3
    [Google Scholar]
  224. SharmaS. KanwarS.S. Organic solvent tolerant lipases and applications.ScientificWorldJournal2014201411510.1155/2014/625258 24672342
    [Google Scholar]
  225. NahasH.H. MansourS.A. NouhF.A. Fungal laccases to where and where? Industrially important fungi for sustainable development.Bioprospect Biomol2021220523010.1007/978‑3‑030‑85603‑8_6
    [Google Scholar]
  226. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑7 32537239
    [Google Scholar]
  227. CuiJ. Piotrowski-DaspitA.S. ZhangJ. Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver.J. Control. Release201930425926710.1016/j.jconrel.2019.04.044 31054286
    [Google Scholar]
  228. LuP.Y. XieF. WoodleM.C. In vivo application of RNA interference: From functional genomics to therapeutics.Adv. Genet.20055411514210.1016/S0065‑2660(05)54006‑9 16096010
    [Google Scholar]
  229. HammondS.M. Aartsma-RusA. AlvesS. Delivery of oligonucleotide-based therapeutics: Challenges and opportunities.EMBO Mol. Med.2021134e1324310.15252/emmm.202013243 33821570
    [Google Scholar]
  230. WagnerD.E. BhaduriS.B. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: A review.Tissue Eng. Part B Rev.201218111410.1089/ten.teb.2011.0081 21707439
    [Google Scholar]
  231. PinheiroV.B. HolligerP. The XNA world: Progress towards replication and evolution of synthetic genetic polymers.Curr. Opin. Chem. Biol.2012163-424525210.1016/j.cbpa.2012.05.198 22704981
    [Google Scholar]
  232. HollensteinM. Nucleoside triphosphates-building blocks for the modification of nucleic acids.Molecules20121711135691359110.3390/molecules171113569 23154273
    [Google Scholar]
  233. RogersJ.M. SugaH. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming.Org. Biomol. Chem.201513369353936310.1039/C5OB01336D 26280393
    [Google Scholar]
  234. BoyerC. BulmusV. DavisT.P. LadmiralV. LiuJ. PerrierS. Bioapplications of RAFT polymerization.Chem. Rev.2009109115402543610.1021/cr9001403 19764725
    [Google Scholar]
  235. McClellanA.K. HaoT. BrooksT.A. SmithA.E. RAFT polymerization for the synthesis of tertiary amine-based diblock copolymer nucleic acid delivery vehicles.Macromol. Biosci.20171712170022510.1002/mabi.201700225 29139616
    [Google Scholar]
  236. ChenZ. LichtorP.A. BerlinerA.P. ChenJ.C. LiuD.R. Evolution of sequence-defined highly functionalized nucleic acid polymers.Nat. Chem.201810442042710.1038/s41557‑018‑0008‑9 29507367
    [Google Scholar]
  237. HartmannL. KrauseE. AntoniettiM. BörnerH.G. Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines).Biomacromolecules2006741239124410.1021/bm050884k 16602744
    [Google Scholar]
  238. WangY. LuoJ. TruebenbachI. Double click-functionalized sirna polyplexes for gene silencing in epidermal growth factor receptor-positive tumor cells.ACS Biomater. Sci. Eng.2020621074108910.1021/acsbiomaterials.9b01904 33464867
    [Google Scholar]
  239. Sontheimer-PhelpsA. HassellB.A. IngberD.E. Modelling cancer in microfluidic human organs-on-chips.Nat. Rev. Cancer2019192658110.1038/s41568‑018‑0104‑6 30647431
    [Google Scholar]
  240. KuhnJ. LinY. Krhac LevacicA. Delivery of Cas9/sgRNA ribonucleoprotein complexes via hydroxystearyl oligoamino amides.Bioconjug. Chem.202031372974210.1021/acs.bioconjchem.9b00853 31967454
    [Google Scholar]
  241. HeD. MüllerK. Krhac LevacicA. KosP. LächeltU. WagnerE. Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery.Bioconjug. Chem.201627364765910.1021/acs.bioconjchem.5b00649 26726077
    [Google Scholar]
  242. YangG. PhuaS.Z.F. BindraA.K. ZhaoY. Degradability and clearance of inorganic nanoparticles for biomedical applications.Adv. Mater.20193110180573010.1002/adma.201805730 30614561
    [Google Scholar]
  243. FuZ. XiangJ. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy.Int. J. Mol. Sci.20202123912310.3390/ijms21239123 33266216
    [Google Scholar]
  244. TangH. ZhaoW. YuJ. LiY. ZhaoC. Recent development of pH-responsive polymers for cancer nanomedicine.Molecules2018241410.3390/molecules24010004 30577475
    [Google Scholar]
  245. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  246. MintzerM.A. SimanekE.E. Nonviral vectors for gene delivery.Chem. Rev.2009109225930210.1021/cr800409e 19053809
    [Google Scholar]
  247. SunshineJ.C. GreenJ.J. Nanoengineering approaches to the design of artificial antigen-presenting cells.Nanomedicine2013871173118910.2217/nnm.13.98 23837856
    [Google Scholar]
  248. MerkelO.M. MintzerM.A. LibrizziD. Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi: The effects of peripheral groups and core structure on biological activity.Mol. Pharm.20107496998310.1021/mp100101s 20524664
    [Google Scholar]
  249. JinG.W. RejinoldN.S. ChoyJ.H. Multifunctional polymeric micelles for cancer therapy.Polymers20221422483910.3390/polym14224839 36432965
    [Google Scholar]
  250. PatilY. PanyamJ. Polymeric nanoparticles for siRNA delivery and gene silencing.Int. J. Pharm.20093671-219520310.1016/j.ijpharm.2008.09.039 18940242
    [Google Scholar]
  251. DuanL. OuyangK. XuX. Nanoparticle delivery of CRISPR/Cas9 for genome editing.Front. Genet.20211267328610.3389/fgene.2021.673286 34054927
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878324536240805060143
Loading
/content/journals/raddf/10.2174/0126673878324536240805060143
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biocompatible; biodegradable; immunity; Nucleic acid; polymer; polymeric vehicle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test