Skip to content
2000
image of The Pulmonary Microbiota: Mediation of Lung Pathogenesis and a Possible Therapeutic Target in Patients with Asthma

Abstract

Traditional views of a sterile lung environment have been revised with the recognition of a complex pulmonary microbiome. The interaction of this microbiota with host immune responses plays a pivotal role in the pathogenesis of various respiratory diseases, including asthma. This review aims to explore the impact of the pulmonary microbiota on asthma development and assess the potential of probiotics as a therapeutic intervention.

A mini-review was conducted in accordance with JBI methodology, focusing on studies that compared asthmatic patients with controls in terms of pulmonary microbiome composition. The primary sources were extracted and synthesized using JBI SUMARI, emphasizing studies involving probiotic interventions.

Significant differences in the pulmonary microbiome between asthmatics and healthy individuals were noted, with dominant genera, such as and linked to inflammation and asthma severity. Importantly, preliminary studies suggest that probiotics may influence these microbial communities, potentially reducing inflammatory responses and improving asthma outcomes.

The findings indicate a robust link between the pulmonary microbiome and asthma pathogenesis, with probiotics offering a promising avenue for modulating this interaction. The modulation of the lung microbiome through probiotics could represent a novel therapeutic pathway, potentially decreasing asthma severity by restoring microbial balance and enhancing immune homeostasis.

This review underscores the critical role of the pulmonary microbiome in asthma and highlights the innovative potential of probiotic treatments. Future research should focus on clinical trials to verify the efficacy of probiotics in managing asthma, aiming to establish a new paradigm in therapeutic strategies.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499325570241025074452
2024-10-30
2025-01-18
Loading full text...

Full text loading...

References

  1. Loverdos K. Bellos G. Kokolatou L. Vasileiadis I. Giamarellos E. Pecchiari M. Koulouris N. Koutsoukou A. Rovina N. Lung microbiome in asthma: Current perspectives. J. Clin. Med. 2019 8 11 1967 10.3390/jcm8111967 31739446
    [Google Scholar]
  2. Buffington P Sebghati AM Stewart KB Lawson S Karaduta O Consequences of a cesarean section on the neonatal gut microbiome and future outcomes: A qualitative analysis of the literature. Microb. Host. 2023 1 1 e230006 10.1530/MAH‑23‑0006
    [Google Scholar]
  3. Zybailov B.L. Glazko G.V. Rahmatallah Y. Andreyev D.S. McElroy T. Karaduta O. Byrum S.D. Orr L. Tackett A.J. Mackintosh S.G. Edmondson R.D. Kieffer D.A. Martin R.J. Adams S.H. Vaziri N.D. Arthur J.M. Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats. PLoS One 2019 14 1 e0199274 10.1371/journal.pone.0199274 30699108
    [Google Scholar]
  4. Campbell C.D. Gleeson M. Sulaiman I. The role of the respiratory microbiome in asthma. Front. All. 2023 4 1120999 10.3389/falgy.2023.1120999 37324782
    [Google Scholar]
  5. Lyu L. Zhou X. Zhang M. Liu L. Niu H. Zhang J. Chen S. Gong P. Jiang S. Pan J. Li Y. Han X. Cheng D. Zhang L. Delivery mode affects intestinal microbial composition and the development of intestinal epithelial cells. Front. Microbiol. 2021 12 626144 10.3389/fmicb.2021.626144 34484131
    [Google Scholar]
  6. Li R. Li J. Zhou X. Lung microbiome: New insights into the pathogenesis of respiratory diseases. Signal Transduct. Target. Ther. 2024 9 1 19 10.1038/s41392‑023‑01722‑y 38228603
    [Google Scholar]
  7. Tretter C. Krätzig D.A.N. Pecoraro M. Lange S. Seifert P. Frankenberg V.C. Untch J. Zuleger G. Wilhelm M. Zolg D.P. Dreyer F.S. Bräunlein E. Engleitner T. Uhrig S. Boxberg M. Steiger K. Huspenina S.J. Ochsenreither S. Bubnoff V.N. Bauer S. Boerries M. Jost P.J. Schenck K. Dresing I. Bassermann F. Friess H. Reim D. Grützmann K. Pfütze K. Klink B. Schröck E. Haller B. Kuster B. Mann M. Weichert W. Fröhling S. Rad R. Hiltensperger M. Krackhardt A.M. Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification. Nat. Commun. 2023 14 1 4632 10.1038/s41467‑023‑39570‑7 37532709
    [Google Scholar]
  8. Pan K. Zhang C. Tian J. The effects of different modes of delivery on the structure and predicted function of intestinal microbiota in neonates and early infants. Pol. J. Microbiol. 2021 70 1 45 55 10.33073/pjm‑2021‑002 33815526
    [Google Scholar]
  9. Alkanani A.K. Hara N. Gottlieb P.A. Ir D. Robertson C.E. Wagner B.D. Frank D.N. Zipris D. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 2015 64 10 3510 3520 10.2337/db14‑1847 26068542
    [Google Scholar]
  10. Chotirmall S.H. Bogaert D. Chalmers J.D. Cox M.J. Hansbro P.M. Huang Y.J. Molyneaux P.L. O’Dwyer D.N. Pragman A.A. Rogers G.B. Segal L.N. Dickson R.P. Therapeutic targeting of the respiratory microbiome. Am. J. Respir. Crit. Care Med. 2022 206 5 535 544 10.1164/rccm.202112‑2704PP 35549655
    [Google Scholar]
  11. Taylor S.L. Leong L.E.X. Choo J.M. Wesselingh S. Yang I.A. Upham J.W. Reynolds P.N. Hodge S. James A.L. Jenkins C. Peters M.J. Baraket M. Marks G.B. Gibson P.G. Simpson J.L. Rogers G.B. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J. Allergy Clin. Immunol. 2018 141 1 94 103.e15 10.1016/j.jaci.2017.03.044 28479329
    [Google Scholar]
  12. Li X. LeBlanc J. Truong A. Vuthoori R. Chen S.S. Lustgarten J.L. Roth B. Allard J. Ippoliti A. Presley L.L. Borneman J. Bigbee W.L. Gopalakrishnan V. Graeber T.G. Elashoff D. Braun J. Goodglick L. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 2011 6 11 e26542 10.1371/journal.pone.0026542 22132074
    [Google Scholar]
  13. Hammad H. Lambrecht B.N. The basic immunology of asthma. Cell 2021 184 6 1469 1485 10.1016/j.cell.2021.02.016 33711259
    [Google Scholar]
  14. Ray A. Kolls J.K. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017 38 12 942 954 10.1016/j.it.2017.07.003 28784414
    [Google Scholar]
  15. Shaterian N. Abdi F. Ghavidel N. Alidost F. Role of cesarean section in the development of neonatal gut microbiota: A systematic review. Open Med. 2021 16 1 624 639 10.1515/med‑2021‑0270 33869784
    [Google Scholar]
  16. Dickson R.P. Huffnagle G.B. The lung microbiome: New principles for respiratory bacteriology in health and disease. PLoS Pathog. 2015 11 7 e1004923 10.1371/journal.ppat.1004923 26158874
    [Google Scholar]
  17. Baughman R.P. Thorpe J.E. Staneck J. Rashkin M. Frame P.T. Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes. Chest 1987 91 2 233 236 10.1378/chest.91.2.233 3802934
    [Google Scholar]
  18. Chavali K. Coker H. Youngblood E. Karaduta O. Proteogenomics in nephrology: A new frontier in nephrological research. Curr. Issues Mol. Biol. 2024 46 5 4595 4608 10.3390/cimb46050279 38785547
    [Google Scholar]
  19. Huang Y.J. Charlson E.S. Collman R.G. Hatch C.S. Martinez F.D. Senior R.M. The role of the lung microbiome in health and disease. A national heart, lung, and blood institute workshop report. Am. J. Respir. Crit. Care Med. 2013 187 12 1382 1387 10.1164/rccm.201303‑0488WS 23614695
    [Google Scholar]
  20. Ley R.E. Peterson D.A. Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006 124 4 837 848 10.1016/j.cell.2006.02.017 16497592
    [Google Scholar]
  21. Mendis M. Leclerc E. Simsek S. Arabinoxylans, gut microbiota and immunity. Carbohydr. Polym. 2016 139 159 166 10.1016/j.carbpol.2015.11.068 26794959
    [Google Scholar]
  22. Marathe S.J. Snider M.A. Torres F.A.S. Dubin P.J. Samarasinghe A.E. Human matters in asthma: Considering the microbiome in pulmonary health. Front. Pharmacol. 2022 13 1020133 10.3389/fphar.2022.1020133 36532717
    [Google Scholar]
  23. Beck J.M. Young V.B. Huffnagle G.B. The microbiome of the lung. Transl. Res. 2012 160 4 258 266 10.1016/j.trsl.2012.02.005 22683412
    [Google Scholar]
  24. Axelsson G.T. Jonmundsson T. Woo Y. Frick E.A. Aspelund T. Loureiro J.J. Orth A.P. Jennings L.L. Gudmundsson G. Emilsson V. Gudmundsdottir V. Gudnason V. Proteomic associations with forced expiratory volume: A Mendelian randomisation study. Respir. Res. 2024 25 1 44 10.1186/s12931‑023‑02587‑z 38238732
    [Google Scholar]
  25. McCauley K. Durack J. Valladares R. Fadrosh D.W. Lin D.L. Calatroni A. LeBeau P.K. Tran H.T. Fujimura K.E. LaMere B. Merana G. Lynch K. Cohen R.T. Pongracic J. Hershey K.G.K. Kercsmar C.M. Gill M. Liu A.H. Kim H. Kattan M. Teach S.J. Togias A. Boushey H.A. Gern J.E. Jackson D.J. Lynch S.V. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J. Allergy Clin. Immunol. 2019 144 5 1187 1197 10.1016/j.jaci.2019.05.035 31201890
    [Google Scholar]
  26. Aakko J. Pietilä S. Suomi T. Mahmoudian M. Toivonen R. Kouvonen P. Rokka A. Hänninen A. Elo L.L. Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota—implementation and computational analysis. J. Proteome Res. 2020 19 1 432 436 10.1021/acs.jproteome.9b00606 31755272
    [Google Scholar]
  27. Zhang Y. Fu F. Zhang Q. Li L. Liu H. Deng C. Xue Q. Zhao Y. Sun W. Han H. Gao Z. Guo C. Zheng Q. Hu H. Sun Y. Li Y. Ding C. Chen H. Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma. Cell Rep. Med. 2024 5 1 101358 10.1016/j.xcrm.2023.101358 38183982
    [Google Scholar]
  28. Schrauben S.J. Shou H. Zhang X. Anderson A.H. Bonventre J.V. Chen J. Coca S. Furth S.L. Greenberg J.H. Gutierrez O.M. Ix J.H. Lash J.P. Parikh C.R. Rebholz C.M. Sabbisetti V. Sarnak M.J. Shlipak M.G. Waikar S.S. Kimmel P.L. Vasan R.S. Feldman H.I. Schelling J.R. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: Findings from the chronic renal insufficiency cohort (CRIC) study. J. Am. Soc. Nephrol. 2021 32 1 115 126 10.1681/ASN.2020040487 33122288
    [Google Scholar]
  29. Koh G.Y. Whitley E.M. Mancosky K. Loo Y.T. Grapentine K. Bowers E. Schalinske K.L. Rowling M.J. Dietary resistant starch prevents urinary excretion of vitamin D metabolites and maintains circulating 25-hydroxycholecalciferol concentrations in Zucker diabetic fatty rats. J. Nutr. 2014 144 11 1667 1673 10.3945/jn.114.198200 25165393
    [Google Scholar]
  30. Wang J Jia H. Metagenome-wide association studies: Fine-mining the microbiome. Nat. Rev. Microbiol. 2016 14 8 508 22 10.1038/nrmicro.2016.83
    [Google Scholar]
  31. Swiatczak B. Struggle within: Evolution and ecology of somatic cell populations. Cell. Mol. Life Sci. 2021 78 21-22 6797 6806 10.1007/s00018‑021‑03931‑6 34477897
    [Google Scholar]
  32. Darbandi A. Asadi A. Ghanavati R. Afifirad R. Emamie D.A. kakanj M. Talebi M. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20. Int. J. Infect. Dis. 2021 105 91 104 10.1016/j.ijid.2021.02.011 33578007
    [Google Scholar]
  33. Sekaran K. Varghese R.P. Doss C G.P. Alsamman A.M. Zayed H. Allali E.A. Airway and oral microbiome profiling of SARS-CoV-2 infected asthma and non-asthma cases revealing alterations–A pulmonary microbial investigation. PLoS One 2023 18 8 e0289891 10.1371/journal.pone.0289891 37590197
    [Google Scholar]
  34. Kieffer D.A. Piccolo B.D. Vaziri N.D. Liu S. Lau W.L. Khazaeli M. Nazertehrani S. Moore M.E. Marco M.L. Martin R.J. Adams S.H. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Renal Physiol. 2016 310 9 F857 F871 10.1152/ajprenal.00513.2015 26841824
    [Google Scholar]
  35. Vaziri N.D. Liu S.M. Lau W.L. Khazaeli M. Nazertehrani S. Farzaneh S.H. Kieffer D.A. Adams S.H. Martin R.J. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 2014 9 12 e114881 10.1371/journal.pone.0114881 25490712
    [Google Scholar]
  36. Natalini J.G. Singh S. Segal L.N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 2023 21 4 222 235 10.1038/s41579‑022‑00821‑x 36385637
    [Google Scholar]
  37. Karaduta O. Dvanajscak Z. Zybailov B. Metaproteomics—An advantageous option in studies of host-microbiota interaction. Microorganisms 2021 9 5 980 10.3390/microorganisms9050980 33946610
    [Google Scholar]
  38. Rantala A. Behm L. Rosén H. Quality is in the eye of the beholder—A focus group study from the perspective of ambulance clinicians, physicians, and managers. Healthcare 2019 7 1 41 10.3390/healthcare7010041 30871138
    [Google Scholar]
  39. Shinohara R. Nakashima H. Emoto T. Yamashita T. Saito Y. Yoshida N. Inoue T. Yamanaka K. Okada K. Hirata K. Gut microbiota influence the development of abdominal aortic aneurysm by suppressing macrophage accumulation in mice. Hypertension 2022 79 12 2821 2829 10.1161/HYPERTENSIONAHA.122.19422 36252141
    [Google Scholar]
  40. Liu Q. Zhang J. Guo C. Wang M. Wang C. Yan Y. Sun L. Wang D. Zhang L. Yu H. Hou L. Wu C. Zhu Y. Jiang G. Zhu H. Zhou Y. Fang S. Zhang T. Hu L. Li J. Liu Y. Zhang H. Zhang B. Ding L. Robles A.I. Rodriguez H. Gao D. Ji H. Zhou H. Zhang P. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies. Cell 2024 187 1 184 203.e28 10.1016/j.cell.2023.12.004 38181741
    [Google Scholar]
  41. Clark D.J. Dhanasekaran S.M. Petralia F. Pan J. Song X. Hu Y. Leprevost D.V.F. Reva B. Lih T.S.M. Chang H.Y. Ma W. Huang C. Ricketts C.J. Chen L. Krek A. Li Y. Rykunov D. Li Q.K. Chen L.S. Ozbek U. Vasaikar S. Wu Y. Yoo S. Chowdhury S. Wyczalkowski M.A. Ji J. Schnaubelt M. Kong A. Sethuraman S. Avtonomov D.M. Ao M. Colaprico A. Cao S. Cho K.C. Kalayci S. Ma S. Liu W. Ruggles K. Calinawan A. Gümüş Z.H. Geiszler D. Kawaler E. Teo G.C. Wen B. Zhang Y. Keegan S. Li K. Chen F. Edwards N. Pierorazio P.M. Chen X.S. Pavlovich C.P. Hakimi A.A. Brominski G. Hsieh J.J. Antczak A. Omelchenko T. Lubinski J. Wiznerowicz M. Linehan W.M. Kinsinger C.R. Thiagarajan M. Boja E.S. Mesri M. Hiltke T. Robles A.I. Rodriguez H. Qian J. Fenyö D. Zhang B. Ding L. Schadt E. Chinnaiyan A.M. Zhang Z. Omenn G.S. Cieslik M. Chan D.W. Nesvizhskii A.I. Wang P. Zhang H. Hashimi A.S. Pico A.R. Karpova A. Charamut A. Paulovich A.G. Perou A.M. Malovannaya A. Oliveras M.A. Agarwal A. Hindenach B. Pruetz B. Kim B-J. Druker B.J. Newton C.J. Birger C. Jones C.D. Tognon C. Mani D.R. Valley D.R. Rohrer D.C. Zhou D.C. Tansil D. Chesla D. Heiman D. Wheeler D. Tan D. Chan D. Demir E. Malc E. Modugno F. Getz G. Hostetter G. Wilson G.D. Hart G.W. Zhu H. Liu H. Culpepper H. Sun H. Zhou H. Day J. Suh J. Huang J. McDermott J. Whiteaker J.R. Tyner J.W. Eschbacher J. Chen J. McGee J. Zhu J. Ketchum K.A. Rodland K.D. Clauser K. Robinson K. Krug K. Hoadley K.A. Um K.S. Elburn K. Holloway K. Wang L-B. Blumenberg L. Hannick L. Qi L. Sokoll L.J. Cornwell M.I. Loriaux M. Domagalski M.J. Gritsenko M.A. Anderson M. Monroe M.E. Ellis M.J. Dyer M. Anurag M. Burke M.C. Borucki M. Gillette M.A. Birrer M.J. Lewis M. Ittmann M.M. Smith M. Vernon M. Chaikin M. Chheda M.G. Khan M. Roche N. Edwards N.J. Vatanian N. Tignor N. Beckmann N. Grady P. Castro P. Piehowski P. McGarvey P.B. Mieczkowski P. Hariharan P. Gao Q. Dhir R. Kothadia R.B. Thangudu R.R. Montgomery R. Jayasinghe R.G. Smith R.D. Edwards R. Zelt R. Bremner R. Liu R. Hong R. Mareedu S. Payne S.H. Cottingham S. Markey S.P. Jewell S.D. Patel S. Satpathy S. Richey S. Davies S.R. Cai S. Boca S.M. Patil S. Sengupta S. Carter S. Gabriel S. Thomas S.N. De Young S. Stein S.E. Carr S.A. Foltz S.M. Hilsenbeck S. Krubit T. Liu T. Skelly T. Westbrook T. Borate U. Velvulou U. Petyuk V.A. Bocik W.E. Chen X. Shi Y. Geffen Y. Lu Y. Wang Y. Maruvka Y. Li Z. Shi Z. Tu Z. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 2020 180 1 207 10.1016/j.cell.2019.12.026 31923397
    [Google Scholar]
  42. Jie Z. Xia H. Zhong S.L. Feng Q. Li S. Liang S. Zhong H. Liu Z. Gao Y. Zhao H. Zhang D. Su Z. Fang Z. Lan Z. Li J. Xiao L. Li J. Li R. Li X. Li F. Ren H. Huang Y. Peng Y. Li G. Wen B. Dong B. Chen J.Y. Geng Q.S. Zhang Z.W. Yang H. Wang J. Wang J. Zhang X. Madsen L. Brix S. Ning G. Xu X. Liu X. Hou Y. Jia H. He K. Kristiansen K. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017 8 1 845 10.1038/s41467‑017‑00900‑1 29018189
    [Google Scholar]
  43. Chen P.C. Hsu H.Y. Liao Y.C. Lee C.C. Hsieh M.H. Kuo W.S. Wu L.S. Wang J.Y. Oral administration of Lactobacillus delbrueckii subsp. lactis LDL557 attenuates airway inflammation and changes the gut microbiota in a Der p-sensitized mouse model of allergic asthma. Asian Pac. J. Allergy Immunol. 2024 LDL557 1 10 10.12932/AP‑200823‑1672 38710644
    [Google Scholar]
  44. Graw S. Chappell K. Washam C.L. Gies A. Bird J. Robeson M.S. II Byrum S.D. Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics 2021 17 2 170 185 10.1039/D0MO00041H 33347526
    [Google Scholar]
  45. Bochenek K.K. Grzesiowski P. Banaszkiewicz A. Gawronska A. Kotowska M. Dziekiewicz M. Albrecht P. Radzikowski A. Przeorek L.I. A two-week fecal microbiota transplantation course in pediatric patients with inflammatory bowel disease. Adv. Exp. Med. Biol. 2017 1047 81 87 10.1007/5584_2017_123 29151253
    [Google Scholar]
  46. Redd A.D. Peetluk L. Jarrett B. Curating and translating the evidence about sars-cov-2 and covid-19 for frontline public health and clinical care: The novel coronavirus research compendium (NCRC). Public Health Rep. 2022 137 2 197 202 10.1101/2021.04.26.21255437
    [Google Scholar]
  47. Munn Z. Aromataris E. Tufanaru C. Stern C. Porritt K. Farrow J. Lockwood C. Stephenson M. Moola S. Lizarondo L. McArthur A. Peters M. Pearson A. Jordan Z. The development of software to support multiple systematic review types. Int. J. Evid.-Based Healthc. 2019 17 1 36 43 10.1097/XEB.0000000000000152 30239357
    [Google Scholar]
  48. Aromataris E. Pearson A. The systematic review: An overview. Am. J. Nurs. 2014 114 3 53 58 10.1097/01.NAJ.0000444496.24228.2c 24572533
    [Google Scholar]
  49. Woolf S. Schünemann H.J. Eccles M.P. Grimshaw J.M. Shekelle P. Developing clinical practice guidelines: Types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations. Implement. Sci. 2012 7 1 61 10.1186/1748‑5908‑7‑61 22762158
    [Google Scholar]
  50. Pearson A. Balancing the evidence: Incorporating the synthesis of qualitative data into systematic reviews. JBI Rep. 2004 2 2 45 64 10.1111/j.1479‑6988.2004.00008.x
    [Google Scholar]
  51. Munn Z. Stern C. Aromataris E. Lockwood C. Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med. Res. Methodol. 2018 18 1 5 10.1186/s12874‑017‑0468‑4 29316881
    [Google Scholar]
  52. Lockwood C. Munn Z. Porritt K. Qualitative research synthesis. Int. J. Evid. Based Healthc. 2015 13 3 179 187 10.1097/XEB.0000000000000062 26262565
    [Google Scholar]
  53. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Wilson M.E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021 372 71 n71 10.1136/bmj.n71 33782057
    [Google Scholar]
  54. Page M.J. Moher D. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Wilson M.E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. McKenzie J.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021 372 160 n160 10.1136/bmj.n160 33781993
    [Google Scholar]
  55. DeVries A. McCauley K. Fadrosh D. Fujimura K.E. Stern D.A. Lynch S.V. Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022 77 12 3617 3628 10.1111/all.15442 35841380
    [Google Scholar]
  56. Sommariva M. Le Noci V. Bianchi F. Camelliti S. Balsari A. Tagliabue E. Sfondrini L. The lung microbiota: Role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. 2020 77 14 2739 2749 10.1007/s00018‑020‑03452‑8 31974656
    [Google Scholar]
  57. Karaduta O Glazko G Dvanajscak Z Resistant starch slows the progression of CKD in the 5/6 nephrectomy mouse model. Physiol Rep. 2020 8 19 e14610 10.14814/phy2.14610
    [Google Scholar]
  58. Kwon H.K. Lee C.G. So J.S. Chae C.S. Hwang J.S. Sahoo A. Nam J.H. Rhee J.H. Hwang K.C. Im S.H. Generation of regulatory dendritic cells and CD4 + Foxp3 + T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad. Sci. 2010 107 5 2159 2164 10.1073/pnas.0904055107 20080669
    [Google Scholar]
  59. Anders H.J. Andersen K. Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013 83 6 1010 1016 10.1038/ki.2012.440 23325079
    [Google Scholar]
  60. Balakrishnan M. Floch M.H. Prebiotics, probiotics and digestive health. Curr. Opin. Clin. Nutr. Metab. Care 2012 15 6 580 585 10.1097/MCO.0b013e328359684f 23037903
    [Google Scholar]
  61. Gallo A. Passaro G. Gasbarrini A. Landolfi R. Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J. Gastroenterol. 2016 22 32 7186 7202 10.3748/wjg.v22.i32.7186 27621567
    [Google Scholar]
  62. Gierse L. Meene A. Schultz D. Schwaiger T. Karte C. Schröder C. Wang H. Wünsche C. Methling K. Kreikemeyer B. Fuchs S. Bernhardt J. Becher D. Lalk M. Urich T. Riedel K. A multi-omics protocol for swine feces to elucidate longitudinal dynamics in microbiome structure and function. Microorganisms 2020 8 12 1887 10.3390/microorganisms8121887 33260576
    [Google Scholar]
  63. Heo J.M. Agyekum A.K. Yin Y.L. Rideout T.C. Nyachoti C.M. Feeding a diet containing resistant potato starch influences gastrointestinal tract traits and growth performance of weaned pigs1. J. Anim. Sci. 2014 92 9 3906 3913 10.2527/jas.2013‑7289 25057032
    [Google Scholar]
  64. Igarashi H. Maeda S. Ohno K. Horigome A. Odamaki T. Tsujimoto H. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. PLoS One 2014 9 9 e107909 10.1371/journal.pone.0107909 25229475
    [Google Scholar]
  65. Sonnenburg J.L. Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016 535 7610 56 64 10.1038/nature18846
    [Google Scholar]
  66. Mengelkoch S. Rose M.S.F.S. Lautman Z. Alley J.C. Roos L.G. Ehlert B. Moriarity D.P. Lancaster S. Snyder M.P. Slavich G.M. Multi-omics approaches in psychoneuroimmunology and health research: Conceptual considerations and methodological recommendations. Brain Behav. Immun. 2023 114 475 487 10.1016/j.bbi.2023.07.022 37543247
    [Google Scholar]
  67. Chiu C.J. Huang M.T. Asthma in the precision medicine Era: Biologics and probiotics. Int. J. Mol. Sci. 2021 22 9 4528 10.3390/ijms22094528 33926084
    [Google Scholar]
  68. Consortium H.M.P. A framework for human microbiome research. Nature 2012 486 7402 215 221 10.1038/nature11209 22699610
    [Google Scholar]
  69. Consortium H.M.P. Structure, function and diversity of the healthy human microbiome. Nature 2012 486 7402 207 214 10.1038/nature11234 22699609
    [Google Scholar]
  70. Consortium I. The integrative human microbiome project. Nature 2019 569 7758 641 648 10.1038/s41586‑019‑1238‑8 31142853
    [Google Scholar]
  71. Suchodolski J.S. Dowd S.E. Westermarck E. Steiner J.M. Wolcott R.D. Spillmann T. Harmoinen J.A. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 2009 9 1 210 10.1186/1471‑2180‑9‑210 19799792
    [Google Scholar]
  72. Otte J.M. Podolsky D.K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2004 286 4 G613 G626 10.1152/ajpgi.00341.2003 15010363
    [Google Scholar]
  73. Rauch M. Lynch S. Probiotic manipulation of the gastrointestinal microbiota. Gut Microbes 2010 1 5 335 338 10.4161/gmic.1.5.13169 21327043
    [Google Scholar]
  74. Conte L. Toraldo D.M. Targeting the gut–lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther. Adv. Respir. Dis. 2020 14 1753466620937170 10.1177/1753466620937170 32600125
    [Google Scholar]
  75. Yuksel N. Gelmez B. Pekoz Y.A. Lung microbiota: Its relationship to respiratory system diseases and approaches for lung-targeted probiotic bacteria delivery. Mol. Pharm. 2023 20 7 3320 3337 10.1021/acs.molpharmaceut.3c00323 37340968
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499325570241025074452
Loading
/content/journals/probiot/10.2174/0126666499325570241025074452
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune homeostasis ; d asthma ; pulmonary microbiome ; therapeutic ; pathogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test