Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Humans serve as hosts for various species of microorganisms that contribute to the maintenance of human health. The beneficial bacteria residing in our bodies are referred to as probiotics. Besides improving the immune system, probiotics are also capable of warding off various diseases. In recent decades, probiotic microorganisms have emerged as a significant factor in human well-being. Popularly referred to as “health-friendly microorganisms,” they influence health in myriad ways by boosting the immune system, combating intestinal irritation, improving the balance of the gut microbiome, lowering blood pressure, relieving postmenopausal symptoms, and reducing traveler’s diarrhea. The ability of probiotics to compete for the adhesion sites of pathogenic microbes makes them an effective treatment against various intestinal pathogens. Recent studies also advocate their use in the treatment of skin and oral diseases. In addition, the modulation of gut flora by probiotics is being discussed as a possible new solution for treating tension and depression. Ultimately, a cost-effective approach is imperative to improve and maintain fitness in the present competitive environment. This review aims to evaluate the potential benefits of probiotic microorganisms in various disorders, such as gastrointestinal disorders, UTIs, acne, anticancer properties, gut-brain connections, and their possible mode of action.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/2666649901666230509155058
2023-06-13
2024-11-26
Loading full text...

Full text loading...

References

  1. AfrcR.F. Probiotics in man and animals.J. Appl. Bacteriol.198966536537810.1111/j.1365‑2672.1989.tb05105.x2666378
    [Google Scholar]
  2. ZiemerC.J. GibsonG.R. An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies.Int. Dairy J.199885-647347910.1016/S0958‑6946(98)00071‑5
    [Google Scholar]
  3. GranatoD. BrancoG.F. NazzaroF. CruzA.G. FariaJ.A.F. Functional foods and nondairy probiotic food development: Trends, concepts, and products.Compr. Rev. Food Sci. Food Saf.20109329230210.1111/j.1541‑4337.2010.00110.x33467814
    [Google Scholar]
  4. FullerR. “Probiotics for farm animals,” in Probiotics a Critical Review.Wymondham, UKHorizon Scientific19991522
    [Google Scholar]
  5. FAO/WHO (2001). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria – Joint FAO/WHO Expert Consultation Hotel, American. 2014. Available from: https://www.fao.org/3/a0512e/a0512e.pdf
  6. GallegoC.G. SalminenS. Novel probiotics and prebiotics: How can they help in human gut microbiota dysbiosis?Applied Food Biotechnology2016327281
    [Google Scholar]
  7. de Melo PereiraG.V. de Oliveira CoelhoB. Magalhães JúniorA.I. Thomaz-SoccolV. SoccolC.R. How to select a probiotic? A review and update of methods and criteria.Biotechnol. Adv.20183682060207610.1016/j.biotechadv.2018.09.00330266342
    [Google Scholar]
  8. HillC. GuarnerF. ReidG. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  9. MetchnikoffE. The Prolongation of Life: Optimistic Studies.London, UKWilliam Heinemann1907161183
    [Google Scholar]
  10. TissierH. Traitement des infections intestinalespar la méthode de la florebactérienne del’intestin. C.Soc. Biol.190760359361
    [Google Scholar]
  11. LillyDM StillwellRH Probiotics: Growth-promoting factors produced by microorganisms.science 19651473659747810.1126/science.147.3659.74714242024
    [Google Scholar]
  12. RasikaD.M.D. VidanarachchiJ.K. RochaR.S. Plant-based milk substitutes as emerging probiotic carriers.Curr. Opin. Food Sci.20213882010.1016/j.cofs.2020.10.025
    [Google Scholar]
  13. GuptaV. GargR. Probiotics.Indian J. Med. Microbiol.200927320220910.4103/0255‑0857.5320119584499
    [Google Scholar]
  14. TomaM.M. PokrotnieksJ. Probiotics as functional food: Microbiological and medical aspects. Acta Universitatis Latviensis ser.Biology2006710117
    [Google Scholar]
  15. CollinsJ.K. ThorntonG. SullivanG.O. Selection of probiotic strains for human applications.Int. Dairy J.199885-648749010.1016/S0958‑6946(98)00073‑9
    [Google Scholar]
  16. OhlandC.L. MacNaughtonW.K. Probiotic bacteria and intestinal epithelial barrier function.Am. J. Physiol. Gastrointest. Liver Physiol.20102986G807G81910.1152/ajpgi.00243.200920299599
    [Google Scholar]
  17. HooperL.V. WongM.H. ThelinA. HanssonL. FalkP.G. GordonJ.I. Molecular analysis of commensal host-microbial relationships in the intestine.Science2001291550588188410.1126/science.291.5505.88111157169
    [Google Scholar]
  18. SharmaH. BajwaJ. Potential role and mechanism of probiotics.Ann. Rom. Soc. Cell Biol.20212536163624
    [Google Scholar]
  19. SartorR.B. Mechanisms of Disease: Pathogenesis of Crohn’s disease and ulcerative colitis.Nat. Clin. Pract. Gastroenterol. Hepatol.20063739040710.1038/ncpgasthep052816819502
    [Google Scholar]
  20. JuntunenM. KirjavainenP.V. OuwehandA.C. SalminenS.J. IsolauriE. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection.Clin. Diagn. Lab. Immunol.20018229329610.1128/CDLI.8.2.293‑296.200111238211
    [Google Scholar]
  21. SalminenS. BouleyC. BoutronM-C. Functional food science and gastrointestinal physiology and function.Br. J. Nutr.199880S1Suppl. 1S147S17110.1079/BJN199801089849357
    [Google Scholar]
  22. ColladoM.C. GueimondeM. HernándezM. SanzY. SalminenS. Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion.J. Food Prot.200568122672267810.4315/0362‑028X‑68.12.267216355841
    [Google Scholar]
  23. CastagliuoloI. GaleazziF. FerrariS. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice.FEMS Immunol. Med. Microbiol.200543219720410.1016/j.femsim.2004.08.01115681150
    [Google Scholar]
  24. SadeghiA. EbrahimiM. ShahryariS. KharazmiM.S. JafariS.M. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities.Trends Food Sci. Technol.202212827829510.1016/j.tifs.2022.08.018
    [Google Scholar]
  25. González-RodríguezI. SánchezB. RuizL. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation.Appl. Environ. Microbiol.201278113992399810.1128/AEM.08024‑1122447584
    [Google Scholar]
  26. Van TassellM.L. MillerM.J. Lactobacillus adhesion to mucus.Nutrients20113561363610.3390/nu305061322254114
    [Google Scholar]
  27. BuckB.L. AltermannE. SvingerudT. KlaenhammerT.R. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.Appl. Environ. Microbiol.200571128344835110.1128/AEM.71.12.8344‑8351.200516332821
    [Google Scholar]
  28. ServinA.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens.FEMS Microbiol. Rev.200428440544010.1016/j.femsre.2004.01.00315374659
    [Google Scholar]
  29. HassanM. KjosM. NesI.F. DiepD.B. LotfipourF. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance.J. Appl. Microbiol.2012113472373610.1111/j.1365‑2672.2012.05338.x22583565
    [Google Scholar]
  30. BoltonM. van der StratenA. CohenC.R. Probiotics: Potential to prevent HIV and sexually transmitted infections in women.Sex. Transm. Dis.200835321422510.1097/OLQ.0b013e31815b017a18490864
    [Google Scholar]
  31. IannittiT. PalmieriB. Therapeutical use of probiotic formulations in clinical practice.Clin. Nutr.201029670172510.1016/j.clnu.2010.05.00420576332
    [Google Scholar]
  32. ReidG. BurtonJ. Use of Lactobacillus to prevent infection by pathogenic bacteria.Microbes Infect.20024331932410.1016/S1286‑4579(02)01544‑711909742
    [Google Scholar]
  33. TanA.U. SchlosserB.J. PallerA.S. A review of diagnosis and treatment of acne in adult female patients.Int. J. Womens Dermatol.201842567110.1016/j.ijwd.2017.10.00629872679
    [Google Scholar]
  34. PlatsidakiE. DessiniotiC. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne.F1000 Res.20187195310.12688/f1000research.15659.130613388
    [Google Scholar]
  35. PeyriJ. Topical bacteriotherapy of the skin.Journal of Cutaneous Diseases191230688689
    [Google Scholar]
  36. Di MarzioL. CinqueB. De SimoneC. CifoneM.G. Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo.J. Invest. Dermatol.199911319810610.1046/j.1523‑1747.1999.00633.x10417626
    [Google Scholar]
  37. BoweW.P. LoganA.C. Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future?Gut Pathog.201131110.1186/1757‑4749‑3‑121281494
    [Google Scholar]
  38. PavicicT. WollenweberU. FarwickM. KortingH.C. Anti-microbial and -inflammatory activity and efficacy of phytosphingosine: An in vitro and in vivo study addressing acne vulgaris.Int. J. Cosmet. Sci.200729318119010.1111/j.1467‑2494.2007.00378.x18489348
    [Google Scholar]
  39. Al-GhazzewiF.H. TesterR.F. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro.Int. J. Cosmet. Sci.201032213914210.1111/j.1468‑2494.2009.00555.x19818083
    [Google Scholar]
  40. KangB.S. SeoJ.G. LeeG.S. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect.J. Microbiol.200947110110910.1007/s12275‑008‑0179‑y19229497
    [Google Scholar]
  41. Catherine Mack CorreaM. NebusJ. Management of patients with atopic dermatitis: The role of emollient therapy.Dermatol. Res. Pract.2012201211510.1155/2012/83693123008699
    [Google Scholar]
  42. Di MarzioL. CentiC. CinqueB. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients.Exp. Dermatol.200312561562010.1034/j.1600‑0625.2003.00051.x14705802
    [Google Scholar]
  43. GuenicheA. KnaudtB. SchuckE. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study.Br. J. Dermatol.200815961357136310.1111/j.1365‑2133.2008.08836.x18795916
    [Google Scholar]
  44. MylesI.A. EarlandN.J. AndersonE.D. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis.JCI Insight201839e12060810.1172/jci.insight.12060829720571
    [Google Scholar]
  45. International Diabetes FederationDiabetes atlas. Chausseede la HulpeWatermael-Boitsfort, Belgium.IDF Diabetes Atlas20171661170
    [Google Scholar]
  46. LarsenN. VogensenF.K. van den BergF.W.J. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.PLoS One201052e908510.1371/journal.pone.000908520140211
    [Google Scholar]
  47. IqbalM.Z. QadirM.I. HussainT. JanbazK.H. KhanY.H. AhmadB. Review: Probiotics and their beneficial effects against various diseases.Pak. J. Pharm. Sci.201427240541524577933
    [Google Scholar]
  48. Vitti-RuelaB.V. Dokkedal-SilvaV. HirataA.E. TufikS. AndersenM.L. Sleep and probiotics in diabetes management.Prim. Care Diabetes202317220020110.1016/j.pcd.2023.01.01336781365
    [Google Scholar]
  49. Le BarzM. AnhêF.F. VarinT.V. Probiotics as complementary treatment for metabolic disorders.Diabetes Metab. J.201539429130310.4093/dmj.2015.39.4.29126301190
    [Google Scholar]
  50. KobyliakN. ConteC. CammarotaG. HaleyA.P. StyriakI. Probiotics in prevention and treatment of obesity: A critical view.Nutrition Metabolism20161311410.1186/s12986‑016‑0067‑0
    [Google Scholar]
  51. BarrettE. RossR.P. O’TooleP.W. FitzgeraldG.F. StantonC. γ-Aminobutyric acid production by culturable bacteria from the human intestine.J. Appl. Microbiol.2012113241141710.1111/j.1365‑2672.2012.05344.x22612585
    [Google Scholar]
  52. AndreasenA.S. LarsenN. Pedersen-SkovsgaardT. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects.Br. J. Nutr.2010104121831183810.1017/S000711451000287420815975
    [Google Scholar]
  53. MorotiC. Souza MagriL.F. de Rezende CostaM. CavalliniD.C.U. SivieriK. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus.Lipids Health Dis.20121112910.1186/1476‑511X‑11‑2922356933
    [Google Scholar]
  54. AsemiZ. Khorrami-RadA. AlizadehS.A. ShakeriH. EsmaillzadehA. Effects of synbiotic food consumption on metabolic status of diabetic patients: A double-blind randomized cross-over controlled clinical trial.Clin. Nutr.201433219820310.1016/j.clnu.2013.05.01523786900
    [Google Scholar]
  55. TonucciL.B. Olbrich dos SantosK.M. Licursi de OliveiraL. Rocha RibeiroS.M. Duarte MartinoH.S. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study.Clin. Nutr.2017361859210.1016/j.clnu.2015.11.01126732026
    [Google Scholar]
  56. FirouziS. MajidH.A. IsmailA. KamaruddinN.A. Barakatun-NisakM.Y. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: A randomized controlled trial.Eur. J. Nutr.20175641535155010.1007/s00394‑016‑1199‑826988693
    [Google Scholar]
  57. YangY. WengW. PengJ. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor−κb, and up-regulating expression of microRNA-21.Gastroenterology20171524851866.e2410.1053/j.gastro.2016.11.01827876571
    [Google Scholar]
  58. Tiptiri-KourpetiA. SpyridopoulouK. SantarmakiV. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of trail in colon carcinoma cells.PLoS One2016112e014796010.1371/journal.pone.014796026849051
    [Google Scholar]
  59. TarrahA. da Silva DuarteV. de CastilhosJ. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces.J. Funct. Foods20195448949710.1016/j.jff.2019.02.004
    [Google Scholar]
  60. VasiljevicT ShahNP Probiotics-From Metchnikoff To Bioactives.int dairy J20081877142810.1016/j.idairyj.2008.03.004
    [Google Scholar]
  61. RanjiP. AgahS. HeydariZ. Rahmati-YamchiM. Mohammad AlizadehA. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer.Iran. J. Basic Med. Sci.201922663163631231490
    [Google Scholar]
  62. ShidaK. NomotoK. Probiotics as efficient immunopotentiators: Translational role in cancer prevention.Indian J. Med. Res.2013138580881424434333
    [Google Scholar]
  63. ZitvogelL. DerosaL. KroemerG. Modulation of cancer immunotherapy by dietary fibers and over-the-counter probiotics.Cell Metab.202234335035210.1016/j.cmet.2022.02.00435235771
    [Google Scholar]
  64. TabbersM.M. DiLorenzoC. BergerM.Y. Evaluation and treatment of functional constipation in infants and children: Evidence-based recommendations from ESPGHAN and NASPGHAN.J. Pediatr. Gastroenterol. Nutr.201458225827410.1097/MPG.000000000000026624345831
    [Google Scholar]
  65. HyamsJ. CollettiR. FaureC. Functional Gastrointestinal Disorders: Working group report of the first world congress of pediatric gastroenterology, hepatology, and nutrition.j pediatr gastroenterol Nutr200235Suppl. 2S110-710.1097/00005176‑200208002‑0000812192179
    [Google Scholar]
  66. Ferreira-MaiaA.P. MatijasevichA. WangY.P. Epidemiology of functional gastrointestinal disorders in infants and toddlers: A systematic review.World J. Gastroenterol.201622286547655810.3748/wjg.v22.i28.654727605889
    [Google Scholar]
  67. BasiliscoG. ColettaM. Chronic constipation: A critical review.Dig. Liver Dis.2013451188689310.1016/j.dld.2013.03.01623639342
    [Google Scholar]
  68. JohansonJ.F. KralsteinJ. Chronic constipation: A survey of the patient perspective.Aliment. Pharmacol. Ther.200725559960810.1111/j.1365‑2036.2006.03238.x17305761
    [Google Scholar]
  69. Müller-LissnerS.A. KaatzV. BrandtW. KellerJ. LayerP. The perceived effect of various foods and beverages on stool consistency.Eur. J. Gastroenterol. Hepatol.200517110911210.1097/00042737‑200501000‑0002015647650
    [Google Scholar]
  70. ChmielewskaA. SzajewskaH. Systematic review of randomised controlled trials: Probiotics for functional constipation.World J. Gastroenterol.2010161697520039451
    [Google Scholar]
  71. DimidiE. ChristodoulidesS. FragkosK.C. ScottS.M. WhelanK. The effect of probiotics on functional constipation in adults: A systematic review and meta-analysis of randomized controlled trials.Am. J. Clin. Nutr.201410041075108410.3945/ajcn.114.08915125099542
    [Google Scholar]
  72. EskesenD. JespersenL. MichelsenB. WhorwellP.J. Müller-LissnerS. MorbergC.M. Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12 ®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: A randomised, double-blind, placebo-controlled, parallel-group trial.Br. J. Nutr.2015114101638164610.1017/S000711451500334726382580
    [Google Scholar]
  73. MayerE.A. TillischK. GuptaA. Gut/brain axis and the microbiota.J. Clin. Invest.2015125392693810.1172/JCI7630425689247
    [Google Scholar]
  74. LiuL. HuhJ.R. ShahK. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS.EBioMedicine20227710390810.1016/j.ebiom.2022.10390835255456
    [Google Scholar]
  75. TillischK. The effects of gut microbiota on CNS function in humans.Gut Microbes20145340441010.4161/gmic.2923224838095
    [Google Scholar]
  76. UmbrelloG. EspositoS. Microbiota and neurologic diseases: Potential effects of probiotics.J. Transl. Med.201614129810.1186/s12967‑016‑1058‑727756430
    [Google Scholar]
  77. MessaoudiM. LalondeR. ViolleN. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects.Br. J. Nutr.2011105575576410.1017/S000711451000431920974015
    [Google Scholar]
  78. RaoA.V. BestedA.C. BeaulneT.M. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome.Gut Pathog.200911610.1186/1757‑4749‑1‑619338686
    [Google Scholar]
  79. SzajewskaH. What are the indications for using probiotics in children?Arch. Dis. Child.2016101439840310.1136/archdischild‑2015‑30865626347386
    [Google Scholar]
  80. BarrettH.L. CallawayL.K. NitertM.D. Probiotics: A potential role in the prevention of gestational diabetes?Acta Diabetol.201249S111310.1007/s00592‑012‑0444‑823180045
    [Google Scholar]
  81. GoldenbergJ.Z. LytvynL. SteurichJ. ParkinP. MahantS. JohnstonB.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea.Cochrane Libr.20152212CD00482710.1002/14651858.CD004827.pub426695080
    [Google Scholar]
  82. Raksha RaoK. VipinA.V. HariprasadP. Anu AppaiahK.A. VenkateswaranG. Biological detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1.Food Control20177123424110.1016/j.foodcont.2016.06.040
    [Google Scholar]
  83. KotowskaM. AlbrechtP. SzajewskaH. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: A randomized double-blind placebo-controlled trial.Aliment. Pharmacol. Ther.200521558359010.1111/j.1365‑2036.2005.02356.x15740542
    [Google Scholar]
  84. SzajewskaH. SkórkaA. RuszczyńskiM. Gieruszczak-BiałekD. Meta-analysis: Lactobacillus GG for treating acute gastroenteritis in children - updated analysis of randomised controlled trials.Aliment. Pharmacol. Ther.201338546747610.1111/apt.1240323841880
    [Google Scholar]
  85. IaniroG. RizzattiG. PlomerM. Bacillus clausii for the treatment of acute diarrhea in children. A systematic review and meta-analysis of randomized controlled trials.Nutrients2018108107410.3390/nu1008107430103531
    [Google Scholar]
  86. SungV. D’AmicoF. CabanaM.D. Lactobacillus reuteri to treat infant colic: A meta-analysis.Pediatrics20181411e2017181110.1542/peds.2017‑181129279326
    [Google Scholar]
  87. SudhaM.R. JayanthiN. PandeyD.C. VermaA.K. Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: A double blind placebo controlled study.Benef. Microbes201910214915410.3920/BM2018.009430638396
    [Google Scholar]
  88. WoodA.J.J. DuPontH.L. EricssonC.D. Prevention and treatment of traveler’s diarrhea.N. Engl. J. Med.1993328251821182710.1056/NEJM1993062432825078502272
    [Google Scholar]
  89. McFarlandL.V. Meta-analysis of probiotics for the prevention of traveler’s diarrhea.Travel Med. Infect. Dis.2007529710510.1016/j.tmaid.2005.10.00317298915
    [Google Scholar]
  90. Tejero-SariñenaS. BarlowJ. CostabileA. GibsonG.R. RowlandI. Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains?Anaerobe201324606510.1016/j.anaerobe.2013.09.01124091275
    [Google Scholar]
  91. KareemK.Y. Hooi LingF. Teck ChwenL. May FoongO. Anjas AsmaraS. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin.Gut Pathog.2014612310.1186/1757‑4749‑6‑2324991236
    [Google Scholar]
  92. SimovaE.D. BeshkovaD.B. DimitrovZ.P. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products.J. Appl. Microbiol.2009106269270110.1111/j.1365‑2672.2008.04052.x19200334
    [Google Scholar]
  93. Figueroa-GonzalezI. Cruz-GuerreroA. QuijanoG. The benefits of probiotics on human health.J. Microb. Biochem. Technol.20112011S1
    [Google Scholar]
  94. AmmorS. TauveronG. DufourE. ChevallierI. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility.Food Control200617645446110.1016/j.foodcont.2005.02.006
    [Google Scholar]
  95. KechagiaM. BasoulisD. KonstantopoulouS. Health benefits of probiotics: A review.ISRN Nutr.201320131710.5402/2013/48165124959545
    [Google Scholar]
  96. ChenollE. CasinosB. BatallerE. Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori.Appl. Environ. Microbiol.20117741335134310.1128/AEM.01820‑1021169430
    [Google Scholar]
  97. KönigJ. SiebenhaarA. HögenauerC. Consensus report: Faecal microbiota transfer - clinical applications and procedures.Aliment. Pharmacol. Ther.201745222223910.1111/apt.1386827891639
    [Google Scholar]
  98. ShanahanF. QuigleyE.M.M. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies.Gastroenterology201414661554156310.1053/j.gastro.2014.01.05024486051
    [Google Scholar]
  99. LiuL. WuQ. ChenY. Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies.Int. Immunopharmacol.202311510968510.1016/j.intimp.2023.109685
    [Google Scholar]
/content/journals/probiot/10.2174/2666649901666230509155058
Loading
/content/journals/probiot/10.2174/2666649901666230509155058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test