Skip to content
2000
image of Evaluating the Effect of a Probiotic on Prevention of Diarrhea, Stress Response, and Social Interactions in a Colony of Macaca fascicularis

Abstract

Background

Social housing changes are associated with diarrhea in macaques, presumably due to stress.

Objective

Since probiotics are utilized in humans for diarrhea, we tested the effectiveness of a species-specific probiotic, SDPro™ (composition: ~2 billion CFU each of live and ), to prevent relocation-associated diarrhea. Assessments of the gut-microbiome and diarrhea severity were made. Behavioral observations and cortisol levels were examined after relocation to test the effects of the probiotic treatment.

Methods

The probiotic was administered to 60 juvenile macaques of both sexes (Probiotic +) and outcomes were compared to 60 control (Probiotic -) macaques. The effects on gut microbiome composition were analyzed 16s microbiome analysis in half the animals from both groups. Social behaviors were monitored twice-weekly in the morning and afternoon for five weeks following 10-days of SDPro™ administration in 56 subjects and hair cortisol was assayed.

Results

Probiotic administration altered beta, but not alpha, diversity, and caused changes in taxa abundance at the phylum, genus, and species levels. The Probiotic + group was enriched in and diminished in (’s < 0.05) compared to controls. Although SDPro™ did not alter diarrhea incidence following relocation, it reduced diarrhea severity in males only. Males also exhibited higher cortisol levels than females but there was no probiotic effect. Probiotic treatment had minor behavioral effects; the typical reduction in locomotion seen in the afternoon was eliminated.

Conclusion

The results suggest that SDPro™ may be a viable tool to prevent relocation-induced diarrhea in juvenile male macaques.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499295593240916060605
2024-09-23
2025-01-18
Loading full text...

Full text loading...

References

  1. Howell S. White D. Ingram S. A bio-behavioral study of chronic idiopathic colitis in the rhesus macaque (Macaca mu-latta). Appl. Anim. Behav. Sci. 2012 137 3-4 208 220 10.1016/j.applanim.2012.01.003
    [Google Scholar]
  2. Yang S. Liu Y. Yang N. The gut microbiome and anti-biotic resistome of chronic diarrhea rhesus macaques (Maca-ca mulatta) and its similarity to the human gut microbiome. Microbiome 2022 10 1 29 10.1186/s40168‑021‑01218‑3 35139923
    [Google Scholar]
  3. Hird D.W. Anderson J.H. Bielitzki J.T. Diarrhea in nonhuman primates: a survey of primate colonies for incidence rates and clinical opinion. Lab. Anim. Sci. 1984 34 5 465 470 6513506
    [Google Scholar]
  4. Broadhurst M.J. Ardeshir A. Kanwar B. Therapeutic helminth infection of macaques with idiopathic chronic dia-rrhea alters the inflammatory signature and mucosal micro-biota of the colon. PLoS Pathog. 2012 8 11 e1003000 10.1371/journal.ppat.1003000 23166490
    [Google Scholar]
  5. Delwart E. Tisza M.J. Altan E. Idiopathic Chronic Dia-rrhea in Rhesus Macaques Is Not Associated with Enteric Vi-ral Infections. Viruses 2021 13 12 2503 10.3390/v13122503 34960771
    [Google Scholar]
  6. Kapusinszky B. Ardeshir A. Mulvaney U. Deng X. Delwart E. Case-control comparison of enteric viromes in captive rhesus macaques with acute or idiopathic chronic diarrhea. J. Virol. 2017 91 18 e00952 e17 10.1128/JVI.00952‑17 28659484
    [Google Scholar]
  7. Chamanza R. Marxfeld H.A. Blanco A.I. Naylor S.W. Bradley A.E. Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol. Pathol. 2010 38 4 642 657 10.1177/0192623310368981 20448082
    [Google Scholar]
  8. Johnson A.L. Keesler R.I. Lewis A.D. Reader J.R. Laing S.T. Common and not-so-common pathologic findings of the gas-trointestinal tract of rhesus and cynomolgus macaques. Toxicol. Pathol. 2022 50 5 638 659 10.1177/01926233221084634 35363082
    [Google Scholar]
  9. Salian-Mehta S. Poling J. Birkebak J. Rensing S. Carosino C. Santos R. Non-human primate husbandry and impact on non-human primates health: Outcomes from an IQ DruSafe/3RS industrial benchmark survey. Int. J. Toxicol. 2022 2022 10915818221146523 36543758
    [Google Scholar]
  10. Ferrecchia C.E. Hobbs T.R. Efficacy of oral fecal bacteriothe-rapy in rhesus macaques (Macaca mulatta) with chronic dia-rrhea. Comp. Med. 2013 63 1 71 75 23561941
    [Google Scholar]
  11. Vandeleest J.J. Beisner B.A. Hannibal D.L. Decoupling social status and status certainty effects on health in maca-ques: a network approach. PeerJ 2016 4 e2394 10.7717/peerj.2394 27672495
    [Google Scholar]
  12. Herbert M. Bugs, Bowels, and Behavior: The Groundbreaking Story of the Gut-Brain Connection. Simon and Schuster 2013
    [Google Scholar]
  13. Sasso J.M. Ammar R.M. Tenchov R. Gut microbiome–brain alliance: a landscape view into mental and gastrointesti-nal health and disorders. ACS Chem. Neurosci. 2023 14 10 1717 1763 10.1021/acschemneuro.3c00127 37156006
    [Google Scholar]
  14. Lee J. Kwa W.T. Sundarajoo S. Toh K.Y. Application of emer-ging technologies for gut microbiome research. Singapore Med. J. 2023 64 1 45 52 10.4103/singaporemedj.SMJ‑2021‑432 36722516
    [Google Scholar]
  15. Martin S.E. Kraft C.S. Ziegler T.R. Millson E.C. Rishishwar L. Martin G.S. The Role of Diet on the Gut Microbiome, Mood and Happiness. medRxiv 23287442 2023 10.1101/2023.03.18.23287442
    [Google Scholar]
  16. Sudo N. Chida Y. Aiba Y. Postnatal microbial coloniza-tion programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 2004 558 1 263 275 10.1113/jphysiol.2004.063388 15133062
    [Google Scholar]
  17. Rusch J.A. Layden B.T. Dugas L.R. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023 14 1130689 10.3389/fendo.2023.1130689 37404311
    [Google Scholar]
  18. Marano G. Mazza M. Lisci F.M. The Microbiota–Gut–Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023 15 6 1496 10.3390/nu15061496 36986226
    [Google Scholar]
  19. Martins E.M.S. Nascimento da Silva L.C. Carmo M.S. Probio-tics, prebiotics, and synbiotics in childhood diarrhea. Braz. J. Med. Biol. Res. 2024 57 e13205 10.1590/1414‑431x2024e13205 38656071
    [Google Scholar]
  20. Li Q. Zheng T. Ding H. Exploring the benefits of pro-biotics in gut inflammation and diarrhea-From an antioxidant perspective. Antioxidants 2023 12 7 1342 10.3390/antiox12071342 37507882
    [Google Scholar]
  21. Yang Q. Hu Z. Lei Y. Overview of systematic reviews of probiotics in the prevention and treatment of antibiotic-associated diarrhea in children. Front. Pharmacol. 2023 14 1153070 10.3389/fphar.2023.1153070 37564180
    [Google Scholar]
  22. Ishaque S.M. Khosruzzaman S.M. Ahmed D.S. Sah M.P. A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-Kult®) in the management of dia-rrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 2018 18 1 71 10.1186/s12876‑018‑0788‑9 29801486
    [Google Scholar]
  23. Zhao H. Zhang W. Cheng D. You L. Huang Y. Lu Y. Investi-gating dysbiosis and microbial treatment strategies in inflam-matory bowel disease based on two modified Koch’s postula-tes. Front. Med. 2022 9 1023896 10.3389/fmed.2022.1023896 36438062
    [Google Scholar]
  24. Winter S.E. Bäumler A.J. Gut dysbiosis: Ecological causes and causative effects on human disease. Proc. Natl. Acad. Sci. USA 2023 120 50 e2316579120 10.1073/pnas.2316579120 38048456
    [Google Scholar]
  25. Koo B.S. Baek S.H. Kim G. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 2020 49 1 56 59 10.1111/jmp.12447 31642533
    [Google Scholar]
  26. Clayton J.B. Danzeisen J.L. Trent A.M. Murphy T. Johnson T.J. Longitudinal characterization of Escherichia coli in healthy captive non-human primates. Front. Vet. Sci. 2014 1 24 10.3389/fvets.2014.00024 26664923
    [Google Scholar]
  27. Anand N. Gorantla V.R. Chidambaram S.B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disor-ders. Cells 2022 12 1 54 10.3390/cells12010054 36611848
    [Google Scholar]
  28. Tiffany C.R. Bäumler A.J. Dysbiosis: from fiction to function. Am. J. Physiol. Gastrointest. Liver Physiol. 2019 317 5 G602 G608 10.1152/ajpgi.00230.2019 31509433
    [Google Scholar]
  29. Dahiya D. Nigam P.S. Antibiotic-therapy-induced gut dysbio-sis affecting gut microbiota—brain axis and cognition: resto-ration by intake of probiotics and synbiotics. Int. J. Mol. Sci. 2023 24 4 3074 10.3390/ijms24043074 36834485
    [Google Scholar]
  30. Wu Y. Wang L. Luo R. Effect of a multispecies probio-tic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of pre-weaning dairy calves. Front. Microbiol. 2021 12 681014 10.3389/fmicb.2021.681014 34335503
    [Google Scholar]
  31. Iancu M.A. Profir M. Roşu O.A. Ionescu R.F. Cretoiu S.M. Gas-par B.S. Revisiting the intestinal microbiome and its role in diarrhea and constipation. Microorganisms 2023 11 9 2177 10.3390/microorganisms11092177 37764021
    [Google Scholar]
  32. Kullar R. Goldstein E.J.C. Johnson S. McFarland L.V. Lactoba-cillus bacteremia and probiotics: a review. Microorganisms 2023 11 4 896 10.3390/microorganisms11040896 37110319
    [Google Scholar]
  33. Mackos A.R. 2013
  34. Bai J. Xu D. Xie D. Wang M. Li Z. Guo X. Effects of antibac-terial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020 315 123881 10.1016/j.biortech.2020.123881 32731157
    [Google Scholar]
  35. Lecker J.L. Froberg-Fejko K. PrimiOtic™ and PrimiOtic Plus™: novel probiotic for primates suffering from idiopathic chronic diarrhea. Lab Anim. (NY) 2015 44 10 414 415 10.1038/laban.844 26398619
    [Google Scholar]
  36. Meyer J Novak M Hamel A Rosenberg K 2014
  37. Lebeer S. Vanderleyden J. De Keersmaecker S.C.J. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 2008 72 4 728 764 10.1128/MMBR.00017‑08 19052326
    [Google Scholar]
  38. Wolfe W. Xiang Z. Yu X. The challenge of applications of probiotics in gastrointestinal diseases. Advanced Gut & Microbiome Research 2023 2023 1 1 10 10.1155/2023/1984200
    [Google Scholar]
  39. Kedia S. Ahuja V. Human gut microbiome: A primer for the clinician. JGH Open 2023 7 5 337 350 10.1002/jgh3.12902 37265934
    [Google Scholar]
  40. Polak K. Bergler-Czop B. Szczepanek M. Wojciechowska K. Frątczak A. Kiss N. Psoriasis and gut microbiome—current state of art. Int. J. Mol. Sci. 2021 22 9 4529 10.3390/ijms22094529 33926088
    [Google Scholar]
  41. Mackos A.R. Galley J.D. Eubank T.D. Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri. Mucosal Immunol. 2016 9 2 515 526 10.1038/mi.2015.81 26422754
    [Google Scholar]
  42. Buffington S.A. Di Prisco G.V. Auchtung T.A. Ajami N.J. Petro-sino J.F. Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 2016 165 7 1762 1775 10.1016/j.cell.2016.06.001 27315483
    [Google Scholar]
  43. Grenda T. Grenda A. Domaradzki P. Krawczyk P. Kwiatek K. Probiotic Potential of Clostridium spp.—Advantages and Doubts. Curr. Issues Mol. Biol. 2022 44 7 3118 3130 10.3390/cimb44070215 35877439
    [Google Scholar]
  44. Samul D. Worsztynowicz P. Leja K. Grajek W. Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochim. Pol. 2013 60 4 515 521 24432307
    [Google Scholar]
  45. Stanley D. Hughes R.J. Geier M.S. Moore R.J. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front. Microbiol. 2016 7 187 10.3389/fmicb.2016.00187 26925052
    [Google Scholar]
  46. Liddicoat C. Sydnor H. Cando-Dumancela C. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 2020 701 134684 10.1016/j.scitotenv.2019.134684 31704402
    [Google Scholar]
  47. Amat S. Lantz H. Munyaka P.M. Willing B.P. Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020 8 10 1584 10.3390/microorganisms8101584 33066697
    [Google Scholar]
  48. Abdelsalam N.A. Hegazy S.M. Aziz R.K. The curious case of Prevotella copri. Gut Microbes 2023 15 2 2249152 10.1080/19490976.2023.2249152 37655441
    [Google Scholar]
  49. Gilchrist C.A. Petri S.E. Schneider B.N. Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Pa-rasite Entamoeba histolytica. J. Infect. Dis. 2016 213 10 1579 1585 10.1093/infdis/jiv772 26712950
    [Google Scholar]
  50. Su T. Liu R. Lee A. Altered intestinal microbiota with increased abundance of Prevotella is associated with high risk of diarrhea‐predominant irritable bowel syndrome. Gastroenterol. Res. Pract. 2018 2018 1 1 9 10.1155/2018/6961783 29967640
    [Google Scholar]
  51. Bai H. Liu T. Wang S. Identification of gut microbiome and metabolites associated with acute diarrhea in cats. Microbiol. Spectr. 2023 11 4 e00590 e23 10.1128/spectrum.00590‑23 37428087
    [Google Scholar]
  52. Sheh A. Artim S.C. Burns M.A. Analysis of gut micro-biome profiles in common marmosets (Callithrix jacchus) in health and intestinal disease. Sci. Rep. 2022 12 1 4430 10.1038/s41598‑022‑08255‑4 35292670
    [Google Scholar]
  53. Yang Q. Huang X. Wang P. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age‐related dietary changes. MicrobiologyOpen 2019 8 12 e923 10.1002/mbo3.923 31496126
    [Google Scholar]
  54. McGrew K. The effects of social housing changes, tempera-ment and social rank on the microbiome composition and dia-rrhea rates in a colony of mauritius-origin macaca fascicula-ris. 2021
    [Google Scholar]
  55. Wooddell L.J. Vandeleest J.J. Nathman A.C. Beisner B.A. McCowan B. Not all grooming is equal: differential effects of political vs affiliative grooming on cytokines and glucocorti-coids in rhesus macaques. Preprints 2019
    [Google Scholar]
  56. Sterck E.H.M. Watts D.P. van Schaik C.P. The evolution of fe-male social relationships in nonhuman primates. Behav. Ecol. Sociobiol. 1997 41 5 291 309 10.1007/s002650050390
    [Google Scholar]
  57. Taylor S.E. Klein L.C. Lewis B.P. Gruenewald T.L. Gurung R.A.R. Updegraff J.A. Biobehavioral responses to stress in fe-males: Tend-and-befriend, not fight-or-flight. Psychol. Rev. 2000 107 3 411 429 10.1037/0033‑295X.107.3.411 10941275
    [Google Scholar]
  58. Vandeleest J.J. Winkler S.L. Beisner B.A. Hannibal D.L. Atwill E.R. McCowan B. Sex differences in the impact of social sta-tus on hair cortisol concentrations in rhesus monkeys (Macaca mulatta). Am. J. Primatol. 2020 82 1 e23086 10.1002/ajp.23086 31876328
    [Google Scholar]
  59. Zhang Z. Hyun J.E. Thiesen A. Sex-specific differences in the gut microbiome in response to dietary fiber supplemen-tation in IL-10-deficient mice. Nutrients 2020 12 7 2088 10.3390/nu12072088 32679670
    [Google Scholar]
  60. Kim Y.S. Unno T. Kim B.Y. Park M.S. Sex differences in gut microbiota. World J. Mens Health 2020 38 1 48 60 10.5534/wjmh.190009 30929328
    [Google Scholar]
  61. Hases L. Stepanauskaite L. Birgersson M. High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun. Biol. 2023 6 1 20 10.1038/s42003‑022‑04406‑5 36624306
    [Google Scholar]
  62. García-Santos J.A. Nieto-Ruiz A. García-Ricobaraza M. Cerdó T. Campoy C. Impact of probiotics on the prevention and treatment of gastrointestinal diseases in the pediatric popula-tion. Int. J. Mol. Sci. 2023 24 11 9427 10.3390/ijms24119427 37298377
    [Google Scholar]
  63. Lee Z.Y. Lew C.C.H. Ortiz-Reyes A. Benefits and harm of probiotics and synbiotics in adult critically ill patients. A sys-tematic review and meta-analysis of randomized controlled trials with trial sequential analysis. Clin. Nutr. 2023 42 4 519 531 10.1016/j.clnu.2023.01.019 36857961
    [Google Scholar]
  64. Suez J. Zmora N. Zilberman-Schapira G. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Pro-biotics and Improved by Autologous FMT. Cell 2018 174 6 1406 1423.e16 10.1016/j.cell.2018.08.047 30193113
    [Google Scholar]
  65. Zmora N. Zilberman-Schapira G. Suez J. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018 174 6 1388 1405.e21 10.1016/j.cell.2018.08.041 30193112
    [Google Scholar]
  66. Gibson G.R. Roberfroid M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995 125 6 1401 1412 10.1093/jn/125.6.1401 7782892
    [Google Scholar]
  67. Elfenbein H.A. Rosso L.D. McCowan B. Capitanio J.P. Effect of Indoor Compared with Outdoor Location during Gestation on the Incidence of Diarrhea in Indoor-Reared Rhesus Macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 2016 55 3 277 290 27177560
    [Google Scholar]
  68. Sawaswong V. Chanchaem P. Kemthong T. Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity. Sci. Rep. 2023 13 1 5842 10.1038/s41598‑023‑33163‑6 37037869
    [Google Scholar]
  69. Messaoudi M. Lalonde R. Violle N. Assessment of psychotropic-like properties of a probiotic formulation (Lac-tobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011 105 5 755 764 10.1017/S0007114510004319 20974015
    [Google Scholar]
  70. Tian P. Gao J. Liang L. Fecal microbiota transplantation could improve chronic diarrhea in cynomolgus monkey by alleviating inflammation and modulating gut microbiota. Biomedicines 2022 10 12 3016 10.3390/biomedicines10123016 36551772
    [Google Scholar]
  71. Sonnenburg J. Sonnenburg E. The good gut: taking control of your weight, your mood, and your long-term health. Penguin Books 2016
    [Google Scholar]
  72. Choi Y. Hosseindoust A. Ha S.H. Effects of dietary supplementation of bacteriophage cocktail on health status of weanling pigs in a non-sanitary environment. J. Anim. Sci. Biotechnol. 2023 14 1 64 10.1186/s40104‑023‑00869‑6 37150809
    [Google Scholar]
  73. Piovezani Ramos G. Camilleri M. Current and future thera-peutic options for irritable bowel syndrome with diarrhea and functional diarrhea. Dig. Dis. Sci. 2023 68 5 1677 1690 10.1007/s10620‑022‑07700‑8 36376576
    [Google Scholar]
  74. Rhoades N.S. Cinco I.R. Hendrickson S.M. Infant dia-rrheal disease in rhesus macaques impedes microbiome matu-ration and is linked to uncultured Campylobacter species. Commun. Biol. 2024 7 1 37 10.1038/s42003‑023‑05695‑0 38182754
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499295593240916060605
Loading
/content/journals/probiot/10.2174/0126666499295593240916060605
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: relocation stress ; Lactobacillus ; diarrhea ; primates ; microbiota
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test