Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Introduction

In the present study, we focused on the screening of the potential probiotic yeasts isolated from two Indian fermented cereal-based foods, ., Idli and Selroti. A total of 260 yeast isolates were isolated from the batters of Idli (140 isolates) and Selroti (120 isolates).

Methods

Preliminary screening of basic probiotic traits such as tolerance to low pH, bile, and cell surface attachment was checked for the selection of potential probiotic yeasts from total isolates. Finally, 8 yeast isolates were selected for further in-depth assessment by and genetic screening, which included AIY-4, MIY-30, BIY-8 (from idli), SGLY-15, SGLY-21, SPRY-17, SBRY-12, and SBRY-25 (from selroti).

Results

A principal component analysis (PCA) biplot was designed to evaluate the differences and similarities amongst the yeast strains, and two clusters were formed using the paired group (UPGMA) algorithm and Euclidean similarity index. Cluster one was comprised of AIY-4, MIY-30, SBRY-12, and BIY-8, and another cluster included SBRY-12 and SGLY-21.

Conclusion

Hence, based on statistical analysis for probiotic and genetic screening, MIY-30 (Idli) and SBRY-25 (selroti) were selected as the most potential probiotic strains.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499321746240809073632
2024-09-05
2025-03-14
Loading full text...

Full text loading...

References

  1. TamangJ.P. WatanabeK. HolzapfelW.H. Diversity of microorganisms in global fermented foods and beverages.Front. Microbiol.2016737710.3389/fmicb.2016.0037727047484
    [Google Scholar]
  2. TamangJ.P. CotterP.D. EndoA. Fermented foods in a global age: East meets West.Compr. Rev. Food Sci. Food Saf.202019118421710.1111/1541‑4337.1252033319517
    [Google Scholar]
  3. TamangJ.P. JeyaramK. RaiA.K. MukherjeeP.K. Diversity of beneficial microorganisms and their functionalities in community-specific ethnic fermented foods of the Eastern Himalayas.Food Res. Int.202114811063310.1016/j.foodres.2021.11063334507776
    [Google Scholar]
  4. TamangJ.P. “Ethno-microbiology” of ethnic Indian fermented foods and alcoholic beverages.J. Appl. Microbiol.2022133114516110.1111/jam.1538234821430
    [Google Scholar]
  5. GhoshD. ChattopadhyayP. Preparation of idli batter, its properties and nutritional improvement during fermentation.J. Food Sci. Technol.201148561061510.1007/s13197‑010‑0148‑423572795
    [Google Scholar]
  6. YonzanH. TamangJ.P. Optimization of traditional processing of Selroti, a popular cereal-based fermented food.J. Sci. Ind. Res. (India)2013724347
    [Google Scholar]
  7. TamangJ.P. Dietary culture and antiquity of the Himalayan fermented foods and alcoholic fermented beverages.Journal of Ethnic Foods2022913010.1186/s42779‑022‑00146‑3
    [Google Scholar]
  8. MukherjeeS.K. AlburyM.N. PedersonC.S. Van VeenA.G. SteinkrausK.H. Role of Leuconostoc mesenteroides in leavening the batter of idli, a fermented food of India.Appl. Microbiol.196513222723110.1128/am.13.2.227‑231.196514325884
    [Google Scholar]
  9. AgaliyaP.J. JeevaratnamK. Molecular characterization of lactobacilli isolated from fermented idli batter.Braz. J. Microbiol.20134441199120610.1590/S1517‑8382201300040002524688512
    [Google Scholar]
  10. MandhaniaM.H. PaulD. SuryavanshiM.V. Diversity and Succession of Microbiota during Fermentation of the Traditional Indian Food Idli.Appl. Environ. Microbiol.20198513e00368e1910.1128/AEM.00368‑1931053581
    [Google Scholar]
  11. KavitakeD. SuryavanshiM.V. KandasamyS. DeviP.B. ShoucheY. ShettyP.H. Bacterial diversity of traditional fermented food, Idli by high thorough-put sequencing.J. Food Sci. Technol.202259103918392710.1007/s13197‑022‑05421‑436193360
    [Google Scholar]
  12. BernardD. JeyagowriN. MadhujithT. Characterization of lactic acid bacteria isolated from idli batter and their susceptibility to antibiotics.Tropical Agricultural Research202132445346110.4038/tar.v32i4.8513
    [Google Scholar]
  13. SoniS.K. SandhuD.K. Role of yeast domination in Indian idli batter fermentation.World J. Microbiol. Biotechnol.19917450550710.1007/BF0030337824425138
    [Google Scholar]
  14. SrideviJ. HalamiP.M. VijayendraS.V.N. Selection of starter cultures for idli batter fermentation and their effect on quality of idlis.J. Food Sci. Technol.201047555756310.1007/s13197‑010‑0101‑623572685
    [Google Scholar]
  15. YonzanH. TamangJ.P. Microbiology and nutritional value of Selroti, an ethnic fermented cereal food of the Himalayas.Food Biotechnol.201024322724710.1080/08905436.2010.507133
    [Google Scholar]
  16. TamangJ.P. TamangN. ThapaS. DewanS. TamangB.M. YonzanH. Microorganisms and nutritional value of ethnic fermented foods and alcoholic beverages of North East India.Indian J. Tradit. Knowl.2012111725
    [Google Scholar]
  17. LatifA. ShehzadA. NiaziS. Probiotics: mechanism of action, health benefits and their application in food industries.Front. Microbiol.202314121667410.3389/fmicb.2023.121667437664108
    [Google Scholar]
  18. MafteiN.M. RaileanuC.R. BaltaA.A. The potential impact of probiotics on human health: An Update on Their Health-Promoting Properties.Microorganisms202412223410.3390/microorganisms1202023438399637
    [Google Scholar]
  19. BodkeH. JogdandS. Role of probiotics in human health.Cureus20221411e3131310.7759/cureus.3131336514580
    [Google Scholar]
  20. FijanS. Microorganisms with claimed probiotic properties: an overview of recent literature.Int. J. Environ. Res. Public Health20141154745476710.3390/ijerph11050474524859749
    [Google Scholar]
  21. ZielińskaD. Kolożyn-KrajewskaD. Food-origin lactic acid bacteria may exhibit probiotic properties.BioMed Res. Int.2018201811510.1155/2018/506318530402482
    [Google Scholar]
  22. OgunremiO.R. SanniA.I. AgrawalR. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products.J. Appl. Microbiol.2015119379780810.1111/jam.1287526095794
    [Google Scholar]
  23. StaniszewskiA. Kordowska-WiaterM. Probiotic and potentially probiotic yeasts-characteristics and food application.Foods2021106130610.3390/foods1006130634200217
    [Google Scholar]
  24. StaniszewskiA. Kordowska-WiaterM. Probiotic Yeasts and How to Find Them—Polish Wines of Spontaneous Fermentation as Source for Potentially Probiotic Yeasts.Foods20231218339210.3390/foods1218339237761101
    [Google Scholar]
  25. MogmengaI. SomdaM.K. OuattaraC.A.T. Promising probiotic properties of the yeasts isolated from rabilé, a traditionally fermented beer produced in Burkina Faso.Microorganisms202311380210.3390/microorganisms1103080236985375
    [Google Scholar]
  26. TamangJ.P. LamaS. Probiotic properties of yeasts in traditional fermented foods and beverages.J. Appl. Microbiol.202213253533354210.1111/jam.1546735094453
    [Google Scholar]
  27. SenS. MansellT.J. Yeasts as probiotics: Mechanisms, outcomes, and future potential.Fungal Genet. Biol.202013710333310.1016/j.fgb.2020.10333331923554
    [Google Scholar]
  28. AbidR. WaseemH. AliJ. Probiotic Yeast Saccharomyces: Back to nature to improve human health.J. Fungi (Basel)20228544410.3390/jof805044435628700
    [Google Scholar]
  29. FooksL.J. GibsonG.R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens.FEMS Microbiol. Ecol.2002391677510.1111/j.1574‑6941.2002.tb00907.x19709185
    [Google Scholar]
  30. McFarlandL.V. BernasconiP. Saccharomyces boulardii’. A review of an innovative biotherapeutic agent.Microb. Ecol. Health Dis.19936415717110.3109/08910609309141323
    [Google Scholar]
  31. de Melo PereiraG.V. de Oliveira CoelhoB. JúniorA.I. Thomaz-SoccolV. SoccolC.R. How to select a probiotic? A review and update of methods and criteria.Biotechnol. Adv.20183682060207610.1016/j.biotechadv.2018.09.003
    [Google Scholar]
  32. WangX. ZhangP. ZhangX. Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity.Molecules20212619607610.3390/molecules2619607634641619
    [Google Scholar]
  33. KimJ. AtkinsonC. MillerM.J. KimK.H. JinY.S. Microbiome engineering using probiotic yeast: Saccharomyces boulardii and the secreted human lysozyme lead to changes in the gut microbiome and metabolome of mice.Microbiol. Spectr.2023114e00780e2310.1128/spectrum.00780‑2337436157
    [Google Scholar]
  34. PaisP. AlmeidaV. YılmazM. TeixeiraM.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic?J. Fungi (Basel)2020627810.3390/jof602007832512834
    [Google Scholar]
  35. RoohvandF. EhsaniP. Abdollahpour-AlitappehM. ShokriM. KossariN. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications.Expert Opin. Ther. Pat.202030860963110.1080/13543776.2020.178181632529867
    [Google Scholar]
  36. McFarlandL.V. Common organisms and probiotics: Saccharomyces boulardii The microbiota in gastrointestinal pathophysiology.Academic Press201714516410.1016/B978‑0‑12‑804024‑9.00018‑5
    [Google Scholar]
  37. Fernández-PachecoP. Ramos MongeI.M. PovedaJ.M. Díaz-MarotoM.C. Arévalo-VillenaM. Use of probiotic yeasts with biocontrol activity for fermentation of ewe’s milk.J. Sci. Food Agric.202310384107411810.1002/jsfa.1239436533884
    [Google Scholar]
  38. AgarbatiA. CanonicoL. MariniE. ZanniniE. CianiM. ComitiniF. Potential probiotic yeasts sourced from natural environmental and spontaneous processed foods.Foods20209328710.3390/foods903028732143376
    [Google Scholar]
  39. Hernández-GómezJ.G. López-BonillaA. Trejo-TapiaG. Ávila-ReyesS.V. Jiménez-AparicioA.R. Hernández-SánchezH. In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms.Foods202110367410.3390/foods1003067433810002
    [Google Scholar]
  40. MegurA. DaliriE.B.M. BalnionytėT. StankevičiūtėJ. LastauskienėE. BurokasA. In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties.Front. Microbiol.202314121337010.3389/fmicb.2023.121337037744916
    [Google Scholar]
  41. LiY. MoX. XiongJ. Deciphering the probiotic properties and safety assessment of a novel multi-stress-tolerant aromatic yeast Pichia kudriavzevii HJ2 from marine mangroves.Food Biosci.20235610324810.1016/j.fbio.2023.103248
    [Google Scholar]
  42. HasheminyaS.M. DehghannyaJ. Novel ultrasound-assisted extraction of kefiran biomaterial, a prebiotic exopolysaccharide, and investigation of its physicochemical, antioxidant and antimicrobial properties.Mater. Chem. Phys.202024312264510.1016/j.matchemphys.2020.122645
    [Google Scholar]
  43. WuJ. ZhangY. YeL. WangC. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review.Carbohydr. Polym.202125311730810.1016/j.carbpol.2020.11730833278957
    [Google Scholar]
  44. SaberA. AlipourB. FaghfooriZ. Yari KhosroushahiA. Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects.J. Funct. Foods20173440842110.1016/j.jff.2017.05.007
    [Google Scholar]
  45. GazianoR. SabbatiniS. RosellettiE. PeritoS. MonariC. Saccharomyces cerevisiae-based probiotics as novel antimicrobial agents to prevent and treat vaginal infections.Front. Microbiol.20201171810.3389/fmicb.2020.0071832373104
    [Google Scholar]
  46. LamaS. TamangJ.P. Isolation of Yeasts from some homemade fermented cow-milk products of Sikkim and their probiotic characteristics.Fermentation (Basel)202281266410.3390/fermentation8120664
    [Google Scholar]
  47. AlkalbaniN.S. OsailiT.M. Al-NabulsiA.A. In vitro characterization and identification of potential probiotic yeasts isolated from fermented dairy and non-dairy food products.J. Fungi (Basel)20228554410.3390/jof805054435628799
    [Google Scholar]
  48. RenshawM.A. OldsB.P. JerdeC.L. McVeighM.M. LodgeD.M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction.Mol. Ecol. Resour.201515116817610.1111/1755‑0998.1228124834966
    [Google Scholar]
  49. PallaM. BlandinoM. GrassiA. Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours.Sci. Rep.20201011285610.1038/s41598‑020‑69774‑632732890
    [Google Scholar]
  50. TamuraK. StecherG. KumarS. MEGA 11: Molecular evolutionary genetics analysis version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab12033892491
    [Google Scholar]
  51. FaddaM.E. MossaV. DeplanoM. PisanoM.B. CosentinoS. In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics.Lebensm. Wiss. Technol.20177510010610.1016/j.lwt.2016.08.020
    [Google Scholar]
  52. AlameriF. TariqueM. OsailiT. Lactic acid bacteria isolated from fresh vegetable products: Potential probiotic and postbiotic characteristics including immunomodulatory effects.Microorganisms202210238910.3390/microorganisms1002038935208844
    [Google Scholar]
  53. MannazzuI. SimonettiE. MarinangeliP. SED1 gene length and sequence polymorphisms in feral strains of Saccharomyces cerevisiae.Appl. Environ. Microbiol.200268115437544410.1128/AEM.68.11.5437‑5444.200212406735
    [Google Scholar]
  54. MarinangeliP. AngelozziD. CianiM. ClementiF. MannazzuI. Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterisation.FEMS Yeast Res.200444-542743510.1016/S1567‑1356(03)00172‑714734023
    [Google Scholar]
  55. WilsonR.A. JenkinsonJ.M. GibsonR.P. LittlechildJ.A. WangZ.Y. TalbotN.J. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence.EMBO J.200726153673368510.1038/sj.emboj.760179517641690
    [Google Scholar]
  56. ChoiY.S. ChooY.M. LeeK.S. Cloning and expression profiling of four antibacterial peptide genes from the bumblebee Bombus ignitus.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2008150214114610.1016/j.cbpb.2008.02.00718378480
    [Google Scholar]
  57. Damas-BuenrostroL.C. Gracia-GonzálezG. Hernández-LunaC.E. Galán-WongL.J. Pereyra-AlférezB. Sierra-BenavidesJ.A. Detection of FLO genes in lager and wild yeast strains.J. Am. Soc. Brew. Chem.200866318418710.1094/ASBCJ‑2008‑0624‑01
    [Google Scholar]
  58. CaudleK.E. BarkerK.S. WiederholdN.P. XuL. HomayouniR. RogersP.D. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon.Eukaryot. Cell201110337338310.1128/EC.00073‑1021193550
    [Google Scholar]
  59. YounisG. AwadA. DawodR.E. YousefN.E. Antimicrobial activity of yeasts against some pathogenic bacteria.Vet. World201710897998310.14202/vetworld.2017.979‑98328919693
    [Google Scholar]
  60. MetsaluT. ViloJ. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap.Nucleic Acids Res.201543W1W566-7010.1093/nar/gkv46825969447
    [Google Scholar]
  61. GalliV. VenturiM. MariE. GuerriniS. GranchiL. Selection of yeast and lactic acid bacteria strains, isolated from spontaneous raw milk fermentation, for the production of a potential probiotic fermented milk.Fermentation (Basel)20228840710.3390/fermentation8080407
    [Google Scholar]
  62. AlkalbaniN.S. OsailiT.M. Al-NabulsiA.A. Assessment of yeasts as potential probiotics: a review of gastrointestinal tract conditions and investigation methods.J. Fungi20228436510.3390/jof8040365
    [Google Scholar]
  63. ShalonD. CulverR.N. GrembiJ.A. Profiling the human intestinal environment under physiological conditions.Nature2023617796158159110.1038/s41586‑023‑05989‑737165188
    [Google Scholar]
  64. WangB. Rutherfurd-MarkwickK. LiuN. ZhangX.X. MutukumiraA.N. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand.Curr Res Food Sci2024810071110.1016/j.crfs.2024.10071138524400
    [Google Scholar]
  65. PiraineR.E.A. RetzlafG.M. GonçalvesV.S. Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001.Eur. Food Res. Technol.2023249113314810.1007/s00217‑022‑04139‑z
    [Google Scholar]
  66. Gürkan ÖzlüB. TerziY. UyarE. ShatilaF. YalçınH.T. Characterization and determination of the potential probiotic yeasts isolated from dairy products.Biologia (Bratisl.)20227751471148010.1007/s11756‑022‑01032‑8
    [Google Scholar]
  67. NagD. GoelA. PadwadY. SinghD. In vitro. characterisation revealed Himalayan dairy kluyveromyces marxianus PCH397 as potential probiotic with therapeutic properties.Probiotics Antimicrob. Proteins202315376177310.1007/s12602‑021‑09874‑535040023
    [Google Scholar]
  68. BoranbayevaT. KarahanA.G. TulemissovaZ. MyktybayevaR. ÖzkayaS. Properties of a new probiotic candidate and Lactobacterin-TK2 against diarrhea in calves.Probiotics Antimicrob. Proteins202012391892810.1007/s12602‑020‑09649‑432215859
    [Google Scholar]
  69. de MirandaN.M.Z. de SouzaA.C. de Souza Costa SobrinhoP. DiasD.R. SchwanR.F. RamosC.L. Novel yeasts with potential probiotic characteristics isolated from the endogenous ferment of artisanal Minas cheese.Braz. J. Microbiol.20235421021103310.1007/s42770‑023‑01002‑537162703
    [Google Scholar]
  70. KunyeitL. RaoR.P. Anu-AppaiahK.A. Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease.Crit. Rev. Food Sci. Nutr.202464196660667110.1080/10408398.2023.217254636728916
    [Google Scholar]
  71. SimõesL.A. Cristina de SouzaA. FerreiraI. Probiotic properties of yeasts isolated from Brazilian fermented table olives.J. Appl. Microbiol.202113141983199710.1111/jam.1506533704882
    [Google Scholar]
  72. TranK.D. Le-ThiL. VoH.H. Probiotic properties and safety evaluation in the invertebrate model host Galleria mellonella of the Pichia kudriavzevii YGM091 Strain Isolated from Fermented Goat Milk.Probiotics Antimicrob. Proteins2023161288130310.1007/s12602‑023‑10114‑137368223
    [Google Scholar]
  73. FaridW. MasudT. SohailA. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from Indigenous Dahi.Food Sci. Nutr.2021995092510210.1002/fsn3.246834532018
    [Google Scholar]
  74. KawahataM. MasakiK. FujiiT. IefujiH. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.FEMS Yeast Res.20066692493610.1111/j.1567‑1364.2006.00089.x16911514
    [Google Scholar]
  75. SunW. Vila-SantaA. LiuN. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production.Metab. Eng. Commun.202010e0012410.1016/j.mec.2020.e0012432346511
    [Google Scholar]
  76. MollapourM. FongD. BalakrishnanK. Screening the yeast deletant mutant collection for hypersensitivity and hyper‐resistance to sorbate, a weak organic acid food preservative.Yeast2004211192794610.1002/yea.114115334557
    [Google Scholar]
  77. LawrenceC.L. BottingC.H. AntrobusR. CooteP.J. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress.Mol. Cell. Biol.20042483307332310.1128/MCB.24.8.3307‑3323.200415060153
    [Google Scholar]
  78. JiaC. ZhangK. ZhangD. Roles of VPH2 and VMA6 in localization of V-ATPase subunits, cell wall functions and filamentous development in Candida albicans.Fungal Genet. Biol.201811411110.1016/j.fgb.2018.03.00129522815
    [Google Scholar]
  79. NdukweJ.K. AliyuG.O. OnwosiC.O. ChukwuK.O. EzugworieF.N. Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass.Process Biochem.20209011813010.1016/j.procbio.2019.11.009
    [Google Scholar]
  80. KumariS. KumarM. GaurN.A. PrasadR. Multiple roles of ABC transporters in yeast.Fungal Genet. Biol.202115010355010.1016/j.fgb.2021.10355033675986
    [Google Scholar]
  81. DiguțăC.F. MihaiC. TomaR.C. CîmpeanuC. MateiF. In vitro assessment of yeasts strains with probiotic attributes for aquaculture use.Foods202212112410.3390/foods1201012436613340
    [Google Scholar]
  82. AkinyemiM.O. OgunremiO.R. AdelekeR.A. EzekielC.N. Probiotic potentials of lactic acid bacteria and yeasts from raw goat milk in Nigeria.Probiotics Antimicrob. Proteins202216116318010.1007/s12602‑022‑10022‑w36520357
    [Google Scholar]
  83. MalfaP. BrambillaL. GiardinaS. Evaluation of antimicrobial, antiadhesive, and co-aggregation activity of a multi-strain probiotic composition against different urogenital pathogens.Int. J. Mol. Sci.2023242132310.3390/ijms2402132336674840
    [Google Scholar]
  84. CollinsJ.H. KunyeitL. WeintraubS. Genetic basis for probiotic yeast phenotypes revealed by nanopore sequencing.G3 (Bethesda)2023138jkad09310.1093/g3journal/jkad09337103477
    [Google Scholar]
  85. Vergara-AlvarezI. Quiroz-FigueroaF. Tamayo-OrdonezM.C. Oliva-HernandezA.A. Larralde-CoronaC.P. Narvaez-ZapataJ.A. Flocculation and expression of flo genes of a Saccharomyces cerevisiae mezcal strain with high stress tolerance.Food Technol. Biotechnol.2019574544553
    [Google Scholar]
  86. GuoB. StylesC.A. FengQ. FinkG.R. A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating.Proc. Natl. Acad. Sci. USA20009722121581216310.1073/pnas.22042039711027318
    [Google Scholar]
  87. FakruddinM. HossainM.N. AhmedM.M. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic.BMC Complement. Altern. Med.20171716410.1186/s12906‑017‑1591‑928109187
    [Google Scholar]
  88. FlorinT. MaracciC. GrafM. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome.Nat. Struct. Mol. Biol.201724975275710.1038/nsmb.343928741611
    [Google Scholar]
  89. MaY. WuM. QinX. DongQ. LiZ. Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: A review.Food Microbiol.202311210424210.1016/j.fm.2023.10424236906324
    [Google Scholar]
  90. GebreT.S. EmireS.A. ChelliahR. AlooS.O. OhD.H. Isolation, functional activity, and safety of probiotics from Ethiopian traditional cereal-based fermented beverage, “Borde”.Lebensm. Wiss. Technol.202318411507610.1016/j.lwt.2023.115076
    [Google Scholar]
  91. AngelinJ. KavithaM. Exopolysaccharides from probiotic bacteria and their health potential.Int. J. Biol. Macromol.202016285386510.1016/j.ijbiomac.2020.06.19032585269
    [Google Scholar]
  92. BhatB. BajajB.K. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei.Bioresour. Technol.201825426426710.1016/j.biortech.2018.01.07829413932
    [Google Scholar]
  93. AndrewM. JayaramanG. Structural features of microbial exopolysaccharides in relation to their antioxidant activity.Carbohydr. Res.202048710788110.1016/j.carres.2019.10788131805426
    [Google Scholar]
  94. KimK. LeeG. ThanhH.D. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response.J. Dairy Sci.201810175702571210.3168/jds.2017‑1415129627242
    [Google Scholar]
  95. BiliavskaL. PankivskaY. PovnitsaO. ZagorodnyaS. Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5.Medicina (Kaunas)201955951910.3390/medicina5509051931443536
    [Google Scholar]
  96. MizunoH. TomotsuneK. IslamM.A. Exopolysaccharides from Streptococcus thermophilus ST538 modulate the antiviral innate immune response in porcine intestinal epitheliocytes.Front. Microbiol.20201189410.3389/fmicb.2020.0089432508770
    [Google Scholar]
  97. Adebayo-TayoB. IsholaR. OyewunmiT. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains.Biotechnol. Rep. (Amst.)201819e0027110.1016/j.btre.2018.e0027129992104
    [Google Scholar]
  98. Alp AvciG. CagatayG. Ozluk CilakG. AvciE. Probable novel probiotics: EPS production, cholesterol removal and glycocholate deconjugation of lactobacillus plantarum GA06 and GA11 isolated from local handmade-cheese.J. Microbiol. Biotechnol. Food Sci.2020101838610.15414/jmbfs.2020.10.1.83‑86
    [Google Scholar]
  99. ChenY. ZhangM. RenF. A role of exopolysaccharide produced by Streptococcus thermophilus in the intestinal inflammation and mucosal barrier in Caco-2 monolayer and dextran sulphate sodium-induced experimental murine colitis.Molecules201924351310.3390/molecules2403051330708992
    [Google Scholar]
  100. KavitakeD SinghSP KandasamyS DeviPB ShettyPH Report on aflatoxin-binding activity of galactan exopolysaccharide produced by Weissella confusa KR780676.3 Biotech2020101410.1007/s13205‑020‑02173‑w
    [Google Scholar]
  101. HanS. LuY. XieJ. Probiotic gastrointestinal transit and colonization after oral administration: a long journey.Front. Cell. Infect. Microbiol.20211160972210.3389/fcimb.2021.60972233791234
    [Google Scholar]
  102. TezelB.U. ŞanlıbabaP. AkçelikN. AkçelikM. selection criteria for identifying putative probiont.In: Advances in Probiotics.Academic Press2021233510.1016/B978‑0‑12‑822909‑5.00002‑2
    [Google Scholar]
  103. AyyashM.M. AbdallaA.K. AlKalbaniN.S. Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability.J. Dairy Sci.202110488363837910.3168/jds.2021‑2039833934857
    [Google Scholar]
  104. Naissinger da SilvaM. TagliapietraB.L. FloresV.A. Pereira dos Santos RichardsN.S. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics.Current Research in Food Science2021432032510.1016/j.crfs.2021.04.00634095855
    [Google Scholar]
  105. GreppiA. SaubadeF. BottaC. HumblotC. GuyotJ.P. CocolinL. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food.Food Microbiol.20176216917710.1016/j.fm.2016.09.01627889145
    [Google Scholar]
  106. GoktasH. DertliE. SagdicO. Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements.Lebensm. Wiss. Technol.202113611034010.1016/j.lwt.2020.110340
    [Google Scholar]
  107. Zamith-MirandaD. PalmaM.L. MatosG.S. Lipid droplet levels vary heterogeneously in response to simulated gastrointestinal stresses in different probiotic Saccharomyces cerevisiae strains.J. Funct. Foods20162119320010.1016/j.jff.2015.12.013
    [Google Scholar]
  108. PalmaM.L. Zamith-MirandaD. MartinsF.S. Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?Appl. Microbiol. Biotechnol.201599166563657010.1007/s00253‑015‑6776‑x26142388
    [Google Scholar]
  109. SireswarS. MontetD. DeyG. Principal component analysis for clustering probiotic-fortified beverage matrices efficient in elimination of Shigella sp.Fermentation (Basel)2018423410.3390/fermentation4020034
    [Google Scholar]
  110. ShangpliangHNJ TamangJP Genome analysis of potential probiotic Levilactobacillus brevis AcCh91 isolated from Indian home-made fermented milk product (chhurpi). Probiotics Antimicro Prot2023125Epub ahead of print10.1007/s12602‑023‑10125‑y
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499321746240809073632
Loading
/content/journals/probiot/10.2174/0126666499321746240809073632
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publishers' website along with the published article.


  • Article Type:
    Research Article
Keyword(s): candida; idli; kodomaea; pichia; Probiotic yeasts; selroti; wickerhamomyces
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test