Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Probiotics are advantageous bacteria that provide numerous health benefits to individuals when ingested and help to keep the gut microbiota balance. These beneficial bacteria can be found in food, supplements, and medicines. Foods that contain probiotics include yogurt, tempeh, and miso, while bacteria of lactic acid and bifido are the predominant microbial strains commonly employed in various applications. Due to their potential health benefits and minimal side effects, probiotics are widely accepted globally. Maintaining a balanced gut microbiome is crucial for overall health, and any disturbance in the gut's microbiota can trigger inflammatory immune responses and initiate various diseases such as cancer. Cancer is a grave and frequently fatal illness that impacts a significant number of individuals. It arises due to uncontrolled cell growth and is usually diagnosed at an advanced stage. The disease originates from a single cell and can potentially metastasize, spreading through the body. As of now, cancer has no known cure, and the safety and efficacy of conventional chemotherapies and synthetic drugs employed in its treatment are subject to scrutiny. These treatments can negatively impact a patient's well-being, affect drug resistance, and are often too expensive for many patients to afford. Therefore, researchers are exploring more effective and safe ways to manage cancer. Certain probiotic strains have the potential to be beneficial in preventing cancer or as a complement to traditional chemotherapy by altering gut microbiota and improving the reactions of the body’s defense system. Hence, the review examines the likelihood of probiotics as simply an alternative approach to preventing and treating cancer.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499270987231218145156
2024-01-12
2024-11-26
Loading full text...

Full text loading...

References

  1. FerlayJ. Steliarova-FoucherE. Lortet-TieulentJ. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012.Eur. J. Cancer20134961374140310.1016/j.ejca.2012.12.02723485231
    [Google Scholar]
  2. FitzmauriceC. AllenC. BarberR.M. BarregardL. BhuttaZ.A. BrennerH. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study.JAMA Oncol.20173524354827918777
    [Google Scholar]
  3. World Health OrganizationWHO Report on Cancer: setting Priorities, Investing Wisely and Providing Care for All.GenevaWHO2020
    [Google Scholar]
  4. FerlayJ. SoerjomataramI. DikshitR. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  5. ShaheenM. AllenC. NickoloffJ.A. HromasR. Synthetic lethality: Exploiting the addiction of cancer to DNA repair.Blood2011117236074608210.1182/blood‑2011‑01‑31373421441464
    [Google Scholar]
  6. AnandP. KunnumakaraA.B. SundaramC. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑918626751
    [Google Scholar]
  7. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  8. RaguzS. YagüeE. Resistance to chemotherapy: New treatments and novel insights into an old problem.Br. J. Cancer200899338739110.1038/sj.bjc.660451018665178
    [Google Scholar]
  9. VivarelliS. SalemiR. CandidoS. Gut microbiota and cancer: From pathogenesis to therapy.Cancers20191113810.3390/cancers1101003830609850
    [Google Scholar]
  10. MaroofH. HassanZ.M. MobarezA.M. MohamadabadiM.A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model.J. Clin. Immunol.20123261353135910.1007/s10875‑012‑9708‑x22711009
    [Google Scholar]
  11. HassanZ. Anti-cancer and biotherapeutic potentials of probiotic bacteria.J. Cancer Sci. Ther.201911191310.4172/1948‑5956.1000575
    [Google Scholar]
  12. GórskaA. PrzystupskiD. NiemczuraM.J. KulbackaJ. Probiotic bacteria: A promising tool in cancer prevention and therapy.Curr. Microbiol.201976893994910.1007/s00284‑019‑01679‑830949803
    [Google Scholar]
  13. NazirY. HussainS.A. Abdul HamidA. SongY. Probiotics and their potential preventive and therapeutic role for cancer, High serum cholesterol, and allergic and HIV diseases.BioMed Res. Int.2018201811710.1155/2018/342843730246019
    [Google Scholar]
  14. O’TooleP.W. MarchesiJ.R. HillC. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics.Nat. Microbiol.2017251705710.1038/nmicrobiol.2017.5728440276
    [Google Scholar]
  15. NekouianR. RasouliB.S. Ghadimi-DarsajiniA. IragianG.R. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression.J. Cancer Res. Ther.201713224625110.4103/0973‑1482.20489728643742
    [Google Scholar]
  16. World health organization-food and agricultural organization. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation FAO Food and Nutritional Paper.2006
    [Google Scholar]
  17. AdamsC.A. The probiotic paradox: Live and dead cells are biological response modifiers.Nutr. Res. Rev.2010231374610.1017/S095442241000009020403231
    [Google Scholar]
  18. World Health Organization-Food and Agricultural Organization, Guidelines for the Evaluation of Probiotics in Food. FAO/WHO joint report,. London2002
    [Google Scholar]
  19. Mattila-SandholmT. MyllärinenP. CrittendenR. MogensenG. FondénR. SaarelaM. Technological challenges for future probiotic foods.Int. Dairy J.2002122-317318210.1016/S0958‑6946(01)00099‑1
    [Google Scholar]
  20. GeorgievK. GeorgievaM. Antiproliferative effect of bulgarian spring water probiotics (laktera nature probiotic®) against human colon carcinoma cell line.World J. Pharm. Pharm. Sci.20154130136
    [Google Scholar]
  21. KumarM. KumarA. NagpalR. Cancer-preventing attributes of probiotics: An update.Int. J. Food Sci. Nutr.201061547349610.3109/0963748090345597120187714
    [Google Scholar]
  22. SmithI.M. BakerA. ArneborgN. JespersenL. Non- Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.Lett. Appl. Microbiol.201561549149710.1111/lam.1248126280244
    [Google Scholar]
  23. RicciA. AllendeA. BoltonD. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016.EFSA J.2017153e0466332625420
    [Google Scholar]
  24. SaberA. AlipourB. FaghfooriZ. Yari KhosroushahiA. Cellular and molecular effects of yeast probiotics on cancer.Crit. Rev. Microbiol.20174319611510.1080/1040841X.2016.117962227561003
    [Google Scholar]
  25. RamanM. AmbalamP. KondepudiK.K. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer.Gut Microbes20134318119210.4161/gmic.2391923511582
    [Google Scholar]
  26. SharifiM. MoridniaA. MortazaviD. SalehiM. BagheriM. SheikhiA. Kefir: A powerful probiotics with anticancer properties.Med. Oncol.2017341118310.1007/s12032‑017‑1044‑928956261
    [Google Scholar]
  27. AntonyU. ChandraT.S. Microbial population and biochemical changes in fermenting finger millet (Eleusine coracana).World J. Microbiol. Biotechnol.199713553353710.1023/A:1018561224777
    [Google Scholar]
  28. KumarR.S. KanmaniP. YuvarajN. Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats.Appl. Biochem. Biotechnol.2012166362063110.1007/s12010‑011‑9453‑222161238
    [Google Scholar]
  29. El SheikhaA.F. HuD.M. Molecular techniques reveal more secrets of fermented foods.Crit. Rev. Food Sci. Nutr.2020601113210.1080/10408398.2018.150690630296166
    [Google Scholar]
  30. TamangJ.P. ShinD.H. JungS.J. ChaeS.W. Functional properties of microorganisms in fermented foods.Front. Microbiol.2016757810.3389/fmicb.2016.0057827199913
    [Google Scholar]
  31. van’t VeerP. DekkerJ.M. LamersJ.W. Consumption of fermented milk products and breast cancer: A case-control study in The Netherlands.Cancer Res.19894914402040232736542
    [Google Scholar]
  32. GuiomarP. BrasielD.A. CristinaS. DutraP. MariaL. PeluzioG. Preclinical evidence of probiotics in colorectal carcinogenesis: A systematic review.Dig. Dis. Sci.202071123
    [Google Scholar]
  33. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.14017782892
    [Google Scholar]
  34. HarrisP.J. FergusonL.R. Dietary fibre: its composition and role in protection against colorectal cancer.Mutat. Res.199329019711010.1016/0027‑5107(93)90037‑G7694104
    [Google Scholar]
  35. LimC.C. FergusonL.R. TannockG.W. Dietary fibres as “prebiotics”: Implications for colorectal cancer.Mol. Nutr. Food Res.200549660961910.1002/mnfr.20050001515864790
    [Google Scholar]
  36. RowlandI.R. BearneC.A. FischerR. Pool-ZobelB.L. The effect of lactulose on DNA damage induced by DMH in the colon of human flora‐associated rats.Nutr. Cancer1996261374710.1080/016355896095144618844720
    [Google Scholar]
  37. GavreseaF. VagianosC. KorontziM. Beneficial effect of synbiotics on experimental colon cancer in rats.Turk. J. Gastroenterol.201829449450110.5152/tjg.2018.1746930249566
    [Google Scholar]
  38. KahouliI. HandiriN.R. Characterization of L. Reuteri NCIMB 701359 probiotic features for potential use as a colorectal cancer biotherapeutic by identifying fatty acid profile and anti-proliferative action against colorectal cancer cells.Drug Des.20165211110.4172/2169‑0138.1000131
    [Google Scholar]
  39. BorowickiA. MichelmannA. SteinK. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells.Nutr. Cancer201163115116021161821
    [Google Scholar]
  40. dos ReisS.A. da ConceiçãoL.L. SiqueiraN.P. RosaD.D. da SilvaL.L. PeluzioM.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer.Nutr. Res.20173711910.1016/j.nutres.2016.11.00928215310
    [Google Scholar]
  41. VaahtovuoJ. MunukkaE. KorkeamäkiM. LuukkainenR. ToivanenP. Fecal microbiota in early rheumatoid arthritis.J. Rheumatol.20083581500150518528968
    [Google Scholar]
  42. RussellS.L. GoldM.J. HartmannM. Early life antibiotic‐driven changes in microbiota enhance susceptibility to allergic asthma.EMBO Rep.201213544044710.1038/embor.2012.3222422004
    [Google Scholar]
  43. LinC. CaiX. ZhangJ. Role of gut microbiota in the development and treatment of colorectal Cancer.Digestion20191001727810.1159/00049405230332668
    [Google Scholar]
  44. ManichanhC. BorruelN. CasellasF. GuarnerF. The gut microbiota in IBD.Nat. Rev. Gastroenterol. Hepatol.201291059960810.1038/nrgastro.2012.15222907164
    [Google Scholar]
  45. MueggeB.D. KuczynskiJ. KnightsD. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.Science2011332603297097410.1126/science.119871921596990
    [Google Scholar]
  46. RaskovH. BurcharthJ. PommergaardH.C. Linking gut microbiota to colorectal cancer.J. Cancer20178173378339510.7150/jca.2049729151921
    [Google Scholar]
  47. GorbachS.L. GoldinB.R. Diet and the excretion and enterohepatic cycling of estrogens.Prev. Med.198716452553110.1016/0091‑7435(87)90067‑33628202
    [Google Scholar]
  48. FuJ. BonderM.J. CenitM.C. The gut microbiome contributes to a substantial proportion of the variation in blood lipids.Circ. Res.2015117981782410.1161/CIRCRESAHA.115.30680726358192
    [Google Scholar]
  49. ToiM. HirotaS. TomotakiA. Probiotic beverage with soy isoflavone consumption for breast Cancer prevention: A case-control study.Curr. Nutr. Food Sci.20139319420010.2174/1573401311309999000123966890
    [Google Scholar]
  50. ZaharuddinL. MokhtarN.M. Muhammad NawawiK.N. Raja AliR.A. AffendiR. AliR. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer.BMC Gastroenterol.201919113110.1186/s12876‑019‑1047‑431340751
    [Google Scholar]
  51. PalaV. SieriS. BerrinoF. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort.Int. J. Cancer2011129112712271910.1002/ijc.2619321607947
    [Google Scholar]
  52. AlbookaramiH. Investigating the role of probiotics in coping with Cancer and health in society.Cancer Press20173188196
    [Google Scholar]
  53. GoldinB.R. GorbachS.L. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats.J. Natl. Cancer Inst.198064226326510.1093/jnci/64.2.2636766509
    [Google Scholar]
  54. AltonsyM.O. AndrewsS.C. TuohyK.M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway.Int. J. Food Microbiol.20101372-319020310.1016/j.ijfoodmicro.2009.11.01520036023
    [Google Scholar]
  55. OrlandoA. RefoloM.G. MessaC. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines.Nutr. Cancer20126471103111110.1080/01635581.2012.71767623061912
    [Google Scholar]
  56. RussoF. OrlandoA. LinsalataM. CavalliniA. MessaC. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells.Nutr. Cancer200759110611410.1080/0163558070136508417927509
    [Google Scholar]
  57. Sadeghi-AliabadiH. MohammadiF. FazeliH. MirlohiM. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain.Iran. J. Basic Med. Sci.2014171081581925729553
    [Google Scholar]
  58. LopezM. LiN. KatariaJ. RussellM. NeuJ. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells.J. Nutr.2008138112264226810.3945/jn.108.09365818936229
    [Google Scholar]
  59. BaldwinC. MilletteM. OthD. RuizM.T. LuquetF.M. LacroixM. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis.Nutr. Cancer201062337137810.1080/0163558090340719720358475
    [Google Scholar]
  60. LeeJ.W. ShinJ.G. KimE.H. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum.J. Vet. Sci.200451414810.4142/jvs.2004.5.1.4115028884
    [Google Scholar]
  61. MaE.L. ChoiY.J. ChoiJ. PothoulakisC. RheeS.H. ImE. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition.Int. J. Cancer2010127478079010.1002/ijc.2501119876926
    [Google Scholar]
  62. EslamiM. YousefiB. KokhaeiP. Importance of probiotics in the prevention and treatment of colorectal cancer.J. Cell. Physiol.201923410171271714310.1002/jcp.2847330912128
    [Google Scholar]
  63. ThirabunyanonM. BoonprasomP. NiamsupP. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells.Biotechnol. Lett.200931457157610.1007/s10529‑008‑9902‑319116692
    [Google Scholar]
  64. Tiptiri-KourpetiA. SpyridopoulouK. SantarmakiV. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells.PLoS One2016112e014796010.1371/journal.pone.014796026849051
    [Google Scholar]
  65. JacoutonE. ChainF. SokolH. LangellaP. Bermúdez-HumaránL.G. Probiotic strain Lactobacillus casei Bl23 prevents colitis associated colorectal cancer.Front. Immunol.20178155310.3389/fimmu.2017.0155329209314
    [Google Scholar]
  66. WellsJM Immunomodulatory mechanisms of lactobacilli.Microb Cell Fact201110Suppl 1)(Suppl. 1S1710.1186/1475‑2859‑10‑S1‑S1721995674
    [Google Scholar]
  67. LeeH.A. KimH. LeeK.W. ParkK.Y. Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c Mice.J. Med. Food201518121400140510.1089/jmf.2015.357726595186
    [Google Scholar]
  68. PaulosC.M. WrzesinskiC. KaiserA. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling.J. Clin. Invest.200711782197220410.1172/JCI3220517657310
    [Google Scholar]
  69. El-DeebNM YassinAM Al-MadbolyLM El-HawietA A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-KB inflammatory pathways in human colon cancer.Microb Cell Fact2018170877
    [Google Scholar]
  70. BogdanovI.G. DalevP.G. GurevichA.I. Antitumour glycopeptides from Lactobacillus bulgaricus cell wall.FEBS Lett.197557325926110.1016/0014‑5793(75)80312‑71181198
    [Google Scholar]
  71. WangCY WuTC HsiehSL TsaiYH YehCW HuangCY Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium.201523476677728911494
    [Google Scholar]
  72. ZhangG. ZhangJ. WangX. Apoptosis of human tongue squamous cell carcinoma cell (CAL-27) induced by Lactobacillus sp. A-2 metabolites.J. Appl. Oral Sci.201422428228610.1590/1678‑77572013064525141199
    [Google Scholar]
  73. KahouliI. MalhotraM. Tomaro-DuchesneauM. RodesL.S. AlouiJamali, M.A. Identification of Lactobacillus fermentum strains with potential against colorectal Cancer by characterizing short chain fatty acids production, anti-proliferative activity and survival in an intestinal fluid: in vitro analysis.J. Bioanal. Biomed.20157104115
    [Google Scholar]
  74. KahouliI. MalhotraM. WestfallS. Alaoui-JamaliM.A. PrakashS. Design and validation of an orally administrated active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model.Appl. Microbiol. Biotechnol.201710151999201910.1007/s00253‑016‑7885‑x27837314
    [Google Scholar]
  75. McIntoshG.H. Probiotics and colon cancer prevention.Asia Pac. J. Clin. Nutr.199651485224394467
    [Google Scholar]
  76. KonishiH. FujiyaM. TanakaH. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis.Nat. Commun.2016711236510.1038/ncomms12365
    [Google Scholar]
  77. KobozievI. Reinoso WebbC. FurrK.L. GrishamM.B. Role of the enteric microbiota in intestinal homeostasis and inflammation.Free Radic. Biol. Med.20146812213310.1016/j.freeradbiomed.2013.11.00824275541
    [Google Scholar]
  78. KahouliI. Tomaro-DuchesneauC. PrakashS. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives.J. Med. Microbiol.20136281107112310.1099/jmm.0.048975‑023558140
    [Google Scholar]
  79. BoleijA. HechenbleiknerE.M. GoodwinA.C. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients.Clin. Infect. Dis.201560220821510.1093/cid/ciu78725305284
    [Google Scholar]
  80. AmbalamP. RamanM. PuramaR.K. DobleM. Probiotics, prebiotics and colorectal cancer prevention.Best Pract. Res. Clin. Gastroenterol.201630111913110.1016/j.bpg.2016.02.00927048903
    [Google Scholar]
  81. MolskaM. RegułaJ. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer.Nutrients20191110245310.3390/nu1110245331615096
    [Google Scholar]
  82. OhlandC.L. MacNaughtonW.K. Probiotic bacteria and intestinal epithelial barrier function.Am. J. Physiol. Gastrointest. Liver Physiol.20102986G807G81910.1152/ajpgi.00243.200920299599
    [Google Scholar]
  83. DaveyM.E. O’tooleG.A. Microbial biofilms: From ecology to molecular genetics.Microbiol. Mol. Biol. Rev.200064484786710.1128/MMBR.64.4.847‑867.200011104821
    [Google Scholar]
  84. DieltjensL. AppermansK. LissensM. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy.Nat. Commun.202011110710.1038/s41467‑019‑13660‑x31919364
    [Google Scholar]
  85. ZhuQ. GaoR. WuW. QinH. The role of gut microbiota in the pathogenesis of colorectal cancer.Tumour Biol.20133431285130010.1007/s13277‑013‑0684‑423397545
    [Google Scholar]
  86. GoldinB.R. GorbachS.L. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity.Am. J. Clin. Nutr.198439575676110.1093/ajcn/39.5.7566424430
    [Google Scholar]
  87. SoelS.M. ChoiO.S. BangM.H. Yoon ParkJ.H. KimW.K. Influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo.J. Nutr. Biochem.2007181065065710.1016/j.jnutbio.2006.10.01117368880
    [Google Scholar]
  88. Bassaganya-RieraJ. ViladomiuM. PedragosaM. De SimoneC. HontecillasR. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria.PLoS One201274e3467610.1371/journal.pone.003467622511958
    [Google Scholar]
  89. Markowiak-KopećP. ŚliżewskaK. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome.Nutrients2020124110710.3390/nu1204110732316181
    [Google Scholar]
  90. SunM. WuW. LiuZ. CongY. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.J. Gastroenterol.20175211810.1007/s00535‑016‑1242‑927448578
    [Google Scholar]
  91. FearonE.R. Molecular genetics of colorectal cancer.Annu. Rev. Pathol.20116147950710.1146/annurev‑pathol‑011110‑13023521090969
    [Google Scholar]
  92. ZhongL. ZhangX. CovasaM. Emerging roles of lactic acid bacteria in protection against colorectal cancer.World J. Gastroenterol.201420247878788610.3748/wjg.v20.i24.787824976724
    [Google Scholar]
  93. de VriesE.G.E. GietemaJ.A. de JongS. Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeutic implications.Clin. Cancer Res.20061282390239310.1158/1078‑0432.CCR‑06‑035216638843
    [Google Scholar]
  94. KlusekJ. GłuszekS. KlusekJ. Review GST genes polymorphisms and the risk of colorectal cancer development.Contemp. Oncol. (Pozn.)20144421922110.5114/wo.2014.4138825258576
    [Google Scholar]
  95. Pool-ZobelB. VeeriahS. BöhmerF.D. Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis.Mutat. Res.20055911-2749210.1016/j.mrfmmm.2005.04.02016083918
    [Google Scholar]
  96. BurnsA.J. RowlandI.R. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells.Mutat. Res.20045511-223324310.1016/j.mrfmmm.2004.03.01015225596
    [Google Scholar]
  97. BolognaniF. RumneyC.J. RowlandI.R. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens.Food Chem. Toxicol.199735653554510.1016/S0278‑6915(97)00029‑X9225011
    [Google Scholar]
  98. OrrhageK. SillerströmE. GustafssonJ.Å. NordC.E. RafterJ. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria.Mutat. Res.1994311223924810.1016/0027‑5107(94)90182‑17526189
    [Google Scholar]
  99. RowlandI.R. GrassoP. Degradation of N-nitrosamines by intestinal bacteria.Appl. Microbiol.197529171210.1128/am.29.1.7‑12.1975803287
    [Google Scholar]
  100. MorotomiM. MutaiM. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria.J. Natl. Cancer Inst.19867711952013014197
    [Google Scholar]
  101. El-NezamiH. KankaanpaaP. SalminenS. AhokasJ. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1.Food Chem. Toxicol.199836432132610.1016/S0278‑6915(97)00160‑99651049
    [Google Scholar]
  102. PraveenaY.S.N. PadminiP.C. Antibacterial activities of mycotoxins from newly isolated filamentous fungi.Int J Plant AnimEnviromental Sci20111813
    [Google Scholar]
  103. GillH.S. CrossM.L. Probiotics and immune function. CalderP.C. FieldC.J. GillH.S. Nutrition and Immune Function.Wallingford, UKCABI Publishing200225127210.1079/9780851995830.0251
    [Google Scholar]
  104. BorchersA.T. SelmiC. MeyersF.J. KeenC.L. GershwinM.E. Probiotics and immunity.J. Gastroenterol.2009441264610.1007/s00535‑008‑2296‑019159071
    [Google Scholar]
  105. MadsenK.L. Enhancement of epithelial barrier function by probiotics.J. Epithel. Biol. Pharmacol.20125555910.2174/1875044301205010055
    [Google Scholar]
  106. OhigashiS. SudoK. KobayashiD. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer.Dig. Dis. Sci.20135861717172610.1007/s10620‑012‑2526‑423306850
    [Google Scholar]
  107. CrawfordN. BrookeB.N. THE pH and buffering power of human bile.Lancet195526568741096109710.1016/S0140‑6736(55)90590‑014382504
    [Google Scholar]
  108. ShimizuK. OguraH. GotoM. Altered gut flora and environment in patients with severe SIRS.J. Trauma200660112613310.1097/01.ta.0000197374.99755.fe16456446
    [Google Scholar]
  109. KikuchiH. YajimaT. Correlation between water‐holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats.J. Sci. Food Agric.199260213914610.1002/jsfa.2740600202
    [Google Scholar]
  110. SoccolA. The potential of probiotics: A review.Food Technol. Biotechnol.201048413434
    [Google Scholar]
  111. Legesse BedadaT. FetoT.K. AwokeK.S. GaredewA.D. YifatF.T. BirriD.J. Probiotics for cancer alternative prevention and treatment.Biomed. Pharmacother.202012911040910.1016/j.biopha.2020.11040932563987
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499270987231218145156
Loading
/content/journals/probiot/10.2174/0126666499270987231218145156
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bacteria; cancer; chemotherapy; homeostasis; prebiotics; Probiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test