Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Introduction

Tuberculosis-related mood disorders are well-known but least researched. As frequent comorbidity of tuberculosis (TB), depression is linked to poor adherence to treatment for a number of illnesses. The exact causal mechanism and pathways behind TB disease and associated mental illnesses are unclear. The disease's severity and duration impact the occurrence of depression, and MDR-TB enhances this risk. To summarise the information on the association between depression and unfavourable outcomes of TB treatment, we carried out a narrative review.

Objective

The objective of this study is to provide an overview of probiotics as a cutting-edge treatment for mood disorders linked to tuberculosis.

Methods

A systematic stepwise online database research was done for systematic reviews, original studies, and review papers published on probiotics and mental disorders associated with tuberculosis in PubMed/MEDLINE, Google Scholar, and Web of Science. The reference lists for these articles were also used as sources for the bibliography.

Results

The gut microbiota and the brain are connected by neuroendocrine-immune pathways. The diversity and abundance of microbiota Proteobacteria, Actinobacteria Bacteroides, and Firmicutes are reduced in tuberculosis patients. Through the stimulation of different immunological responses or visceral sensory pathways, these changes in the gut microbiome may be a contributing factor in emotional instability and mood disorders. Probiotics also lessen the stress response caused by cortisol, in addition to releasing neurotransmitters, including GABA, serotonin, noradrenaline, acetylcholine, and dopamine, in various brain regions. Probiotics are the most prevalent in the sensory brain network of the brain, which controls the brain's core processing of emotions and sensations. In addition, they produce short-chain fatty acids (SCAFs) from the bacterial fermentation of fibre in the colon, such as butyrate, which inhibits histone deacetylase, binds to G protein-coupled receptors, and serves as an energy metabolite. Butyrate plays a significant role in maintaining brain health by having antimanic and antidepressant effects. Several clinical research on patients with MDD has revealed that probiotics have favourable effects on depressive symptoms.

Conclusion

The central dopamine system, inflammation, the BDNF system, and the gut-brain axis are all recognised to play crucial roles in the pathogenesis of MDD. Commercial probiotics that generate butyrate-producing SCFAs and those resistant to metabolic disorders (such as Bacteroidetes) may be beneficial for tuberculosis-related MDD during and after treatment. In this situation, using bacteria that produce SCFA could be a cutting-edge method of treating clinical MDD.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499221169231123062539
2023-12-08
2024-11-26
Loading full text...

Full text loading...

References

  1. DasaT.T. RobaA.A. WeldegebrealF. Prevalence and associated factors of depression among tuberculosis patients in Eastern Ethiopia.BMC Psychiatry20191918210.1186/s12888‑019‑2042‑630823918
    [Google Scholar]
  2. KoyanagiA. VancampfortD. CarvalhoA.F. Depression comorbid with tuberculosis and its impact on health status: Cross-sectional analysis of community-based data from 48 low- and middle-income countries.BMC Med.201715120910.1186/s12916‑017‑0975‑529179720
    [Google Scholar]
  3. RockR.B. OlinM. BakerC.A. MolitorT.W. PetersonP.K. Central nervous system tuberculosis: Pathogenesis and clinical aspects.Clin. Microbiol. Rev.200821224326110.1128/CMR.00042‑0718400795
    [Google Scholar]
  4. Ruiz-GrossoP. RodrigoC. de la FlorA. AlvaroS. Ugarte-GilC. Association between tuberculosis and depression on negative outcomes of tuberculosis treatment: A systematic review and meta-analysis.PLoS One2020151e0227472
    [Google Scholar]
  5. SweetlandA.C. KritskiA. OquendoM.A. Addressing the tuberculosis-depression syndemic to end the tuberculosis epidemic.Int. J. Tuberc. Lung Dis.2017218852861
    [Google Scholar]
  6. RinninellaE. RaoulP. CintoniM. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases.Microorganisms2019711410.3390/microorganisms701001430634578
    [Google Scholar]
  7. HuY. FengY. WuJ. The gut microbiome signatures discriminate healthy from pulmonary tuberculosis patients.Front. Cell. Infect. Microbiol.201999010.3389/fcimb.2019.0009031001490
    [Google Scholar]
  8. WeiranL. YuZ. QiongL. ZhilingW. ChaominW. Characterization of gut microbiota in children with pulmonary tuberculosis.BMC Pediatr.2019191445
    [Google Scholar]
  9. WingleeK. Eloe-FadroshE. GuptaS. GuoH. FraserC. BishaiW. Aerosol mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota.PLoS ONE201495e9704810.1371/journal.pone.0097048
    [Google Scholar]
  10. WippermanM.F. FitzgeraldD.W. AntoineM. JusteJ. TaurY. NamasivayamS. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed.Sci. Rep.2017711076710.1038/s41598‑017‑10346‑6
    [Google Scholar]
  11. WilkinsonR. LaiR. NamasivayamS. DumasA. CorralD. ColomA. The host microbiota contributes to early protection against lung colonization by mycobacterium tuberculosis.Front. Immunol.201892656
    [Google Scholar]
  12. PerryS. de JongB.C. Infection with helicobacter pylori is associated with protection against tuberculosis.PLoS One201051e8804
    [Google Scholar]
  13. NamasivayamS. KauffmanK.D. McCullochJ.A. Correlation between disease severity and the intestinal microbiome in mycobacterium tuberculosis-infected rhesus macaques.MBio2019103e010181910.1128/mBio.01018‑1931164469
    [Google Scholar]
  14. KamilaR. RobertF.B. AndreaB. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: An individual patient data meta-analysis.Thorax201974329129710.1136/thoraxjnl‑2017‑211120
    [Google Scholar]
  15. HuY. YangQ. LiuB. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs.J. Infect.201978431732210.1016/j.jinf.2018.08.00630107196
    [Google Scholar]
  16. LuoM. LiuY. WuP. Alternation of gut microbiota in patients with pulmonary tuberculosis.Front. Physiol.2017882210.3389/fphys.2017.0082229204120
    [Google Scholar]
  17. HalversonT. AlagiakrishnanK. Gut microbes in neurocognitive and mental health disorders.Ann. Med.202052842344310.1080/07853890.2020.180823932772900
    [Google Scholar]
  18. FilatovaE.V. ShadrinaM.I. SlominskyP.A. Major depression: One brain, one disease, one set of intertwined processes.Cells2021106
    [Google Scholar]
  19. MoriG. MorrisonM. BlumenthalA. Microbiome-immune interactions in tuberculosis.PLoS Pathog.2021174e100937710.1371/journal.ppat.100937733857251
    [Google Scholar]
  20. HuangS.F. YangY.Y. ChouK.T. FungC.P. WangF.D. SuW.J. Systemic proinflammation after Mycobacterium tuberculosis infection was correlated to the gut microbiome in HIV‐uninfected humans.Eur. J. Clin. Invest.2019495e1306810.1111/eci.1306830620398
    [Google Scholar]
  21. KrishnaP. JainA. BisenP.S. Microbiome diversity in the sputum of patients with pulmonary tuberculosis.Eur. J. Clin. Microbiol. Infect. Dis.20163571205121010.1007/s10096‑016‑2654‑427142586
    [Google Scholar]
  22. CadenaA.M. MaY. DingT. Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure.Microbiome20186118010.1186/s40168‑018‑0560‑y30301469
    [Google Scholar]
  23. GárateI. Garcia-BuenoB. MadrigalJ.L.M. Stress-induced neuroinflammation: Role of the Toll-like receptor-4 pathway.Biol. Psychiatry2013731324310.1016/j.biopsych.2012.07.00522906518
    [Google Scholar]
  24. RiaziK. GalicM.A. KuzmiskiJ.B. HoW. SharkeyK.A. PittmanQ.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation.Proc. Natl. Acad. Sci.200810544171511715610.1073/pnas.080668210518955701
    [Google Scholar]
  25. DonatoK.A. GareauM.G. WangY.J.J. ShermanP.M. Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling.Microbiology2010156113288329710.1099/mic.0.040139‑020656777
    [Google Scholar]
  26. ZareieM. Johnson-HenryK. JuryJ. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress.Gut200655111553156010.1136/gut.2005.08073916638791
    [Google Scholar]
  27. BranisteV. Al-AsmakhM. KowalC. The gut microbiota influences blood-brain barrier permeability in mice.Sci. Transl. Med.20146263263ra15810.1126/scitranslmed.300975925411471
    [Google Scholar]
  28. GudmundssonP. SkoogI. WaernM. The relationship between cerebrospinal fluid biomarkers and depression in elderly women.Am. J. Geriatr. Psychiatry2007151083283810.1097/JGP.0b013e318054709117911361
    [Google Scholar]
  29. BechterK. ReiberH. HerzogS. FuchsD. TumaniH. MaxeinerH.G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: Identification of subgroups with immune responses and blood–CSF barrier dysfunction.J. Psychiatr. Res.201044532133010.1016/j.jpsychires.2009.08.00819796773
    [Google Scholar]
  30. HattoriK. OtaM. SasayamaD. Increased cerebrospinal fluid fibrinogen in major depressive disorder.Sci. Rep.2015511141210.1038/srep1141226081315
    [Google Scholar]
  31. LyteM. The role of microbial endocrinology in infectious disease.J. Endocrinol.1993137334334510.1677/joe.0.13703438371072
    [Google Scholar]
  32. MayerE.A. SavidgeT. ShulmanR.J. Brain-gut microbiome interactions and functional bowel disorders.Gastroenterology201414661500151210.1053/j.gastro.2014.02.03724583088
    [Google Scholar]
  33. SantosJ. SaperasE. NogueirasC. Release of mast cell mediators into the jejunum by cold pain stress in humans.Gastroenterology1998114464064810.1016/S0016‑5085(98)70577‑39516384
    [Google Scholar]
  34. StephensR.L. TacheY. Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats.Am. J. Physiol.19892562 Pt 1G377G3832493198
    [Google Scholar]
  35. YangH. StephensR.L. TachéY. TRH analogue microinjected into specific medullary nuclei stimulates gastric serotonin secretion in rats.Am. J. Physiol.19922622 Pt 1G216G2221539656
    [Google Scholar]
  36. ClarkeM.B. HughesD.T. ZhuC. BoedekerE.C. SperandioV. The QseC sensor kinase: A bacterial adrenergic receptor.Proc. Natl. Acad. Sci.200610327104201042510.1073/pnas.060434310316803956
    [Google Scholar]
  37. LyteM. The role of catecholamines in Gram-negative sepsis.Med. Hypotheses199237425525810.1016/0306‑9877(92)90197‑K1625603
    [Google Scholar]
  38. AlverdyJ. HolbrookC. RochaF. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: Evidence for in vivo virulence expression in Pseudomonas aeruginosa.Ann. Surg.2000232448048910.1097/00000658‑200010000‑0000310998646
    [Google Scholar]
  39. HughesD.T. SperandioV. Inter-kingdom signalling: Communication between bacteria and their hosts.Nat. Rev. Microbiol.20086211112010.1038/nrmicro183618197168
    [Google Scholar]
  40. CoganT.A. ThomasA.O. ReesL.E.N. Norepinephrine increases the pathogenic potential of Campylobacter jejuni.Gut20075681060106510.1136/gut.2006.11492617185353
    [Google Scholar]
  41. LyteM. VulchanovaL. BrownD.R. Stress at the intestinal surface: Catecholamines and mucosa–bacteria interactions.Cell Tissue Res.20113431233210.1007/s00441‑010‑1050‑020941511
    [Google Scholar]
  42. GasbarriniG. BonviciniF. GramenziA. Probiotics History.J. Clin. Gastroenterol.201650S2S116S11910.1097/MCG.000000000000069727741152
    [Google Scholar]
  43. McFarlandL.V. From yaks to yogurt: The history, development, and current use of probiotics.Clin. Infect. Dis.201560S2S85S9010.1093/cid/civ05425922406
    [Google Scholar]
  44. ZuckoJ. StarcevicA. DiminicJ. OrosD. MortazavianA.M. PutnikP. Probiotic – friend or foe?Curr. Opin. Food Sci.202032454910.1016/j.cofs.2020.01.007
    [Google Scholar]
  45. ZendeboodiF. KhorshidianN. MortazavianA.M. da CruzA.G. Probiotic: Conceptualization from a new approach.Curr. Opin. Food Sci.20203210312310.1016/j.cofs.2020.03.009
    [Google Scholar]
  46. DinanT.G. StantonC. CryanJ.F. Psychobiotics: A novel class of psychotropic.Biol. Psychiatry2013741072072610.1016/j.biopsych.2013.05.00123759244
    [Google Scholar]
  47. LopezM. LiN. KatariaJ. RussellM. NeuJ. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells.J. Nutr.2008138112264226810.3945/jn.108.09365818936229
    [Google Scholar]
  48. OstadS.N. SalarianA.A. GhahramaniM.H. FazeliM.R. SamadiN. JamalifarH. Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to caco-2 cells.Folia Microbiol.200954215716010.1007/s12223‑009‑0024‑719418255
    [Google Scholar]
  49. SunJ. WangF. HongG. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress.Neurosci. Lett.201661815916610.1016/j.neulet.2016.03.00326957230
    [Google Scholar]
  50. HalloranK. UnderwoodM.A. Probiotic mechanisms of action.Early Hum. Dev.2019135586510.1016/j.earlhumdev.2019.05.01031174927
    [Google Scholar]
  51. PrincipiN. CozzaliR. FarinelliE. BrusaferroA. EspositoS. Gut dysbiosis and irribowel syndrome: The potential role of probiotics.J. Infect.201876211112010.1016/j.jinf.2017.12.01329291933
    [Google Scholar]
  52. RogersG.B. KeatingD.J. YoungR.L. WongM-L. LicinioJ. WesselinghS. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways.Mol. Psychiatry201621673874810.1038/mp.2016.5027090305
    [Google Scholar]
  53. de OliveiraG.L.V. LeiteA.Z. HiguchiB.S. GonzagaM.I. MarianoV.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases.Immunology2017152111210.1111/imm.1276528556916
    [Google Scholar]
  54. GuilleminG.J. Quinolinic acid, the inescapable neurotoxin.FEBS J.201227981356136510.1111/j.1742‑4658.2012.08485.x22248144
    [Google Scholar]
  55. GuilleminG.J. BrewB.J. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease.Redox Rep.20027419920610.1179/13510000212500055012396664
    [Google Scholar]
  56. HaroonE. RaisonC.L. MillerA.H. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior.Neuropsychopharmacology201237113716210.1038/npp.2011.20521918508
    [Google Scholar]
  57. TanidaM. YamanoT. MaedaK. OkumuraN. FukushimaY. NagaiK. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats.Neurosci. Lett.2005389210911410.1016/j.neulet.2005.07.03616118039
    [Google Scholar]
  58. LalS. KirkupA.J. BrunsdenA.M. ThompsonD.G. GrundyD. Vagal afferent responses to fatty acids of different chain length in the rat.Am. J. Physiol. Gastrointest. Liver Physiol.20012814G907G91510.1152/ajpgi.2001.281.4.G90711557510
    [Google Scholar]
  59. BoesmansL. Valles-ColomerM. WangJ. Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers.mSystems201836e00094e1810.1128/mSystems.00094‑1830417112
    [Google Scholar]
  60. PauloseJ.K. WrightJ.M. PatelA.G. CassoneV.M. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity.PLoS One2016111e014664310.1371/journal.pone.014664326751389
    [Google Scholar]
  61. ThaissC.A. ZeeviD. LevyM. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis.Cell2014159351452910.1016/j.cell.2014.09.04825417104
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499221169231123062539
Loading
/content/journals/probiot/10.2174/0126666499221169231123062539
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): but-brain axis; gut microbiome; HIV/AIDs; mood disorders; probiotics; Tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test