Skip to content
2000
image of Plant-derived Cyclotides in Immunomodulation and their Therapeutic Potential

Abstract

The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides ( kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent and studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665364479250214101422
2025-03-18
2025-06-04
Loading full text...

Full text loading...

References

  1. Saether O. Craik D.J. Campbell I.D. Sletten K. Juul J. Norman D.G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995 34 13 4147 4158 10.1021/bi00013a002 7703226
    [Google Scholar]
  2. Craik D.J. Daly N.L. Bond T. Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 1999 294 5 1327 1336 10.1006/jmbi.1999.3383 10600388
    [Google Scholar]
  3. Craik D.J. Du J. Cyclotides as drug design scaffolds. Curr. Opin. Chem. Biol. 2017 38 8 16 10.1016/j.cbpa.2017.01.018 28249194
    [Google Scholar]
  4. Camarero J.A. Campbell M.J. The potential of the cyclotide scaffold for drug development. Biomedicines 2019 7 2 31 10.3390/biomedicines7020031 31010257
    [Google Scholar]
  5. Ojeda P.G. Cardoso M.H. Franco O.L. Pharmaceutical applications of cyclotides. Drug Discov. Today 2019 24 11 2152 2161 10.1016/j.drudis.2019.09.010 31541712
    [Google Scholar]
  6. Mulvenna J.P. Wang C. Craik D.J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 2006 34 90001 D192 D194 10.1093/nar/gkj005 16381843
    [Google Scholar]
  7. Wang C.K.L. Kaas Q. Chiche L. Craik D.J. CyBase: A database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res. 2007 36 Database D206 D210 10.1093/nar/gkm953 17986451
    [Google Scholar]
  8. Jennings C. West J. Waine C. Craik D. Anderson M. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA 2001 98 19 10614 10619 10.1073/pnas.191366898 11535828
    [Google Scholar]
  9. Jennings C.V. Rosengren K.J. Daly N.L. Plan M. Stevens J. Scanlon M.J. Waine C. Norman D.G. Anderson M.A. Craik D.J. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: Do Möbius strips exist in nature? Biochemistry 2005 44 3 851 860 10.1021/bi047837h 15654741
    [Google Scholar]
  10. Taghizadeh M.S. Niazi A. Retzl B. Gruber C.W. Unveiling the insecticidal efficiency of Viola ignobilis against Macrosiphum rosae and Agonoscena pistaciae: From chemical composition to cytotoxicity analysis. Heliyon 2024 10 23 e40636 10.1016/j.heliyon.2024.e40636 39654760
    [Google Scholar]
  11. Henriques S.T. Craik D.J. Cyclotides as templates in drug design. Drug Discov. Today 2010 15 1-2 57 64 10.1016/j.drudis.2009.10.007 19878736
    [Google Scholar]
  12. Weidmann J. Craik D.J. Discovery, structure, function, and applications of cyclotides: Circular proteins from plants. J. Exp. Bot. 2016 67 16 4801 4812 10.1093/jxb/erw210 27222514
    [Google Scholar]
  13. Narayani M. Babu R. Chadha A. Srivastava S. Production of bioactive cyclotides: A comprehensive overview. Phytochem. Rev. 2020 19 4 787 825 10.1007/s11101‑020‑09682‑9
    [Google Scholar]
  14. Grover T. Mishra R. Bushra Gulati P. Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021 135 170430 10.1016/j.peptides.2020.170430 33096195
    [Google Scholar]
  15. Gerlach S.L. Burman R. Bohlin L. Mondal D. Göransson U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J. Nat. Prod. 2010 73 7 1207 1213 10.1021/np9007365 20575512
    [Google Scholar]
  16. List J. Gattringer J. Huszarek S. Marinovic S. Neubauer H.A. Kudweis P. Putz E.M. Hellinger R. Gotthardt D. Boosting the anti-tumor activity of natural killer cells by caripe 8 – A Carapichea ipecacuanha isolated cyclotide. Biomed. Pharmacother. 2024 177 117057 10.1016/j.biopha.2024.117057 38976957
    [Google Scholar]
  17. Dang T.T. Tran T.T.T. Tran G.H. Pham S.H. Nguyen T.H.N. Cyclotides derived from Viola dalatensis Gagnep: A novel approach for enrichment and evaluation of antimicrobial activity. Toxicon 2024 239 107606 10.1016/j.toxicon.2024.107606 38181837
    [Google Scholar]
  18. Slazak B. Kaltenböck K. Steffen K. Rogala M. Rodríguez-Rodríguez P. Nilsson A. Shariatgorji R. Andrén P.E. Göransson U. Cyclotide host-defense tailored for species and environments in violets from the Canary Islands. Sci. Rep. 2021 11 1 12452 10.1038/s41598‑021‑91555‑y 34127703
    [Google Scholar]
  19. Sharma A. Butool B. Sahu P. Mishra R. Mohanty A. In silico analysis of natural plant-derived cyclotides with antifungal activity against pathogenic fungi. Protein Pept. Lett. 2024 31 3 247 260 10.2174/0109298665295545240223114346 38445693
    [Google Scholar]
  20. Gerlach S.L. Chandra P.K. Roy U. Gunasekera S. Göransson U. Wimley W.C. Braun S.E. Mondal D. The membrane-active phytopeptide cycloviolacin O2 simultaneously targets HIV-1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Medicines 2019 6 1 33 10.3390/medicines6010033 30823453
    [Google Scholar]
  21. Lian Y. Tang X. Hu G. Miao C. Cui Y. Zhangsun D. Wu Y. Luo S. Characterization and evaluation of cytotoxic and antimicrobial activities of cyclotides from Viola japonica. Sci. Rep. 2024 14 1 9733 10.1038/s41598‑024‑60246‑9 38679643
    [Google Scholar]
  22. Tang X. Zou Q. Yan Y. He F. Cui Y. Lian Y. Zhangsun D. Wu Y. Luo S. Integrative transcriptome and mass spectrometry analysis reveals novel cyclotides with antimicrobial and cytotoxic activities from Viola arcuata. Plant Physiol. Biochem. 2025 219 109300 10.1016/j.plaphy.2024.109300 39608337
    [Google Scholar]
  23. Fernández-Bobey A. Pinto M.E.F. de Almeida L.C. de Souza B.M. Dias N.B. de Paula-Souza J. Cilli E.M. Lopes N.P. Costa-Lotufo L.V. Palma M.S. da Silva Bolzani V. Cytotoxic cyclotides from Anchietea pyrifolia, a South American plant species. J. Nat. Prod. 2022 85 9 2127 2134 10.1021/acs.jnatprod.1c01129 36044031
    [Google Scholar]
  24. Shambhawi Srivastava S. Mishra A. Mishra R. Mohanty A. Biopesticidal potential of cyclotides: An insight. Phytochem. Rev. 2022 21 6 2027 2047 10.1007/s11101‑022‑09825‑0
    [Google Scholar]
  25. Plan M.R.R. Saska I. Cagauan A.G. Craik D.J. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J. Agric. Food Chem. 2008 56 13 5237 5241 10.1021/jf800302f 18557620
    [Google Scholar]
  26. Colgrave M.L. Kotze A.C. Huang Y.H. O’Grady J. Simonsen S.M. Craik D.J. Cyclotides: Natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 2008 47 20 5581 5589 10.1021/bi800223y 18426225
    [Google Scholar]
  27. Gründemann C. Koehbach J. Huber R. Gruber C.W. Do plant cyclotides have potential as immunosuppressant peptides? J. Nat. Prod. 2012 75 2 167 174 10.1021/np200722w 22272797
    [Google Scholar]
  28. Gründemann C. Thell K. Lengen K. Garcia-Käufer M. Huang Y.H. Huber R. Craik D.J. Schabbauer G. Gruber C.W. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS One 2013 8 6 e68016 10.1371/journal.pone.0068016 23840803
    [Google Scholar]
  29. Hellinger R. Koehbach J. Fedchuk H. Sauer B. Huber R. Gruber C.W. Gründemann C. Immunosuppressive activity of an aqueous Viola tricolor herbal extract. J. Ethnopharmacol. 2014 151 1 299 306 10.1016/j.jep.2013.10.044 24216163
    [Google Scholar]
  30. Nguyen K.N.T. Nguyen G.K.T. Nguyen P.Q.T. Ang K.H. Dedon P.C. Tam J.P. Immunostimulating and Gram‐negative‐specific antibacterial cyclotides from the butterfly pea ( Clitoria ternatea ). FEBS J. 2016 283 11 2067 2090 10.1111/febs.13720 27007913
    [Google Scholar]
  31. Hellinger R. Muratspahić E. Devi S. Koehbach J. Vasileva M. Harvey P.J. Craik D.J. Gründemann C. Gruber C.W. Importance of the cyclic cystine knot structural motif for immunosuppressive effects of cyclotides. ACS Chem. Biol. 2021 16 11 2373 2386 10.1021/acschembio.1c00524 34592097
    [Google Scholar]
  32. Pinto M.E.F. Chan L.Y. Koehbach J. Devi S. Gründemann C. Gruber C.W. Gomes M. Bolzani V.S. Cilli E.M. Craik D.J. Cyclotides from Brazilian Palicourea sessilis and their effects on human lymphocytes. J. Nat. Prod. 2021 84 1 81 90 10.1021/acs.jnatprod.0c01069 33397096
    [Google Scholar]
  33. Huynh N.T. Ho T.N.T. Pham Y.N.D. Dang L.H. Pham S.H. Dang T.T. Immunosuppressive cyclotides: A promising approach for treating autoimmune diseases. Protein J. 2024 43 2 159 170 10.1007/s10930‑024‑10188‑y 38485875
    [Google Scholar]
  34. Gründemann C. Stenberg K.G. Gruber C.W. T20K: An immunomodulatory cyclotide on its way to the clinic. Int. J. Pept. Res. Ther. 2019 25 1 9 13 10.1007/s10989‑018‑9701‑1
    [Google Scholar]
  35. Dayani L. Dinani M.S. Aliomrani M. Hashempour H. Varshosaz J. Taheri A. Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult. Scler. Relat. Disord. 2022 64 103958 10.1016/j.msard.2022.103958 35716476
    [Google Scholar]
  36. Taghizadeh M.S. Retzl B. Muratspahić E. Trenk C. Casanova E. Moghadam A. Afsharifar A. Niazi A. Gruber C.W. Discovery of the cyclotide caripe 11 as a ligand of the cholecystokinin-2 receptor. Sci. Rep. 2022 12 1 9215 10.1038/s41598‑022‑13142‑z 35654807
    [Google Scholar]
  37. Retzl B. Zimmermann-Klemd A.M. Gründemann C. Gruber C.W. Winker M. Nicolay S. Exploring immune modulatory effects of cyclotide-enriched Viola tricolor preparations. Planta Med. 2023 89 15 1493 1504 10.1055/a‑2173‑8627 37748505
    [Google Scholar]
  38. Taghizadeh M.S. Niazi A. Mirzapour-Kouhdasht A. Pereira E.C. Garcia-Vaquero M. Enhancing cyclotide bioproduction: Harnessing biological synthesis methods and various expression systems for large-scale manufacturing. Crit. Rev. Biotechnol. 2024 1 23 10.1080/07388551.2024.2412780 39510598
    [Google Scholar]
  39. Simon A.K. Hollander G.A. McMichael A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015 282 1821 20143085 10.1098/rspb.2014.3085 26702035
    [Google Scholar]
  40. Dinarello C.A. Historical insights into cytokines. Eur. J. Immunol. 2007 37 S1 Suppl. 1 S34 S45 10.1002/eji.200737772 17972343
    [Google Scholar]
  41. Jantan I. Ahmad W. Bukhari S.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2015 6 655 10.3389/fpls.2015.00655 26379683
    [Google Scholar]
  42. Zebeaman M. Tadesse M.G. Bachheti R.K. Bachheti A. Gebeyhu R. Chaubey K.K. Plants and plant‐derived molecules as natural immunomodulators. BioMed Res. Int. 2023 2023 1 7711297 10.1155/2023/7711297 37313550
    [Google Scholar]
  43. Fox C.J. Hammerman P.S. Thompson C.B. Fuel feeds function: Energy metabolism and the T-cell response. Nat. Rev. Immunol. 2005 5 11 844 852 10.1038/nri1710 16239903
    [Google Scholar]
  44. Ransohoff R.M. Hafler D.A. Lucchinetti C.F. Multiple sclerosis—A quiet revolution. Nat. Rev. Neurol. 2015 11 3 134 142 10.1038/nrneurol.2015.14 25686758
    [Google Scholar]
  45. Jackson M.A. Xie J. Nguyen L.T.T. Wang X. Yap K. Harvey P.J. Gilding E.K. Craik D.J. Plant-based production of an orally active cyclotide for the treatment of multiple sclerosis. Transgenic Res. 2023 32 1-2 121 133 10.1007/s11248‑023‑00341‑1 36930229
    [Google Scholar]
  46. Thell K. Hellinger R. Schabbauer G. Gruber C.W. Immunosuppressive peptides and their therapeutic applications. Drug Discov. Today 2014 19 5 645 653 10.1016/j.drudis.2013.12.002 24333193
    [Google Scholar]
  47. Gran L. An oxytocic principle found in Oldenlandia affinis DC. Medd. Nor. Farm. Selsk. 1970 12 173 80
    [Google Scholar]
  48. Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia 1973 36 2 174 178 4744554
    [Google Scholar]
  49. Harati E. Bahrami M. Razavi A. Kamalinejad M. Mohammadian M. Rastegar T. Sadeghipour H.R. Effects of viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma. Iran. J. Allergy Asthma Immunol. 2018 17 5 409 417 10.18502/ijaai.v17i5.299 30518183
    [Google Scholar]
  50. Conzelmann C. Muratspahić E. Tomašević N. Münch J. Gruber C.W. In vitro inhibition of HIV-1 by cyclotide-enriched extracts of Viola tricolor. Front. Pharmacol. 2022 13 888961 10.3389/fphar.2022.888961 35712712
    [Google Scholar]
  51. Malek T.R. The biology of interleukin-2. Annu. Rev. Immunol. 2008 26 1 453 479 10.1146/annurev.immunol.26.021607.090357 18062768
    [Google Scholar]
  52. Falanga C.M. Steinborn C. Muratspahić E. Zimmermann-Klemd A.M. Winker M. Krenn L. Huber R. Gruber C.W. Gründemann C. Ipecac root extracts and isolated circular peptides differentially suppress inflammatory immune response characterised by proliferation, activation and degranulation capacity of human lymphocytes in vitro. Biomed. Pharmacother. 2022 152 113120 10.1016/j.biopha.2022.113120 35653889
    [Google Scholar]
  53. Paul S. El Bethel Hmar H.K.S. Strengthening immunity with immunostimulants: A review. Curr. Trend. Pharm. Res 2020 7 1
    [Google Scholar]
  54. Thell K. Hellinger R. Sahin E. Michenthaler P. Gold-Binder M. Haider T. Kuttke M. Liutkevičiūtė Z. Göransson U. Gründemann C. Schabbauer G. Gruber C.W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. USA 2016 113 15 3960 3965 10.1073/pnas.1519960113 27035952
    [Google Scholar]
  55. Wang C.K. Craik D.J. Linking molecular evolution to molecular grafting. J. Biol. Chem. 2021 296 100425 10.1016/j.jbc.2021.100425 33600801
    [Google Scholar]
  56. Poth A.G. Chan L.Y. Craik D.J. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 2013 100 5 480 491 10.1002/bip.22284 23893608
    [Google Scholar]
  57. Aboye T.L. Ha H. Majumder S. Christ F. Debyser Z. Shekhtman A. Neamati N. Camarero J.A. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J. Med. Chem. 2012 55 23 10729 10734 10.1021/jm301468k 23151033
    [Google Scholar]
  58. Wang C.K. Gruber C.W. Cemazar M. Siatskas C. Tagore P. Payne N. Sun G. Wang S. Bernard C.C. Craik D.J. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem. Biol. 2014 9 1 156 163 10.1021/cb400548s 24147816
    [Google Scholar]
  59. Hernandez J.F. Gagnon J. Chiche L. Nguyen T.M. Andrieu J.P. Heitz A. Hong T.T. Pham T.T.C. Le Nguyen D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 2000 39 19 5722 5730 10.1021/bi9929756 10801322
    [Google Scholar]
  60. Felizmenio-Quimio M.E. Daly N.L. Craik D.J. Circular proteins in plants: Solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J. Biol. Chem. 2001 276 25 22875 22882 10.1074/jbc.M101666200 11292835
    [Google Scholar]
  61. Chan L.Y. Gunasekera S. Henriques S.T. Worth N.F. Le S.J. Clark R.J. Campbell J.H. Craik D.J. Daly N.L. Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 2011 118 25 6709 6717 10.1182/blood‑2011‑06‑359141 22039263
    [Google Scholar]
  62. Contreras J. Elnagar A.Y.O. Hamm-Alvarez S.F. Camarero J.A. Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways. J. Control. Release 2011 155 2 134 143 10.1016/j.jconrel.2011.08.030 21906641
    [Google Scholar]
  63. Tahirovic Y.A. Pelly S. Jecs E. Miller E.J. Sharma S.K. Liotta D.C. Wilson L.J. Small molecule and peptide-based CXCR4 modulators as therapeutic agents. A patent review for the period from 2010 to 2018. Expert Opin. Ther. Pat. 2020 30 2 87 101 10.1080/13543776.2020.1707186 31854208
    [Google Scholar]
  64. Wu T. Yang W. Sun A. Wei Z. Lin Q. The role of CXC chemokines in cancer progression. Cancers 2022 15 1 167 10.3390/cancers15010167 36612163
    [Google Scholar]
  65. Ambrosius W. Michalak S. Kozubski W. Kalinowska A. Myelin oligodendrocyte glycoprotein antibody-associated disease: Current insights into the disease pathophysiology, diagnosis and management. Int. J. Mol. Sci. 2020 22 1 100 10.3390/ijms22010100 33374173
    [Google Scholar]
  66. Corbali O. Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front. Neurol. 2023 14 1137998 10.3389/fneur.2023.1137998 36925938
    [Google Scholar]
  67. Bernard C.C.A. Johns T.G. Slavin A. Ichikawa M. Ewing C. Liu J. Bettadapura J. Myelin oligodendrocyte glycoprotein: A novel candidate autoantigen in multiple sclerosis. J. Mol. Med. 1997 75 2 77 88 10.1007/s001090050092 9083925
    [Google Scholar]
  68. Henriques S.T. Huang Y.H. Chaousis S. Sani M.A. Poth A.G. Separovic F. Craik D.J. The prototypic cyclotide kalata B1 has a unique mechanism of entering cells. Chem. Biol. 2015 22 8 1087 1097 10.1016/j.chembiol.2015.07.012 26278183
    [Google Scholar]
  69. Du Q. Chan L.Y. Gilding E.K. Henriques S.T. Condon N.D. Ravipati A.S. Kaas Q. Huang Y.H. Craik D.J. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J. Biol. Chem. 2020 295 32 10911 10925 10.1074/jbc.RA120.012627 32414842
    [Google Scholar]
  70. Huang Y.H. Colgrave M.L. Clark R.J. Kotze A.C. Craik D.J. Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J. Biol. Chem. 2010 285 14 10797 10805 10.1074/jbc.M109.089854 20103593
    [Google Scholar]
  71. Simonsen S.M. Sando L. Rosengren K.J. Wang C.K. Colgrave M.L. Daly N.L. Craik D.J. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J. Biol. Chem. 2008 283 15 9805 9813 10.1074/jbc.M709303200 18258598
    [Google Scholar]
  72. Henriques T.S. Craik D.J. Cyclotide structure and function: The role of membrane binding and permeation. Biochemistry 2017 56 5 669 682 10.1021/acs.biochem.6b01212 28085267
    [Google Scholar]
  73. Aghazadeh Y. Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov. Today 2016 21 2 278 287 10.1016/j.drudis.2015.09.012 26456530
    [Google Scholar]
  74. Göransson U. Craik D.J. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif. J. Biol. Chem. 2003 278 48 48188 48196 10.1074/jbc.M308771200 12960160
    [Google Scholar]
  75. Du C. Duan Y. Wei W. Cai Y. Chai H. Lv J. Du X. Zhu J. Xie X. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat. Commun. 2016 7 1 11120 10.1038/ncomms11120 27040771
    [Google Scholar]
  76. Lalanne L. Ayranci G. Kieffer B.L. Lutz P.E. The kappa opioid receptor: From addiction to depression, and back. Front. Psychiatry 2014 5 170 10.3389/fpsyt.2014.00170 25538632
    [Google Scholar]
  77. Mei F. Mayoral S.R. Nobuta H. Wang F. Desponts C. Lorrain D.S. Xiao L. Green A.J. Rowitch D. Whistler J. Chan J.R. Identification of the kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination. J. Neurosci. 2016 36 30 7925 7935 10.1523/JNEUROSCI.1493‑16.2016 27466337
    [Google Scholar]
  78. Muratspahić E. Tomašević N. Nasrollahi-Shirazi S. Gattringer J. Emser F.S. Freissmuth M. Gruber C.W. Plant-derived cyclotides modulate κ-opioid receptor signaling. J. Nat. Prod. 2021 84 8 2238 2248 10.1021/acs.jnatprod.1c00301 34308635
    [Google Scholar]
  79. Mostofa R. Ahmed S. Begum M.M. Rahman M.S. Begum T. Ahmed S.U. Tuhin R.H. Das M. Hossain A. Sharma M. Begum R. Evaluation of anti-inflammatory and gastric anti-ulcer activity of Phyllanthus niruri L. (Euphorbiaceae) leaves in experimental rats. BMC Complement. Altern. Med. 2017 17 1 267 10.1186/s12906‑017‑1771‑7 28511679
    [Google Scholar]
  80. Zhang D. Jia M. Wang C. Li Y. Ma C. Zhu G. Ma R. Wen D. Jia X. Xu G. Zhang X. Cong B. CCK2-receptor deficiency impairs immune balance by influencing CD4 + T cells development by inhibiting cortical-thymic-epithelial-cells. Exp. Biol. Med. 2023 248 20 1718 1731 10.1177/15353702231198083 37787155
    [Google Scholar]
  81. Koehbach J. O’Brien M. Muttenthaler M. Miazzo M. Akcan M. Elliott A.G. Daly N.L. Harvey P.J. Arrowsmith S. Gunasekera S. Smith T.J. Wray S. Göransson U. Dawson P.E. Craik D.J. Freissmuth M. Gruber C.W. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc. Natl. Acad. Sci. USA 2013 110 52 21183 21188 10.1073/pnas.1311183110 24248349
    [Google Scholar]
  82. Hauser A.S. Attwood M.M. Rask-Andersen M. Schiöth H.B. Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017 16 12 829 842 10.1038/nrd.2017.178 29075003
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665364479250214101422
Loading
/content/journals/ppl/10.2174/0109298665364479250214101422
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: interleukin ; Cyclotides ; multiple sclerosis ; immunomodulation ; therapeutic ; T20K
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test