Skip to content
2000
image of Unveiling the Potential Role of Hesperetin and Emodin as a Combination Therapy to Inhibit the Pancreatic Cancer Progression against the C-Met Gene

Abstract

Background

Pancreatic adenocarcinoma (PAAD) is one of the most prevalent cancers, and it has high death rates. Only 10% of PAAD patients can survive until 5 years. Hence, the improvement of survival rate of the patients should be improved.

Aim

The present study used a computational approach to identify novel biomarkers and potentially effective small drug-like molecules in PAAD.

Objective

The objective of this study was to identify the Differentially Expressed Genes (DEGs) and survival rate affecting genes (SDEGs) to single out the specific gene responsible for pancreatic cancer and predict the efficacy of interactions with hesperetin and emodin. Further, another objective was to validate the predicted efficacies using an MTT assay.

Methods

The GEPIA2 database was used to analyze the TCGA-PAAD dataset and identify DEGs and SDEGs. Venn identified the commonly scattered genes between the DEGs and SDEGs. Network Analyst v3.0, CytoScape v3.10.1, and cytoHubbawere used to construct protein-protein interactions (PPI) network and identifying hub genes which were described as target proteins. The Protein Data Bank (PDB) and PubChem were utilized to obtain the PDB structure of the target proteins and 13 phytocompounds in SDF format. Molecular docking studies were carried out and visualized by utilizing Autodock vina and Discovery Studio Visualizer v19.1.0.1828. The cytotoxicity was measured in the MiaPaCa-2 cell line after being treated with hesperetin and emodin.

Results

A total of 9219 Differentially Expressed Genes (DEGs) from the TCGA-PAAD dataset were identified. Among them, 8740 and 479 genes were up and down-regulated with the statistical significance of 0.05, respectively. Likely, 500 most survival rate affecting genes (SDEGs) in PAAD patients with a statistical significance of 0.05 were identified. The common 137 genes were identified between these obtained DEGs and SDEGs. The survival heat map was delineated for the predicted 137 common genes. Ninety-six genes were identified as the most hazardous genes (highlighted in red). After that, the network was constructed by using PPI for the most hazardous 96 genes. From the constructed PPI network, the highly interacted top 10 genes were identified. The survival analysis was carried out to identify the most hazardous genes and revealed that all the identified genes significantly reduced the survival rate of the patients affected by PAAD. From that, high survival affecting 5 genes, such as CDK1, CENPE, NCAPG, KIF20A, and c-MET, were selected for further analysis. The molecular docking studies were carried out for the identified top 5 genes, with the 13 phytocompounds reviewed previously for anti-cancer activity. The molecular docking analysis revealed that the hesperetin (binding affinity (BA) = -8.0 kcal/mol; Root mean square deviation (RMSD) = 2.012 Å) and emodin (BA = -8.6 kcal/mol; RMSD = 1.605 Å) interacted well with the c-MET based on the number of hydrogen bonds and BA. Hence, the synergistic efficacy was validated in the cell line MiaPaCa-2 with the hesperetin, emodin, and hesperetin: emodin in combination and obtained the IC values of 171.3 µM, 72.94 µM, and 92.36 µM respectively.

Conclusion

The results stated that emodin significantly reduced the cell proliferation rate of the MiaPaCa-2 pancreatic cells, and no synergistic effects were observed in this context with hesperetin. However, emodin improved the hesperetin efficacy in pancreatic cells, indicating that structural modification through pharmacokinetics by coupling these two compounds may help to identify novel compounds to treat pancreatic cancer in the future. However, further pancreatic cell lines, such as Panc-1, BxPC-3, and models that include CDX and PDX are needed to verify the combination effect of hespertin and emodin on pancreatic cells.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665363165250225100109
2025-03-24
2025-06-17
Loading full text...

Full text loading...

References

  1. Moore A. Donahue T. Pancreatic cancer. JAMA 2019 322 14 1426 10.1001/jama.2019.14699 31593274
    [Google Scholar]
  2. Yang J. Xu R. Wang C. Qiu J. Ren B. You L. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun. (Lond.) 2021 41 12 1257 1274 10.1002/cac2.12204 34331845
    [Google Scholar]
  3. Shi X. Huang B. Zhu J. Yamaguchi T. Hu A. Tabuchi M. Watanabe D. Yoshikawa S. Mizushima S. Mizushima A. Xia S. A network pharmacology-based investigation of emodin against pancreatic adenocarcinoma. Medicine (Baltimore) 2023 102 20 e33521 10.1097/MD.0000000000033521 37335741
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Ferlay J. Ervik M. Lam F. Laversanne M. Colombet M. Mery L. Piñeros M. Znaor A. Soerjomataram I. Bray F. Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer. 2024 Available from: https://gco.iarc.who.int/today
  6. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  7. Luo G. Fan Z. Gong Y. Jin K. Yang C. Cheng H. Huang D. Ni Q. Liu C. Yu X. Characteristics and outcomes of pancreatic cancer by histological subtypes. Pancreas 2019 48 6 817 822 10.1097/MPA.0000000000001338 31210663
    [Google Scholar]
  8. Gao H.L. Wang W.Q. Yu X.J. Liu L. Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp. Hematol. Oncol. 2020 9 1 28 10.1186/s40164‑020‑00184‑0 33101770
    [Google Scholar]
  9. Shupp B. Liaquat H. Prenatt Z. Stoll L. Matin A. A rare case of abdominal wall skeletal muscle metastasis from adenocarcinoma of the pancreatic head. Cureus 2023 15 7 e41470 10.7759/cureus.41470 37546150
    [Google Scholar]
  10. Calderwood A.H. Sawhney M.S. Thosani N.C. Rebbeck T.R. Wani S. Canto M.I. Fishman D.S. Golan T. Hidalgo M. Kwon R.S. Riegert-Johnson D.L. Sahani D.V. Stoffel E.M. Vollmer C.M. Jr Al-Haddad M.A. Amateau S.K. Buxbaum J.L. DiMaio C.J. Fujii-Lau L.L. Jamil L.H. Jue T.L. Law J.K. Lee J.K. Naveed M. Pawa S. Storm A.C. Qumseya B.J. American society for gastrointestinal endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: Methodology and review of evidence. Gastrointest. Endosc. 2022 95 5 827 854.e3 10.1016/j.gie.2021.12.002 35183359
    [Google Scholar]
  11. Peters M.L.B. Eckel A. Seguin C.L. Davidi B. Howard D.H. Knudsen A.B. Pandharipande P.V. Cost-effectiveness analysis of screening for pancreatic cancer among high-risk populations. JCO Oncol. Pract. 2024 20 2 278 290 10.1200/OP.23.00495 38086003
    [Google Scholar]
  12. Vincent A. Herman J. Schulick R. Hruban R.H. Goggins M. Pancreatic cancer. Lancet 2011 378 9791 607 620 10.1016/S0140‑6736(10)62307‑0 21620466
    [Google Scholar]
  13. Klein A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021 18 7 493 502 10.1038/s41575‑021‑00457‑x 34002083
    [Google Scholar]
  14. Ferrone C.R. Finkelstein D.M. Thayer S.P. Muzikansky A. Castillo C.F. Warshaw A.L. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J. Clin. Oncol. 2006 24 18 2897 2902 10.1200/JCO.2005.05.3934 16782929
    [Google Scholar]
  15. Goonetilleke K.S. Siriwardena A.K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007 33 3 266 270 10.1016/j.ejso.2006.10.004 17097848
    [Google Scholar]
  16. Scarà S. Bottoni P. Scatena R. CA 19-9: Biochemical and clinical aspects. Adv. Exp. Med. Biol. 2015 867 247 260 10.1007/978‑94‑017‑7215‑0_15 26530370
    [Google Scholar]
  17. Hasan S. Jacob R. Manne U. Paluri R. Advances in pancreatic cancer biomarkers. Oncol. Rev. 2019 13 1 410 10.4081/oncol.2019.410 31044028
    [Google Scholar]
  18. Wu H. Ou S. Zhang H. Huang R. Yu S. Zhao M. Tai S. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int. 2022 22 1 220 10.1186/s12935‑022‑02640‑9 35761336
    [Google Scholar]
  19. Sun J. Russell C.C. Scarlett C.J. McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med. Chem. 2020 11 2 164 183 10.1039/C9MD00447E 33479626
    [Google Scholar]
  20. Shetu S.A. James N. Rivera G. Bandyopadhyay D. Molecular research in pancreatic cancer: Small molecule inhibitors, their mechanistic pathways and beyond. Curr. Issues Mol. Biol. 2023 45 3 1914 1949 10.3390/cimb45030124 36975494
    [Google Scholar]
  21. Chour A. Denis J. Mascaux C. Zysman M. Bigay-Game L. Swalduz A. Gounant V. Cortot A. Darrason M. Fallet V. Auclin E. Basse C. Tissot C. Decroisette C. Bombaron P. Giroux-Leprieur E. Odier L. Brosseau S. Creusot Q. Gueçamburu M. Meersseman C. Rochand A. Costantini A. Gaillard C.M. Wasielewski E. Girard N. Cadranel J. Lafitte C. Lebossé F. Duruisseaux M. Brief report: Severe sotorasib-related hepatotoxicity and non-liver adverse events associated with sequential anti–programmed cell death (ligand)1 and sotorasib therapy in KRASG12C-mutant lung cancer. J. Thorac. Oncol. 2023 18 10 1408 1415 10.1016/j.jtho.2023.05.013 37217096
    [Google Scholar]
  22. Dzobo K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology London Elsevier 2022 1 15 10.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  23. Stompor-Gorący M. The health benefits of emodin, a natural anthraquinone derived from rhubarb—a summary update. Int. J. Mol. Sci. 2021 22 17 9522 10.3390/ijms22179522 34502424
    [Google Scholar]
  24. Alipour M. Sharifi S. Samiei M. Shahi S. Aghazadeh M. Dizaj S.M. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci. Rep. 2023 13 1 2076 10.1038/s41598‑023‑28267‑y 36746996
    [Google Scholar]
  25. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  26. Brown N.R. Korolchuk S. Martin M.P. Stanley W.A. Moukhametzianov R. Noble M.E.M. Endicott J.A. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat. Commun. 2015 6 1 6769 10.1038/ncomms7769 25864384
    [Google Scholar]
  27. Garcia-Saez I. Yen T. Wade R.H. Kozielski F. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J. Mol. Biol. 2004 340 5 1107 1116 10.1016/j.jmb.2004.05.053 15236970
    [Google Scholar]
  28. Hara K. Kinoshita K. Migita T. Murakami K. Shimizu K. Takeuchi K. Hirano T. Hashimoto H. Structural basis of Heat‐kleisin interactions in the human condensin I subcomplex. EMBO Rep. 2019 20 5 e47183 10.15252/embr.201847183 30858338
    [Google Scholar]
  29. Serena M. Bastos R.N. Elliott P.R. Barr F.A. Molecular basis of MKLP2-dependent Aurora B transport from chromatin to the anaphase central spindle. J. Cell Biol. 2020 219 7 e201910059 10.1083/jcb.201910059 32356865
    [Google Scholar]
  30. Wu K. Ai J. Liu Q. Chen T. Zhao A. Peng X. Wang Y. Ji Y. Yao Q. Xu Y. Geng M. Zhang A. Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: Synthesis and SAR study as tyrosine kinase c-Met inhibitors. Bioorg. Med. Chem. Lett. 2012 22 20 6368 6372 10.1016/j.bmcl.2012.08.075 22985853
    [Google Scholar]
  31. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  32. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  33. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  34. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  35. Lill M.A. Danielson M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011 25 1 13 19 10.1007/s10822‑010‑9395‑8 21053052
    [Google Scholar]
  36. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  37. Takino J. Sato T. Hiraishi I. Nagamine K. Hori T. Alterations in glucose metabolism due to decreased expression of heterogeneous nuclear ribonucleoprotein M in pancreatic ductal adenocarcinoma. Biology (Basel) 2021 10 1 57 10.3390/biology10010057 33466816
    [Google Scholar]
  38. Wang Q. Bode A.M. Zhang T. Targeting CDK1 in cancer: Mechanisms and implications. NPJ Precis. Oncol. 2023 7 1 58 10.1038/s41698‑023‑00407‑7 37311884
    [Google Scholar]
  39. Wijnen R. Pecoraro C. Carbone D. Fiuji H. Avan A. Peters G.J. Giovannetti E. Diana P. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers (Basel) 2021 13 17 4389 10.3390/cancers13174389 34503199
    [Google Scholar]
  40. Van Matre S. Huq S. Akana L. Eldridge D.E. Zuniga O. Rodrigues H. Wolfe A.R. Enhanced radiosensitivity of pancreatic cancer achieved through inhibition of Cyclin-dependent kinase 1. Radiother. Oncol. 2024 200 110531 10.1016/j.radonc.2024.110531 39270987
    [Google Scholar]
  41. Chohan T.A. Qayyum A. Rehman K. Tariq M. Akash M.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed. Pharmacother. 2018 107 1326 1341 10.1016/j.biopha.2018.08.116 30257348
    [Google Scholar]
  42. García-Reyes B. Kretz A.L. Ruff J.P. Von Karstedt S. Hillenbrand A. Knippschild U. Henne-Bruns D. Lemke J. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int. J. Mol. Sci. 2018 19 10 3219 10.3390/ijms19103219 30340359
    [Google Scholar]
  43. Jain A. Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J. Gastroenterol. 2021 27 39 6527 6550 10.3748/wjg.v27.i39.6527 34754151
    [Google Scholar]
  44. Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. Olsson I. Edlund K. Lundberg E. Navani S. Szigyarto C.A.K. Odeberg J. Djureinovic D. Takanen J.O. Hober S. Alm T. Edqvist P.H. Berling H. Tegel H. Mulder J. Rockberg J. Nilsson P. Schwenk J.M. Hamsten M. von Feilitzen K. Forsberg M. Persson L. Johansson F. Zwahlen M. von Heijne G. Nielsen J. Pontén F. Tissue-based map of the human proteome. Science 2015 347 6220 1260419 10.1126/science.1260419 25613900
    [Google Scholar]
  45. Cai X. Gao J. Shi C. Guo W. Guo D. Zhang S. The role of NCAPG in various of tumors. Biomed. Pharmacother. 2022 155 113635 10.1016/j.biopha.2022.113635 36095957
    [Google Scholar]
  46. Yang Y.H. Wei Y.L. She Z.Y. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front. Mol. Biosci. 2024 11 1366113 10.3389/fmolb.2024.1366113 38560520
    [Google Scholar]
  47. Shi Y.X. Dai P.H. Jiang Y.F. Wang Y.Q. Liu W. A pan-cancer landscape of centromere proteins in tumorigenesis and anticancer drug sensitivity. Transl. Oncol. 2023 31 101658 10.1016/j.tranon.2023.101658 36944275
    [Google Scholar]
  48. Pisa R. Phua D.Y.Z. Kapoor T.M. Distinct mechanisms of resistance to a CENP-E inhibitor emerge in near-haploid and diploid cancer cells. Cell Chem. Biol. 2020 27 7 850 857.e6 10.1016/j.chembiol.2020.05.003 32442423
    [Google Scholar]
  49. El-Arabey A.A. Salama S.A. Abd-Allah A.R. CENP-E as a target for cancer therapy: Where are we now? Life Sci. 2018 208 192 200 10.1016/j.lfs.2018.07.037 30031812
    [Google Scholar]
  50. Peng P. Zheng J. He K. Wang K. Wang L. Zheng X. Wu H. Yang Z. Zhang S. Zhao L. CENPE is a diagnostic and prognostic biomarker for cervical cancer. Heliyon. 2024 10 24 e40860 10.1016/j.heliyon.2024.e40860 39759304
    [Google Scholar]
  51. Guo Z. Jiang Y. Ou B. Lu X. Cheng X. Zhao R. Editorial: The role of angiogenesis and immune response in tumor microenvironment of solid tumor. Front. Immunol. 2023 14 1195390 10.3389/fimmu.2023.1195390 37143661
    [Google Scholar]
  52. Jiang X. Wang J. Deng X. Xiong F. Zhang S. Gong Z. Li X. Cao K. Deng H. He Y. Liao Q. Xiang B. Zhou M. Guo C. Zeng Z. Li G. Li X. Xiong W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res. 2020 39 1 204 10.1186/s13046‑020‑01709‑5 32993787
    [Google Scholar]
  53. Lin J. Li G. Bai Y. Xie Y. NCAPG as a novel prognostic biomarker in numerous cancers: A meta-analysis and bioinformatics analysis. Aging (Albany NY) 2023 15 7 2503 2524 10.18632/aging.204621 36996493
    [Google Scholar]
  54. Sun D.P. Lin C.C. Hung S.T. Kuang Y.Y. Hseu Y.C. Fang C.L. Lin K.Y. Aberrant expression of NCAPG is associated with prognosis and progression of gastric cancer. Cancer Manag. Res. 2020 12 7837 7846 10.2147/CMAR.S248318 32922082
    [Google Scholar]
  55. Wahab M.A. Del Gaudio N. Gargiulo B. Quagliariello V. Maurea N. Nebbioso A. Altucci L. Conte M. Exploring the role of CBX3 as a potential therapeutic target in lung cancer. Cancers (Basel) 2024 16 17 3026 10.3390/cancers16173026 39272883
    [Google Scholar]
  56. Zhong X. Kan A. Zhang W. Zhou J. Zhang H. Chen J. Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019 11 15 5483 5497 10.18632/aging.102132 31375643
    [Google Scholar]
  57. Yang H. Pu L. Li R. Zhu R. NCAPG is transcriptionally regulated by CBX3 and activates the Wnt/β-catenin signaling pathway to promote proliferation and the cell cycle and inhibit apoptosis in colorectal cancer. J. Gastrointest. Oncol. 2023 14 2 900 912 10.21037/jgo‑23‑63 37201048
    [Google Scholar]
  58. Shi Y. Ge C. Fang D. Wei W. Li L. Wei Q. Yu H. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial–mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int. 2022 22 1 119 10.1186/s12935‑022‑02538‑6 35292013
    [Google Scholar]
  59. Orozco C.A. Martinez-Bosch N. Guerrero P.E. Vinaixa J. Dalotto-Moreno T. Iglesias M. Moreno M. Djurec M. Poirier F. Gabius H.J. Fernandez-Zapico M.E. Hwang R.F. Guerra C. Rabinovich G.A. Navarro P. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor–stroma crosstalk. Proc. Natl. Acad. Sci. USA 2018 115 16 E3769 E3778 10.1073/pnas.1722434115 29615514
    [Google Scholar]
  60. Sun H. Zhang H. Yan Y. Li Y. Che G. Zhou C. Nicot C. Ma H. NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression. Mol. Cancer 2022 21 1 55 10.1186/s12943‑022‑01533‑9 35180865
    [Google Scholar]
  61. Stangel D. Erkan M. Buchholz M. Gress T. Michalski C. Raulefs S. Friess H. Kleeff J. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J. Surg. Res. 2015 197 1 91 100 10.1016/j.jss.2015.03.070 25953216
    [Google Scholar]
  62. Liu S.L. Lin H.X. Qiu F. Zhang W.J. Niu C.H. Wen W. Sun X.Q. Ye L.P. Wu X.Q. Lin C.Y. Song L.B. Guo L. Overexpression of kinesin family member 20A correlates with disease progression and poor prognosis in human nasopharyngeal cancer: A retrospective analysis of 105 patients. PLoS One 2017 12 1 e0169280 10.1371/journal.pone.0169280 28081138
    [Google Scholar]
  63. Suzuki N. Hazama S. Ueno T. Matsui H. Shindo Y. Iida M. Yoshimura K. Yoshino S. Takeda K. Oka M. A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer. J. Immunother. 2014 37 1 36 42 10.1097/CJI.0000000000000012 24316554
    [Google Scholar]
  64. Wang J. Ma S. Ma R. Qu X. Liu W. Lv C. Zhao S. Gong Y. KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer. BMC Cancer 2014 14 1 461 10.1186/1471‑2407‑14‑461 24950762
    [Google Scholar]
  65. Nakamura M. Takano A. Thang P. Tsevegjav B. Zhu M. Yokose T. Yamashita T. Miyagi Y. Daigo Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int. J. Oncol. 2020 57 1 277 288 10.3892/ijo.2020.5060 32467984
    [Google Scholar]
  66. Zhang Q. Di J. Ji Z. Mi A. Li Q. Du X. Wang A. Wang A. Qin C. KIF20A predicts poor survival of patients and promotes colorectal cancer tumor progression through the JAK/STAT3 signaling pathway. Dis. Markers 2020 2020 1 11 10.1155/2020/2032679 32695240
    [Google Scholar]
  67. Sheng Y. Wang W. Hong B. Jiang X. Sun R. Yan Q. Zhang S. Lu M. Wang S. Zhang Z. Lin W. Li Y. Upregulation of KIF20A correlates with poor prognosis in gastric cancer. Cancer Manag. Res. 2018 10 6205 6216 10.2147/CMAR.S176147 30538567
    [Google Scholar]
  68. Imai K. Hirata S. Irie A. Senju S. Ikuta Y. Yokomine K. Harao M. Inoue M. Tomita Y. Tsunoda T. Nakagawa H. Nakamura Y. Baba H. Nishimura Y. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br. J. Cancer 2011 104 2 300 307 10.1038/sj.bjc.6606052 21179034
    [Google Scholar]
  69. Xu Z. Pang T.C.Y. Liu A.C. Pothula S.P. Mekapogu A.R. Perera C.J. Murakami T. Goldstein D. Pirola R.C. Wilson J.S. Apte M.V. Targeting the HGF/c-MET pathway in advanced pancreatic cancer: A key element of treatment that limits primary tumour growth and eliminates metastasis. Br. J. Cancer 2020 122 10 1486 1495 10.1038/s41416‑020‑0782‑1 32203220
    [Google Scholar]
  70. Mekapogu A.R. Xu Z. Pothula S. Perera C. Pang T. Hosen S.M.Z. Damalanka V. Janetka J. Goldstein D. Pirola R. Wilson J. Apte M. HGF/c-Met pathway inhibition combined with chemotherapy increases cytotoxic T-cell infiltration and inhibits pancreatic tumour growth and metastasis. Cancer Lett. 2023 568 216286 10.1016/j.canlet.2023.216286 37354984
    [Google Scholar]
  71. Kim J. Lee T.S. Lee M.H. Cho I.R. Ryu J.K. Kim Y.T. Lee S.H. Paik W.H. Pancreatic cancer treatment targeting the HGF/c-MET pathway: The MEK inhibitor trametinib. Cancers (Basel) 2024 16 5 1056 10.3390/cancers16051056 38473413
    [Google Scholar]
  72. Pothula S.P. Xu Z. Goldstein D. Pirola R.C. Wilson J.S. Apte M.V. Targeting HGF/c-MET axis in pancreatic cancer. Int. J. Mol. Sci. 2020 21 23 9170 10.3390/ijms21239170 33271944
    [Google Scholar]
  73. Albahde M.A.H. Abdrakhimov B. Li G.Q. Zhou X. Zhou D. Xu H. Qian H. Wang W. The role of microtubules in pancreatic cancer: Therapeutic progress. Front. Oncol. 2021 11 640863 10.3389/fonc.2021.640863 34094924
    [Google Scholar]
  74. Li N. Wang C. Zhang P. You S. Emodin inhibits pancreatic cancer EMT and invasion by up‑regulating microRNA‑1271. Mol. Med. Rep. 2018 18 3 3366 3374 10.3892/mmr.2018.9304 30066876
    [Google Scholar]
  75. Wei W. Wang J. Hu Y. Chen S. Liu J. Emodin reverses resistance to gemcitabine in pancreatic cancer by suppressing stemness through regulation of the epithelial‑mesenchymal transition. Exp. Ther. Med. 2022 25 1 7 10.3892/etm.2022.11706 36545274
    [Google Scholar]
  76. Thul P.J. Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018 27 1 233 244 10.1002/pro.3307 28940711
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665363165250225100109
Loading
/content/journals/ppl/10.2174/0109298665363165250225100109
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: molecular docking ; Pancreatic adenocarcinoma ; in vitro assays ; DEGs ; PAAD ; SDEGs ; emodin ; PPI network ; hesperetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test