Skip to content
2000
Volume 31, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The study of large protein sets (proteomics) involved in the immunological reaction is known as immunoproteomics. The methodology of immunoproteomics plays a major role in identifying possible vaccine candidates that could protect against pathogenic infection. The study of immunogenic proteins that are expressed during the outset of infection is the focus of the cross-talk between proteomics and immune protection antigens utilizing serum. Peptide presentation by MHC provides the new ‘window’ into changes that occur in the cell. Thus, there is strong, intense pressure on the pathogen that has been mutated in such an unusual manner that it can bypass the MHC peptide presentation by the MHC molecule. The pathogen's ability to evade the immune system is strongly restricted by the two unique distinct properties of MHC molecules, , polygenic and polymorphic properties. MHC-I restriction epitope identification has traditionally been accomplished using genetic motif prediction. The study of immune system proteins and their interactions is the main emphasis of the specialist field of immunoproteomics within proteomics. Methodologies include mass spectrometry (MS), SRM assay, MALDI-TOF, Chromatography, ELISA, 2DG PAGE, and bioinformatics tools. Challenges are the complexity of the immune system, protein abundance and dynamics, sample variability, post-translational modifications (PTMs), and data integration. Current advancements are enhanced mass spectrometry techniques, single-cell proteomics, artificial intelligence and machine learning, advanced protein labeling techniques, integration with other omics technologies, and functional proteomics. However, the recently emerging field of immunoproteomics has more promising possibilities in the field of peptide-based vaccines and virus-like particle vaccines. The importance of immunoproteomics technologies and methodologies, as well as their use in the field of vaccinomics, are the main topics of this review. Here, we have discussed immunoproteomics in relation to a step towards the future of vaccination.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665342261240912105111
2024-10-25
2025-01-19
Loading full text...

Full text loading...

References

  1. GomaseV. KaleK. TagoreS. HattureS. Proteomics: Technologies for protein analysis.Curr. Drug Metab.20089321322010.2174/13892000878388474018336224
    [Google Scholar]
  2. JungblutPR Proteome analysis of bacterial pathogens.Microbes Infect.200431083184010.1016/S1286‑4579(01)01441‑1
    [Google Scholar]
  3. TrommerJ. LesniowskiF. BuchnerJ. SvilenovH.L. Specific features of a scaffolding antibody light chain.Protein Sci.2024335e499010.1002/pro.499038607241
    [Google Scholar]
  4. DuanZ. BaughnL.B. WangX. ZhangY. GuptaV. MacCarthyT. ScharffM.D. YuG. Role of Dot1L and H3K79 methylation in regulating somatic hypermutation of immunoglobulin genes.Proc. Natl. Acad. Sci. USA202111829e210401311810.1073/pnas.210401311834253616
    [Google Scholar]
  5. JenkinsG.W. SafonovaY. SmiderV.V. Germline-encoded positional cysteine polymorphisms enhance diversity in antibody ultralong CDR H3 regions.J. Immunol.2022209112141214810.4049/jimmunol.220045536426974
    [Google Scholar]
  6. JennerE. An inquiry into causes and effects of variolae vaccinae, a disease, discovered in some of the Western countries of England, particularly Gloucestershire, and known by the name of cow pox1798
    [Google Scholar]
  7. CohenS. McGREGORI.A. CarringtonS. Gamma-globulin and acquired immunity to human malaria.Nature1961192480473373710.1038/192733a013880318
    [Google Scholar]
  8. BaxbyD. Edward Jenner’s Inquiry; A bicentenary analysis.Vaccine199917430130710.1016/S0264‑410X(98)00207‑29987167
    [Google Scholar]
  9. TuellsJ. Vaccinology: The name, the concept, the adjectives.Vaccine201230375491549510.1016/j.vaccine.2012.06.05922766245
    [Google Scholar]
  10. RosenkranzM. NkumamaI.N. OgwangR. KrakerS. BlicklingM. MwaiK. OderaD. TujuJ. FürleK. FrankR. ChepsatE. KapuluM.C. OsierF.H.A. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection.Life Sci. Alliance202478e20230191010.26508/lsa.20230191038803222
    [Google Scholar]
  11. GbaguidiM.L.E. AdamouR. EdslevS. HansenA. DomingoN.D. DechavanneC. MassougbodjiA. GarciaA. TheisenM. MiletJ. DonadiE.A. CourtinD. IgG and IgM responses to the Plasmodium falciparum asexual stage antigens reflect respectively protection against malaria during pregnancy and infanthood.Malar. J.202423115410.1186/s12936‑024‑04970‑738764069
    [Google Scholar]
  12. RappuoliR. Reverse vaccinology.Curr. Opin. Microbiol.20003544545010.1016/S1369‑5274(00)00119‑311050440
    [Google Scholar]
  13. CuypersB. RappuoliR. BrozziA. A lean reverse vaccinology pipeline with publicly available bioinformatic tools.Methods Mol. Biol.2023267334135610.1007/978‑1‑0716‑3239‑0_2437258926
    [Google Scholar]
  14. DelanyI. RappuoliR. De GregorioE. Vaccines for the 21st century.EMBO Mol. Med.20146670872010.1002/emmm.20140387624803000
    [Google Scholar]
  15. FincoO. RappuoliR. Designing vaccines for the twenty-first century society.Front. Immunol.201451210.3389/fimmu.2014.0001224478777
    [Google Scholar]
  16. SinghG. RanaA. Smriti Decoding antimicrobial resistance: Unraveling molecular mechanisms and targeted strategies.Arch. Microbiol.2024206628010.1007/s00203‑024‑03998‑238805035
    [Google Scholar]
  17. RappuoliR. BlackS. LambertP.H. Vaccine discovery and translation of new vaccine technology.Lancet2011378978836036810.1016/S0140‑6736(11)60440‑621664687
    [Google Scholar]
  18. GuoX. PanX. SunQ. HuY. ShiJ. Design of a novel multiepitope vaccine against Chlamydia pneumoniae using the extracellular protein as a target.Sci. Rep.20231311507010.1038/s41598‑023‑42222‑x37700027
    [Google Scholar]
  19. KeithJ.A. Agostini BiggerL. ArthurP.A. MaesE. DaemsR. Delivering the promise of the Decade of Vaccines: Opportunities and challenges in the development of high quality new vaccines.Vaccine2013312Suppl. 2B184B19310.1016/j.vaccine.2012.12.03223598480
    [Google Scholar]
  20. DecouttereC. De BoeckK. VandaeleN. Advancing sustainable development goals through immunization: A literature review.Global. Health20211719510.1186/s12992‑021‑00745‑w34446050
    [Google Scholar]
  21. GrimmS.K. AckermanM.E. Vaccine design: Emerging concepts and renewed optimism.Curr. Opin. Biotechnol.20132461078108810.1016/j.copbio.2013.02.01523474232
    [Google Scholar]
  22. YurinaV. AdianingsihO.R. Predicting epitopes for vaccine development using bioinformatics tools.Ther. Adv. Vaccines Immunother.20221010.1177/2515135522110021835647486
    [Google Scholar]
  23. Rosendahl HuberS. van BeekJ. de JongeJ.ø. LuytjesW. van BaarleD. T cell responses to viral infections - Opportunities for Peptide vaccination.Front. Immunol.2014517110.3389/fimmu.2014.0017124795718
    [Google Scholar]
  24. BukhariS.N.H. ElshiekhE. AbbasM. Physicochemical properties-based hybrid machine learning technique for the prediction of SARS-CoV-2 T-cell epitopes as vaccine targets.PeerJ Comput. Sci.202410e198010.7717/peerj‑cs.198038686005
    [Google Scholar]
  25. DennehyR. McCleanS. Immunoproteomics: The key to discovery of new vaccine antigens against bacterial respiratory infections.Curr. Protein Pept. Sci.201213880781510.2174/13892031280487118423305366
    [Google Scholar]
  26. CroucherN.J. Immune interface interference vaccines: An evolution-informed approach to anti-bacterial vaccine design.Microb. Biotechnol.2024173e1444610.1111/1751‑7915.1444638536702
    [Google Scholar]
  27. KiddP. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease.Altern. Med. Rev.20038322324612946237
    [Google Scholar]
  28. WardhaniK. YazzieS. McVeighC. EdehO. GrimesM. JacquezQ. DixsonC. BarrE. LiuR. BoltA.M. FengC. ZychowskiK.E. Systemic immunological responses are dependent on sex and ovarian hormone presence following acute inhaled woodsmoke exposure.Part. Fibre Toxicol.20242112710.1186/s12989‑024‑00587‑538797836
    [Google Scholar]
  29. KilmuryS.L.N. TwineS.M. The francisella tularensis proteome and its recognition by antibodies.Front. Microbiol.2011114310.3389/fmicb.2010.0014321687770
    [Google Scholar]
  30. D’haeseleerP. ColletteN.M. LaoV. SegelkeB.W. BrandaS.S. FrancoM. Shotgun immunoproteomic approach for the discovery of linear B-cell epitopes in biothreat agents Francisella tularensis and Burkholderia pseudomallei.Front. Immunol.20211271667610.3389/fimmu.2021.71667634659206
    [Google Scholar]
  31. UthailakN. AdisakwattanaP. ThiangtrongjitT. LimpanontY. ChusongsangP. ChusongsangY. TanasarnprasertK. ReamtongO. Discovery of Schistosoma mekongi circulating proteins and antigens in infected mouse sera.PLoS One20221710e027599210.1371/journal.pone.027599236227939
    [Google Scholar]
  32. Krautz-PetersonG. DebatisM. TremblayJ.M. OliveiraS.C. Da’daraA.A. SkellyP.J. ShoemakerC.B. Schistosoma mansoni infection of mice, rats and humans elicits a strong antibody response to a limited number of reduction-sensitive epitopes on five major tegumental membrane proteins.PLoS Negl. Trop. Dis.2017111e000530610.1371/journal.pntd.000530628095417
    [Google Scholar]
  33. ChenJ.H. ZhangT. JuC. XuB. LuY. MoX.J. ChenS.B. FanY.T. HuW. ZhouX.N. An integrated immunoproteomics and bioinformatics approach for the analysis of Schistosoma japonicum tegument proteins.J. Proteomics20149828929910.1016/j.jprot.2014.01.01024448400
    [Google Scholar]
  34. WangsanutT. PongpomM. Human-fungal pathogen interactions from the perspective of immunoproteomics analyses.Int. J. Mol. Sci.2024256353110.3390/ijms2506353138542504
    [Google Scholar]
  35. FarnellE.J. TyagiN. RyanS. ChalmersI.W. Pinot de MoiraA. JonesF.M. WawrzyniakJ. FitzsimmonsC.M. TukahebwaE.M. FurnhamN. MaizelsR.M. DunneD.W. Known allergen structures predict Schistosoma mansoni IgE-binding antigens in human infection.Front. Immunol.201562610.3389/fimmu.2015.0002625691884
    [Google Scholar]
  36. UdoyeC.C. EhlersM. ManzR.A. The B cell response and formation of allergenic and anti-allergenic antibodies in food allergy.Biology (Basel)20231212150110.3390/biology1212150138132327
    [Google Scholar]
  37. RiveauG. DeplanqueD. RemouéF. SchachtA.M. VodougnonH. CapronM. ThiryM. MartialJ. LibersaC. CapronA. Safety and immunogenicity of rSh28GST antigen in humans: Phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis.PLoS Negl. Trop. Dis.201267e170410.1371/journal.pntd.000170422802974
    [Google Scholar]
  38. ZumukC.P. JonesM.K. NavarroS. GrayD.J. YouH. Transmission-blocking vaccines against Schistosomiasis japonica.Int. J. Mol. Sci.2024253170710.3390/ijms2503170738338980
    [Google Scholar]
  39. DiemertD.J. PintoA.G. FreireJ. JariwalaA. SantiagoH. HamiltonR.G. PeriagoM.V. LoukasA. TriboletL. MulvennaJ. Correa-OliveiraR. HotezP.J. BethonyJ.M. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: Implications for the development of vaccines against helminths.J. Allergy Clin. Immunol.20121301169176.e610.1016/j.jaci.2012.04.02722633322
    [Google Scholar]
  40. GomaseV. TagoreS. Transcriptomics.Curr. Drug Metab.20089324524910.2174/13892000878388475918336229
    [Google Scholar]
  41. KaurR. AroraN. NairM.G. PrasadA. The interplay of helminthic neuropeptides and proteases in parasite survival and host immunomodulation.Biochem. Soc. Trans.202250110711810.1042/BST2021040535076687
    [Google Scholar]
  42. GomaseV.S. ChitlangeN.R. Immunoproteomics approach for development of synthetic peptide vaccine from Mycobacterium tuberculosis.J. Immunol. Res.200911712
    [Google Scholar]
  43. PiaoX. DuanJ. JiangN. LiuS. HouN. ChenQ. Schistosoma japonicum tyrosine hydroxylase is promising targets for immunodiagnosis and immunoprotection of Schistosomiasis japonica.PLoS Negl. Trop. Dis.2023176e001138910.1371/journal.pntd.001138937276235
    [Google Scholar]
  44. de la MazaL.M. ZhongG. BrunhamR.C. Update on Chlamydia trachomatis vaccinology.Clin. Vaccine Immunol.2017244e00543e1610.1128/CVI.00543‑1628228394
    [Google Scholar]
  45. LimH.X. LimJ. PohC.L. Identification and selection of immunodominant B and T cell epitopes for dengue multi-epitope-based vaccine.Med. Microbiol. Immunol. (Berl.)2021210111110.1007/s00430‑021‑00700‑x33515283
    [Google Scholar]
  46. ComberJ.D. PhilipR. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.Ther. Adv. Vaccines201423778910.1177/205101361452537524790732
    [Google Scholar]
  47. GibadullinR. MorrisR.K. NiuJ. SidneyJ. SetteA. GellmanS.H. Thioamide analogues of MHC I antigen peptides.J. Am. Chem. Soc.202314547255592556910.1021/jacs.3c0530037968794
    [Google Scholar]
  48. HawlinaS. ZorecR. ChowdhuryH.H. Potential of personalized dendritic cell-based immunohybridoma vaccines to treat prostate cancer.Life (Basel)2023137149810.3390/life1307149837511873
    [Google Scholar]
  49. StengerR.M. MeiringH.D. KuipersB. PoelenM. van Gaans-van den BrinkJ.A.M. BoogC.J.P. de JongA.P.J.M. van ElsC.A.C.M. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.Clin. Vaccine Immunol.201421564165010.1128/CVI.00665‑1324599530
    [Google Scholar]
  50. ZeppF. KnufM. HabermehlP. SchmittH.J. MeyerC. ClemensR. SlaouiM. Cell-mediated immunity after pertussis vaccination and after natural infection.Dev. Biol. Stand.1997893073149272364
    [Google Scholar]
  51. BrummelmanJ. WilkM.M. HanW.G.H. van ElsC.A.C.M. MillsK.H.G. Roads to the development of improved pertussis vaccines paved by immunology.Pathog. Dis.2015738ftv06710.1093/femspd/ftv06726347400
    [Google Scholar]
  52. HeinekampT. SchmidtH. LappK. PähtzV. ShopovaI. Köster-EiserfunkeN. KrügerT. KniemeyerO. BrakhageA.A. Interference of Aspergillus fumigatus with the immune response.Semin. Immunopathol.201537214115210.1007/s00281‑014‑0465‑125404120
    [Google Scholar]
  53. EarleK. ValeroC. ConnD.P. VereG. CookP.C. BromleyM.J. BowyerP. GagoS. Pathogenicity and virulence of Aspergillus fumigatus.Virulence2023141217226410.1080/21505594.2023.217226436752587
    [Google Scholar]
  54. BoamahD. KikuchiM. HuyN.T. OkamotoK. ChenH. AyiI. BoakyeD.A. BosompemK.M. HirayamaK. Immunoproteomics identification of major IgE and IgG4 reactive Schistosoma japonicum adult worm antigens using chronically infected human plasma.Trop. Med. Health20124038910210.2149/tmh.2012‑1623264728
    [Google Scholar]
  55. GomaseV.S. ChitlangeN.R. Antigen protein from Schistosoma mansoni: New paradigm of synthetic vaccine development.Int. J. Pharma Bio Sci.201013BS43
    [Google Scholar]
  56. ZhuQ. LiuM. DaiL. YingX. YeH. ZhouY. HanS. ZhangJ.Y. Using immunoproteomics to identify tumor-associated antigens (TAAs) as biomarkers in cancer immunodiagnosis.Autoimmun. Rev.201312121123112810.1016/j.autrev.2013.06.01523806562
    [Google Scholar]
  57. LiT. XiaJ. YunH. SunG. ShenY. WangP. ShiJ. WangK. YangH. YeH. A novel autoantibody signatures for enhanced clinical diagnosis of pancreatic ductal adenocarcinoma.Cancer Cell Int.202323127310.1186/s12935‑023‑03107‑137974212
    [Google Scholar]
  58. Álvarez-FernándezS.M. De MonteL. AlessioM. Natural antibodies to tumor-associated antigens.Methods Mol. Biol.20161393112510.1007/978‑1‑4939‑3338‑9_227033212
    [Google Scholar]
  59. GilletteM.A. CarrS.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry.Nat. Methods2013101283410.1038/nmeth.230923269374
    [Google Scholar]
  60. HarlanR. ZhangH. Targeted proteomics: A bridge between discovery and validation.Expert Rev. Proteomics201411665766110.1586/14789450.2014.97655825348939
    [Google Scholar]
  61. CarbonaraK. AndonovskiM. CoorssenJ.R. Proteomes are of proteoforms: Embracing the complexity.Proteomes2021933810.3390/proteomes903003834564541
    [Google Scholar]
  62. LiuJ. LiW. WangL. LiJ. LiE. LuoY. Multi-omics technology and its applications to life sciences: A review.Sheng Wu Gong Cheng Xue Bao, China J. Biotechnol.202238103581359310.13345/j.cjb.220724
    [Google Scholar]
  63. CroxattoA. Prod’homG. GreubG. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.FEMS Microbiol. Rev.201236238040710.1111/j.1574‑6976.2011.00298.x22092265
    [Google Scholar]
  64. MooreJ.L. PattersonN.H. NorrisJ.L. CaprioliR.M. Prospective on imaging mass spectrometry in clinical diagnostics.Mol. Cell. Proteomics202322910057610.1016/j.mcpro.2023.10057637209813
    [Google Scholar]
  65. CoxC.R. HarrisR.M. Mass spectrometry and microbial diagnostics in the clinical laboratory.Clin. Lab. Med.202141228529510.1016/j.cll.2021.03.00734020764
    [Google Scholar]
  66. Saint-MarcouxF. SauvageF.L. MarquetP. Current role of LC-MS in therapeutic drug monitoring.Anal. Bioanal. Chem.200738871327134910.1007/s00216‑007‑1320‑117520242
    [Google Scholar]
  67. HolbrookJ.H. KemperG.E. HummonA.B. Quantitative mass spectrometry imaging: Therapeutics & biomolecules.Chem. Commun. (Camb.)202460162137215110.1039/D3CC05988J38284765
    [Google Scholar]
  68. LiottaE. GottardoR. BertasoA. PolettiniA. Screening for pharmaco-toxicologically relevant compounds in biosamples using high-resolution mass spectrometry: A ‘metabolomic’ approach to the discrimination between isomers.J. Mass Spectrom.201045326127110.1002/jms.171020014151
    [Google Scholar]
  69. Bui-ThiD. LiuY. LippensJ.L. LaukensK. De VijlderT. TransExION: A transformer based explainable similarity metric for comparing ions in tandem mass spectrometry.J. Cheminform.20241616110.1186/s13321‑024‑00858‑538807166
    [Google Scholar]
  70. XuA.M. TangL.C. JovanovicM. RegevO. Uncovering distinct peptide charging behaviors in electrospray ionization mass spectrometry using a large-scale dataset.J. Am. Soc. Mass Spectrom.2024351909910.1021/jasms.3c0032538095561
    [Google Scholar]
  71. MillingtonD.S. How mass spectrometry revolutionized newborn screening.J. Mass Spectrom. Adv. Clin. Lab.20243211010.1016/j.jmsacl.2024.01.00638333514
    [Google Scholar]
  72. PsychogiosN. HauD.D. PengJ. GuoA.C. MandalR. BouatraS. SinelnikovI. KrishnamurthyR. EisnerR. GautamB. YoungN. XiaJ. KnoxC. DongE. HuangP. HollanderZ. PedersenT.L. SmithS.R. BamforthF. GreinerR. McManusB. NewmanJ.W. GoodfriendT. WishartD.S. The human serum metabolome.PLoS One201162e1695710.1371/journal.pone.001695721359215
    [Google Scholar]
  73. NeaguA.N. WhithamD. BrunoP. MorrissieyH. DarieC.A. DarieC.C. Omics-based investigations of breast cancer.Molecules20232812476810.3390/molecules2812476837375323
    [Google Scholar]
  74. SauerS. KliemM. Mass spectrometry tools for the classification and identification of bacteria.Nat. Rev. Microbiol.201081748210.1038/nrmicro224320010952
    [Google Scholar]
  75. BirhanuA.G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories.Clin. Proteomics20232013210.1186/s12014‑023‑09424‑x37633929
    [Google Scholar]
  76. PicottiP. AebersoldR. Selected reaction monitoring–based proteomics: Workflows, potential, pitfalls and future directions.Nat. Methods20129655556610.1038/nmeth.201522669653
    [Google Scholar]
  77. ManesN.P. Nita-LazarA. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.J. Proteomics2018189759010.1016/j.jprot.2018.02.00829452276
    [Google Scholar]
  78. HüttenhainR. SosteM. SelevsekN. RöstH. SethiA. CarapitoC. FarrahT. DeutschE.W. KusebauchU. MoritzR.L. Niméus-MalmströmE. RinnerO. AebersoldR. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics.Sci. Transl. Med.20124142142ra9410.1126/scitranslmed.300398922786679
    [Google Scholar]
  79. HüttenhainR. ChoiM. Martin de la FuenteL. OehlK. ChangC.Y. ZimmermannA.K. MalanderS. OlssonH. SurinovaS. CloughT. Heinzelmann-SchwarzV. WildP.J. DinulescuD.M. NiméusE. VitekO. AebersoldR. A targeted mass spectrometry strategy for developing proteomic biomarkers: A case study of epithelial ovarian cancer.Mol. Cell. Proteomics20191891836185010.1074/mcp.RA118.00122131289117
    [Google Scholar]
  80. ChangC.Y. PicottiP. HüttenhainR. Heinzelmann-SchwarzV. JovanovicM. AebersoldR. VitekO. Protein significance analysis in selected reaction monitoring (SRM) measurements.Mol. Cell Proteomics2012114M111.01466210.1074/mcp.M111.014662
    [Google Scholar]
  81. SuchaR. KubickovaM. CervenkaJ. Hruska-PlochanM. BohaciakovaD. Vodickova KepkovaK. NovakovaT. BudkovaK. SusorA. MarsalaM. MotlikJ. KovarovaH. VodickaP. Targeted mass spectrometry for monitoring of neural differentiation.Biol. Open2021108bio05872710.1242/bio.05872734357391
    [Google Scholar]
  82. EscherC. ReiterL. MacLeanB. OssolaR. HerzogF. ChiltonJ. MacCossM.J. RinnerO. Using i RT, a normalized retention time for more targeted measurement of peptides.Proteomics20121281111112110.1002/pmic.20110046322577012
    [Google Scholar]
  83. ChenY. VuJ. ThompsonM.G. SharplessW.A. ChanL.J.G. GinJ.W. KeaslingJ.D. AdamsP.D. PetzoldC.J. A rapid methods development workflow for high-throughput quantitative proteomic applications.PLoS One2019142e021158210.1371/journal.pone.021158230763335
    [Google Scholar]
  84. ShiT. FillmoreT.L. SunX. ZhaoR. SchepmoesA.A. HossainM. XieF. WuS. KimJ.S. JonesN. MooreR.J. Paša-TolićL. KaganJ. RodlandK.D. LiuT. TangK. CampD.G.II SmithR.D. QianW.J. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum.Proc. Natl. Acad. Sci. USA201210938153951540010.1073/pnas.120436610922949669
    [Google Scholar]
  85. SchutzerS.E. LiuT. TsaiC.F. PetyukV.A. SchepmoesA.A. WangY.T. WeitzK.K. BergquistJ. SmithR.D. NatelsonB.H. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes.Ann. Med.2023551220837210.1080/07853890.2023.220837237722890
    [Google Scholar]
  86. WhiteakerJ.R. ZhaoL. LinC. YanP. WangP. PaulovichA.G. 2012Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry.Mol. Cell Proteomics2012116M111.01534710.1074/mcp.M111.015347
    [Google Scholar]
  87. CollinsC.J. ChangI.J. JungS. DayuhaR. WhiteakerJ.R. SegundoG.R.S. TorgersonT.R. OchsH.D. PaulovichA.G. HahnS.H. Rapid multiplexed proteomic screening for primary immunodeficiency disorders from dried blood spots.Front. Immunol.20189275610.3389/fimmu.2018.0275630564228
    [Google Scholar]
  88. KuhnE. WhiteakerJ.R. ManiD.R. JacksonA.M. ZhaoL. PopeM.E. SmithD. RiveraK.D. AndersonN.L. SkatesS.J. 2012Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in.Mol. Cell Proteomics2012116M111.01385410.1074/mcp.M111.013854
    [Google Scholar]
  89. WhiteakerJ.R. ZhaoL. SchoenherrR.M. HuangD. LundeenR.A. VoytovichU. KennedyJ.J. IveyR.G. LinC. MurilloO.D. LorentzenT.D. ColantonioS. CaceresT.W. RobertsR.R. KnottsJ.G. ReadingJ.J. PerryC.D. RichardsonC.W. Garcia-BuntleyS.S. BocikW. HewittS.M. ChowdhuryS. VandermeerJ. SmithS.D. GopalA.K. RamchurrenN. FlingS.P. WangP. PaulovichA.G. A multiplexed assay for quantifying immunomodulatory proteins supports correlative studies in immunotherapy clinical trials.Front. Oncol.202313116871010.3389/fonc.2023.116871037205196
    [Google Scholar]
  90. PercyA.J. ChambersA.G. YangJ. DomanskiD. BorchersC.H. Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins.Anal. Bioanal. Chem.201240441089110110.1007/s00216‑012‑6010‑y22547352
    [Google Scholar]
  91. ZhuS. WuolikainenA. WuJ. ÖhmanA. WingsleG. MoritzT. AndersenP.M. ForsgrenL. TruppM. Targeted multiple reaction monitoring analysis of CSF identifies UCHL1 and GPNMB as candidate biomarkers for ALS.J. Mol. Neurosci.201969464365710.1007/s12031‑019‑01411‑y31721001
    [Google Scholar]
  92. GilletL.C. NavarroP. TateS. RöstH. SelevsekN. ReiterL. BonnerR. AebersoldR. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis.Mol. Cell Proteomics2012116O111.016717
    [Google Scholar]
  93. CtorteckaC. MechtlerK. The rise of single-cell proteomics.Anal. Sci. Adv.202123-4849410.1002/ansa.20200015238716457
    [Google Scholar]
  94. ComberJ.D. KarabudakA. HuangX. PiazzaP.A. MarquesE.T.A. PhilipR. Dengue virus specific dual HLA binding T cell epitopes induce CD8+ T cell responses in seropositive individuals.Hum. Vaccin. Immunother.201410123531354310.4161/21645515.2014.98021025668665
    [Google Scholar]
  95. SamriA. BandeiraA.C. GoisL.L. SilvaC.G.R. RousseauA. CorneauA. TarantinoN. MaucourantC. QueirozG.A.N. VieillardV. YsselH. CamposG.S. SardiS. AutranB. Rios GrassiM.F. Comprehensive analysis of early T cell responses to acute Zika Virus infection during the first epidemic in Bahia, Brazil.PLoS One2024195e030268410.1371/journal.pone.030268438722858
    [Google Scholar]
  96. GallienS. DuriezE. CroneC. KellmannM. MoehringT. DomonB. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.Mol. Cell. Proteomics201211121709172310.1074/mcp.O112.01980222962056
    [Google Scholar]
  97. JoshiS.K. PiehowskiP. LiuT. GoslineS.J.C. McDermottJ.E. DrukerB.J. TraerE. TynerJ.W. AgarwalA. TognonC.E. RodlandK.D. Mass spectrometry-based proteogenomics: New therapeutic opportunities for precision medicine.Annu. Rev. Pharmacol. Toxicol.202464145547910.1146/annurev‑pharmtox‑022723‑11392137738504
    [Google Scholar]
  98. OhyamaK. KurodaN. Proteomic approaches to profiling the humoral immune response and identifying disease-Associated antigens.Biol. Pharm. Bull.20123591409141210.1248/bpb.b21201022975488
    [Google Scholar]
  99. LiW. ZhangQ. LiQ. LiuS. YuanG. PanY. Innate immune response restarts adaptive immune response in tumors.Front. Immunol.202314126070510.3389/fimmu.2023.126070537781382
    [Google Scholar]
  100. BiswasS. SharmaS. SarohaA. BhakuniD.S. MalhotraR. ZahurM. OellerichM. DasH.R. AsifA.R. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach.PLoS One201382e5624610.1371/journal.pone.005624623418544
    [Google Scholar]
  101. OssipovaE. CerqueiraC. ReedE. KharlamovaN. IsraelssonL. HolmdahlR. NandakumarK. EngströmM. HarreU. SchettG. CatrinaA.I. MalmströmV. SommarinY. KlareskogL. JakobssonP.J. LundbergK. Affinity purified anti-citrullinated protein/peptide antibodies target antigens expressed in the rheumatoid joint.Arthritis Res. Ther.2014164R16710.1186/ar468325112157
    [Google Scholar]
  102. WebsterJ. OxleyD. Protein identification by MALDI-TOF mass spectrometry.Methods Mol. Biol.201280022724010.1007/978‑1‑61779‑349‑3_1521964792
    [Google Scholar]
  103. SivanesanI. GopalJ. HasanN. MuthuM. A systematic assessment of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) application for rapid identification of pathogenic microbes that affect food crops: Delivered and future deliverables.RSC Advances20231325172971731410.1039/D3RA01633A37304772
    [Google Scholar]
  104. ChenY. AzmanS.N. KerishnanJ.P. ZainR.B. ChenY.N. WongY.L. GopinathS.C.B. Identification of host-immune response protein candidates in the sera of human oral squamous cell carcinoma patients.PLoS One2014910e10901210.1371/journal.pone.010901225272005
    [Google Scholar]
  105. ZhangQ. TeowJ.Y. KerishnanJ.P. Abd HalimA.A. ChenY. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers: A comprehensive review.Biomedicines2023115145810.3390/biomedicines1105145837239129
    [Google Scholar]
  106. YuY. WuG. ZhaiZ. YaoH. LuC. ZhangW. Fifteen novel immunoreactive proteins of Chinese virulent Haemophilus parasuis serotype 5 verified by an immunoproteomic assay.Folia Microbiol. (Praha)2015601818710.1007/s12223‑014‑0343‑125200063
    [Google Scholar]
  107. WangX. XuF. NingK. ShenL. QiX. WangJ. Construction and application of MALDI-TOF mass spectrometry for the detection of Haemophilus parasuis.BioMed Res. Int.202120211810.1155/2021/558885533937398
    [Google Scholar]
  108. HuD.D. CuiJ. XiaoD. WangL. LiuL.N. LiuR.D. ZhangJ.Z. WangZ.Q. Identification of early diagnostic antigens from Spirometra erinaceieuropaei sparganum soluble proteins using immunoproteomics.Southeast Asian J. Trop. Med. Public Health201445357658324974641
    [Google Scholar]
  109. LuY. SunJ.H. LuL.L. ChenJ.X. SongP. AiL. CaiY.C. LiL.H. ChenS.H. Proteomic and immunological identification of diagnostic antigens from Spirometra erinaceieuropaei plerocercoid.Korean J. Parasitol.202159661562310.3347/kjp.2021.59.6.61534974668
    [Google Scholar]
  110. HuQ. DingC. TuJ. WangX. HanX. DuanY. YuS. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer.Vet. Microbiol.20121573-442843810.1016/j.vetmic.2012.01.00922317978
    [Google Scholar]
  111. YangZ. WangM. JiaR. ChenS. LiuM. ZhaoX. YangQ. WuY. ZhangS. HuangJ. OuX. MaoS. GaoQ. SunD. TianB. HeY. WuZ. ZhuD. ChengA. Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China.Microbiol. Spectr.2024122e03132-2310.1128/spectrum.03132‑2338169285
    [Google Scholar]
  112. MorgenthalerN.G. KostrzewaM. Rapid identification of pathogens in positive blood culture of patients with sepsis: Review and meta-analysis of the performance of the sepsityper kit.Int. J. Microbiol.2015201511010.1155/2015/82741626000017
    [Google Scholar]
  113. PeršeG. SamošćanecI. BošnjakZ. BudimirA. KulišT. MarekovićI. Sepsityper® kit versus in-house method in rapid identification of bacteria from positive blood cultures by MALDI-TOF mass spectrometry.Life (Basel)20221211174410.3390/life1211174436362899
    [Google Scholar]
  114. WangL. CuiJ. HuD. LiuR. WangZ. Identification of early diagnostic antigens from major excretory-secretory proteins of Trichinella spiralis muscle larvae using immunoproteomics.Parasit. Vectors2014714010.1186/1756‑3305‑7‑4024450759
    [Google Scholar]
  115. CybulskaA. Immunoproteomic analysis of Trichinella britovi proteins recognized by IgG antibodies from meat juice of carnivores naturally infected with T. britovi.Pathogens20221110115510.3390/pathogens1110115536297212
    [Google Scholar]
  116. DownardK.M. An immunoproteomics approach to screen the antigenicity of the influenza virus.Methods Mol. Biol.2013106114115310.1007/978‑1‑62703‑589‑7_823963935
    [Google Scholar]
  117. DownardK.M. 25 years responding to respiratory and other viruses with mass spectrometry.Mass Spectrom. (Tokyo)2023121A013610.5702/massspectrometry.A013638053835
    [Google Scholar]
  118. GoldszmidR.S. DzutsevA. TrinchieriG. Host immune response to infection and cancer: Unexpected commonalities.Cell Host Microbe201415329530510.1016/j.chom.2014.02.00324629336
    [Google Scholar]
  119. YangT. ChenF. XuF. WangF. XuQ. ChenY. A liquid chromatography–tandem mass spectrometry-based targeted proteomics assay for monitoring P-glycoprotein levels in human breast tissue.Clin. Chim. Acta201443628328910.1016/j.cca.2014.06.01324972002
    [Google Scholar]
  120. AgostiniM. TraldiP. HamdanM. Mass spectrometry-based proteomics: Analyses related to drug-resistance and disease biomarkers.Medicina (Kaunas)20235910172210.3390/medicina5910172237893440
    [Google Scholar]
  121. BergaminiS. BelleiE. Reggiani BonettiL. MonariE. CuoghiA. BorelliF. SighinolfiM. BianchiG. OzbenT. TomasiA. Inflammation: An important parameter in the search of prostate cancer biomarkers.Proteome Sci.20141213210.1186/1477‑5956‑12‑3224944525
    [Google Scholar]
  122. BelleiE. CaramaschiS. GiannicoG.A. MonariE. MartoranaE. Reggiani BonettiL. BergaminiS. Research of prostate cancer urinary diagnostic biomarkers by proteomics: The noteworthy influence of inflammation.Diagnostics (Basel)2023137131810.3390/diagnostics1307131837046536
    [Google Scholar]
  123. GomaseV. TagoreS. KaleK. BhiwgadeD. Oncogenomics.Curr. Drug Metab.20089319920610.2174/13892000878388471318336222
    [Google Scholar]
  124. LedfordH. Trove of tumour genomes offers clues to cancer origins.Nature2022604790760910.1038/d41586‑022‑01095‑235449305
    [Google Scholar]
  125. MillonL. RebouxG. BarreraC. RognonB. RousselS. MonodM. Immunoproteomics for serological diagnosis of hypersensitivity pneumonitis caused by environmental microorganisms.Curr. Protein Pept. Sci.201415543043610.2174/138920371566614051212173324818758
    [Google Scholar]
  126. EdforsF. BoströmT. ForsströmB. ZeilerM. JohanssonH. LundbergE. HoberS. LehtiöJ. MannM. UhlenM. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins.Mol. Cell. Proteomics20141361611162410.1074/mcp.M113.03414024722731
    [Google Scholar]
  127. GeyerP.E. HoldtL.M. TeupserD. MannM. Revisiting biomarker discovery by plasma proteomics.Mol. Syst. Biol.201713994210.15252/msb.2015629728951502
    [Google Scholar]
  128. Florentinus-MefailoskiA. SafiF. MarshallJ.G. Enzyme linked immuno mass spectrometric assay (ELIMSA).J. Proteomics20149634335210.1016/j.jprot.2013.11.02224316356
    [Google Scholar]
  129. SchmidtS. HoffmannH. GarbeL.A. HarrerA. SteinerM. HimlyM. SchneiderR.J. Re-assessment of monoclonal antibodies against diclofenac for their application in the analysis of environmental waters.Anal. Methods202416213349336310.1039/D3AY01333B38742423
    [Google Scholar]
  130. GomaseV. ChangbhaleS. PatilS. KaleK. Metabolomics.Curr. Drug Metab.200891899810.2174/13892000878333114918220576
    [Google Scholar]
  131. MartinsC. MagalhãesS. AlmeidaI. NetoV. RebeloS. NunesA. Metabolomics to study human aging: A review.Curr. Mol. Med.202424445747710.2174/156652402366623040712372737026499
    [Google Scholar]
  132. ZhangY. WuY. LiuH. GongW. HuY. ShenY. CaoJ. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection.Parasit. Vectors202114149710.1186/s13071‑021‑05006‑834565440
    [Google Scholar]
  133. DoubledayP. BallifB. Developmentally-dynamic murine brain proteomes and phosphoproteomes revealed by quantitative proteomics.Proteomes20142219120710.3390/proteomes202019125177544
    [Google Scholar]
  134. LiuX. FieldsR. SchweppeD.K. PauloJ.A. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging.Expert Rev. Proteomics202118979580710.1080/14789450.2021.199439034652972
    [Google Scholar]
  135. MilioliH.H. Santos SousaK. KaviskiR. Dos Santos OliveiraN.C. De Andrade UrbanC. De LimaR.S. CavalliI.J. De Souza Fonseca RibeiroE.M. Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion.Cancer Genomics Proteomics20151228910125770193
    [Google Scholar]
  136. NeaguA.N. WhithamD. SeymourL. HaakerN. PelkeyI. DarieC.C. Proteomics-based identification of dysregulated proteins and biomarker discovery in invasive ductal carcinoma, the most common breast cancer subtype.Proteomes20231121310.3390/proteomes1102001337092454
    [Google Scholar]
  137. CristofaroM.G. ScumaciD. FiumaraC.V. Di SanzoM. ZuccalàV. DonatoG. CarusoD. RiccelliU. FanielloM.C. CudaG. CostanzoF. GiudiceM. Identification of prognosis-related proteins in gingival squamous cell carcinoma by twodimensional gel electrophoresis and mass spectrometry-based proteomics.Ann. Ital. Chir.201485651852425712919
    [Google Scholar]
  138. TsolakosN. BrookesC. TaylorS. GorringeA. TangC.M. FeaversI.M. WheelerJ.X. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis.J. Proteomics2014101637610.1016/j.jprot.2014.02.01324561796
    [Google Scholar]
  139. AndreaeC.A. SessionsR.B. VirjiM. HillD.J. Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design.PLoS One2018133e019394010.1371/journal.pone.019394029547646
    [Google Scholar]
  140. MoreauY. TrancheventL.C. Computational tools for prioritizing candidate genes: Boosting disease gene discovery.Nat. Rev. Genet.201213852353610.1038/nrg325322751426
    [Google Scholar]
  141. ChoiY. ChaJ. ChoiS. Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES).BMC Bioinformatics20242515610.1186/s12859‑024‑05677‑x38308205
    [Google Scholar]
  142. PatronovA. DoytchinovaI. T-cell epitope vaccine design by immunoinformatics.Open Biol.20133112013910.1098/rsob.12013923303307
    [Google Scholar]
  143. AnwarT. IsmailS. ParvaizF. AbbasiS.W. A Al-AbbasiF. M AlghamdiA. Al-RegaieyK. Ul-HaqA. KaleemI. BashirS. WaheedY. Computational design of experimentally validated multi-epitopes vaccine against hepatitis E virus: An immunological approach.PLoS One20231812e029466310.1371/journal.pone.029466338096182
    [Google Scholar]
  144. UlmerJ.B. MansouraM.K. GeallA.J. Vaccines ‘on demand’: Science fiction or a future reality.Expert Opin. Drug Discov.201510210110610.1517/17460441.2015.99612825582273
    [Google Scholar]
  145. AnkrahP.K. IlesanmiA. AkinyemiA.O. LasehindeV. AdurosakinO.E. AjayiO.H. Clinical analysis and applications of mRNA vaccines in infectious diseases and cancer treatment.Cureus20231510e4635410.7759/cureus.4635437920621
    [Google Scholar]
  146. GomaseV.S. KemkarK.R. BaviskarB.A. MundheV.S. SakhareA.D. KolsureA.K. BhimanwarA.A. DhamaneS.P. PotnisV.V. Physicochemical and immunoproteomic analysis to design synthetic peptide vaccine from Naja kaouthia neurotoxin.World J. Pharm. Res.20231241286129110.20959/wjpr20234‑46863
    [Google Scholar]
  147. GuarraF. ColomboG. Computational methods in immunology and vaccinology: Design and development of antibodies and immunogens.J. Chem. Theory Comput.202319165315533310.1021/acs.jctc.3c0051337527403
    [Google Scholar]
  148. WangJ. YuY. ZhaoY. ZhangD. LiJ. Evaluation and integration of existing methods for computational prediction of allergens.BMC Bioinformatics201314S4Suppl. 4S110.1186/1471‑2105‑14‑S4‑S123514097
    [Google Scholar]
  149. LiJ. WangJ. LiJ. Improving allergen prediction in main crops using a weighted integrative method.Interdiscip. Sci.20179454554910.1007/s12539‑016‑0192‑527734271
    [Google Scholar]
  150. HeY. XiangZ. MobleyH.L.T. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development.J. Biomed. Biotechnol.2010201011510.1155/2010/29750520671958
    [Google Scholar]
  151. YuY. ZuL. JiangJ. WuY. WangY. XuM. LiuQ. Structure-aware deep model for MHC-II peptide binding affinity prediction.BMC Genomics202425112710.1186/s12864‑023‑09900‑638291350
    [Google Scholar]
  152. XiangZ. HeY. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology.BMC Bioinformatics201314S4Suppl. 4S210.1186/1471‑2105‑14‑S4‑S223514126
    [Google Scholar]
  153. MayerR.L. MechtlerK. Immunopeptidomics in the era of single-cell proteomics.Biology (Basel)20231212151410.3390/biology1212151438132340
    [Google Scholar]
  154. ElAbdH. FrankeA. Mass spectrometry-based immunopeptidomics of peptides presented on human leukocyte antigen proteins.PeptidomicsHumanaNew York SchraderM. FrickerL.D. 2024275842544310.1007/978‑1‑0716‑3646‑6_23
    [Google Scholar]
  155. MayerR.L. VerbekeR. AsselmanC. AernoutI. GulA. EggermontD. BoucherK. TheryF. MaiaT.M. DemolH. GabrielsR. MartensL. BécavinC. De SmedtS.C. VandekerckhoveB. LentackerI. ImpensF. Immuno- peptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes.Nat. Commun.2022131607510.1038/s41467‑022‑33721‑y36241641
    [Google Scholar]
  156. SunJ. WuD. XuT. WangX. XuX. TaoL. LiY.X. CaoZ.W. SEPPA: A computational server for spatial epitope prediction of protein antigens.Nucleic Acids Res.200937W612W61610.1093/nar/gkp417
    [Google Scholar]
  157. ZengX. BaiG. SunC. MaB. Recent progress in antibody epitope prediction.Antibodies (Basel)20231235210.3390/antib1203005237606436
    [Google Scholar]
  158. LoY.T. PaiT.W. WuW.K. ChangH.T. Prediction of conformational epitopes with the use of a knowledge-based energy function and geometrically related neighboring residue characteristics.BMC Bioinformatics201314S4Suppl. 4S310.1186/1471‑2105‑14‑S4‑S323514199
    [Google Scholar]
  159. LuS. LiY. MaQ. NanX. ZhangS. A structure-based B-cell epitope prediction model through combining local and global features.Front. Immunol.20221389094310.3389/fimmu.2022.89094335844532
    [Google Scholar]
  160. XuY. LuoC. MamitsukaH. ZhuS. MetaMHCpan, a meta approach for pan-specific MHC peptide binding prediction.Vaccine DesignHumanaNew York ThomasS. 2016140475376010.1007/978‑1‑4939‑3389‑1_49
    [Google Scholar]
  161. TerryF. ArditoM. SperoD. MartinW. De GrootD.S. iVAX web-based vaccine design.The 2nd ISV pre-conference computational vaccinology workshop (ICoVax 2012)Shanghai, China2012
    [Google Scholar]
  162. HuangJ. RuB. SAROTUP 2.0: A suite of web tools for finding potential target-unrelated peptides from phage display data.The 2nd ISV Pre-Conference Computational Vaccinology Workshop (ICoVax 2012)Shanghai, ChinaOctober 13, 2012
    [Google Scholar]
  163. HeY. CaoZ. De GrootA.S. BrusicV. SchönbachC. PetrovskyN. Computational vaccinology and the ICoVax 2012 workshop.BMC Bioinformatics201314S4I110.1186/1471‑2105‑14‑S4‑I123514034
    [Google Scholar]
  164. ChenL. WuD. JiL. WuX. XuD. CaoZ. HanJ. Bioinformatics analysis of the epitope regions for norovirus capsid protein.BMC Bioinformatics201314S4S510.1186/1471‑2105‑14‑S4‑S523514273
    [Google Scholar]
  165. GuptaA. SinghA.P. SinghV.K. SinhaR.P. Recent developments and future perspectives of vaccines and therapeutic agents against SARS-CoV-2 using the BCOV_S1_CTD of the S protein.Viruses2023156123410.3390/v1506123437376534
    [Google Scholar]
  166. MatteiA.E. GutierrezA.H. SeshadriS. TivinJ. ArditoM. RosenbergA.S. MartinW.D. De GrootA.S. In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies.MAbs2024161233372910.1080/19420862.2024.233372938536724
    [Google Scholar]
  167. De GrootA.S. DesaiA.K. LeliasS. MiahS.M.S. TerryF.E. KhanS. LiC. YiJ.S. ArditoM. MartinW.D. KishnaniP.S. Immune tolerance-adjusted personalized immunogenicity prediction for Pompe disease.Front. Immunol.20211263673110.3389/fimmu.2021.63673134220802
    [Google Scholar]
  168. MishraS. GomaseV.S. Application of in silico approach in prediction of epitopes.Res. J. Biotechnol.2021162206214
    [Google Scholar]
  169. GustianandaM. SasmonoT. NunezA.G. YohanB. MoiseL. WardhaniP. TerryF. MartinW. De GrootA.S. Analysis of ChimeriVax dengue virus envelope for T-cell epitopes and comparison to circulating viral strains in Indonesia.The 2nd ISV Pre-Conference Computational Vaccinology Workshop (ICoVax 2012)Shanghai, ChinaOctober 13, 2012
    [Google Scholar]
  170. Imani FooladiA.A. Mahmoodzadeh HosseiniH. AmaniJ. An in silico chimeric vaccine targeting breast cancer containing inherent adjuvant.Iran. J. Cancer Prev.201583e232610.17795/ijcp232626413246
    [Google Scholar]
  171. SliwkowskiM.X. MellmanI. Antibody therapeutics in cancer.Science201334161511192119810.1126/science.124114524031011
    [Google Scholar]
  172. WeiB. LantzC. Ogorzalek LooR.R. CampuzanoI.D.G. LooJ.A. Internal fragments enhance middle-down mass spectrometry structural characterization of monoclonal antibodies and antibody-drug conjugates.Anal. Chem.20249662491249910.1021/acs.analchem.3c0452638294207
    [Google Scholar]
  173. NakayaH.I. LiS. PulendranB. Systems vaccinology: Learning to compute the behavior of vaccine induced immunity.Wiley Interdiscip. Rev. Syst. Biol. Med.20124219320510.1002/wsbm.16322012654
    [Google Scholar]
  174. GomaseV.S. ChitlangeN.R. Sensitive quantitative predictions of MHC binding peptides and fragment-based peptide vaccines from Taenia crassiceps.J. Vaccines Vaccin.20123113110.4172/2157‑7560.1000131
    [Google Scholar]
  175. GomaseV. ChitlangeN. ChangbhaleS. KaleK. Prediction of Brugia malayi antigenic peptides: Candidates for synthetic vaccine design against lymphatic filariasis.Protein Pept. Lett.201320886488710.2174/092986651132008000423537185
    [Google Scholar]
  176. DormitzerP.R. GrandiG. RappuoliR. Structural vaccinology starts to deliver.Nat. Rev. Microbiol.2012101280781310.1038/nrmicro289323154260
    [Google Scholar]
  177. GomaseV.S. KemkarK.R. BaviskarB.A. MundheV.S. SakhareA.D. KolsureA.K. BhimanwarA.A. DhamaneS.P. PotnisV.V. Immunoinformatics study of physical properties of scorpion neurotoxin Bmk-M8 from Mesobuthus martensii.Int. J. Modern Pharm. Res.202373131510.46376/ijmpr/7.3.4
    [Google Scholar]
  178. GomaseV.S. PangarkarP.R. KemkarK.R. AlbharK.G. KolsureA.K. DhamaneS.P. PotnisV.V. Immunoproteomics physicochemical analysis of heterodimeric neurotoxic phospholipases A2 from Apis cerana.Int. J. Pharm. Res.202315111812310.31838/ijpr/15.1.019
    [Google Scholar]
  179. MishraS. GomaseV.S. In silico insights to predict the major histocompatibility complex peptide binders from protein.Eur. J. Mol. Clin. Med.202182219226
    [Google Scholar]
  180. GomaseV. TagoreS. RNAi - A tool for target finding in new drug development.Curr. Drug Metab.20089324124410.2174/13892000878388477718336228
    [Google Scholar]
  181. GomaseV. ChangbhaleS. Antigenicity prediction in melittin: Possibilities of in drug development from Apis dorsata.Curr. Proteomics20074210711410.2174/157016407782194639
    [Google Scholar]
  182. GomaseV. Prediction of antigenic epitopes of neurotoxin Bmbktx1 from Mesobuthus martensii.Curr. Drug Discov. Technol.20063322522910.2174/15701630678013681717311567
    [Google Scholar]
  183. ZhouY. MurreC. Bursty gene expression and mRNA decay pathways orchestrate B cell activation.Sci. Adv.2021749eabm081910.1126/sciadv.abm081934860551
    [Google Scholar]
  184. BahramiA.A. PayandehZ. KhaliliS. ZakeriA. BandehpourM. Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein.Int. Rev. Immunol.201938630732210.1080/08830185.2019.165742631478759
    [Google Scholar]
  185. TaghizadehM.S. NiaziA. AfsharifarA. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus.Vaccine X20241610044010.1016/j.jvacx.2024.10044038283623
    [Google Scholar]
  186. WuX. ZhaiX. LaiY. ZuoL. ZhangY. MeiX. XiangR. KangZ. ZhouL. WangH. Construction and immunogenicity of novel chimeric virus-like particles bearing antigens of infectious bronchitis virus and Newcastle disease virus.Viruses201911325410.3390/v1103025430871190
    [Google Scholar]
  187. SepotokeleK.M. O’KennedyM.M. WandragD.B.R. AbolnikC. Optimization of infectious bronchitis virus-like particle expression in Nicotiana benthamiana as potential poultry vaccines.PLoS One2023187e028897010.1371/journal.pone.028897037471377
    [Google Scholar]
  188. Hadj HassineI. Ben M’hadhebM. AlmalkiM.A. GharbiJ. Virus-like particles as powerful vaccination strategy against human viruses.Rev. Med. Virol.2024341e249810.1002/rmv.249838116958
    [Google Scholar]
  189. KheirvariM. LiuH. TumbanE. Virus-like particle vaccines and platforms for vaccine development.Viruses2023155110910.3390/v1505110937243195
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665342261240912105111
Loading
/content/journals/ppl/10.2174/0109298665342261240912105111
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioinformatics; epitopes; Immunoproteomics; MHC; pathogen; proteome; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test